
Deconvolution in Nonparametric Statistics

Kris De Brabanter1,2 and Bart De Moor1,2 ∗

1- Katholieke Universiteit Leuven - Department of Electrical Engineering (ESAT-SCD)
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

2- Katholieke Universiteit Leuven - IBBT-KU Leuven Future Health Department
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Abstract. In this tutorial paper we give an overview of deconvolution
problems in nonparametric statistics. First, we consider the problem of
density estimation given a contaminated sample. We illustrate that the
classical Rosenblatt-Parzen kernel density estimator is unable to capture
the full shape of the density while the presented method experiences almost
no problems. Second, we use the previous estimator in a nonparametric
regression framework with errors-in-variables.

1 Introduction

Deconvolution problems occur in many fields of nonparametric statistics, for
example, density estimation based on contaminated data [1], nonparametric re-
gression with errors-in-variables [2], image and signal deblurring [3]. During the
last decades, these topics have received considerable attention. As applications
of deconvolution procedures concern many real-life problems in econometrics,
biometrics, medical statistics and image reconstruction. On the other hand,
some rigorous results from Fourier analysis, functional analysis and probability
theory are required to understand the construction of deconvolution techniques
and their properties.

The general problem of deconvolution in statistics can be described as follows:
Our goal is to estimate a function f while an empirical access is restricted to
some quantity

z = f ∗G =

∫

f(x− y) dG(y), (1)

that is, the convolution of f and some probability distribution G. Hence, the
function f can be estimated from some observations only indirectly. The strategy
is estimating z first; this means producing an empirical version ẑ of z followed by
a deconvolution procedure to ẑ to estimate f . Therefore, we have to invert the
convolution operator with G where some regularization is required to guarantee
that ẑ is contained in the invertibility domain of the deconvolution operator.
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The estimator ẑ has to be chosen with respect to the statistical experiment.
Obviously, to ensure that the specific convolution operator is known, we have
to assume that the distribution G is known. Although not realistic in many
practical problems, full knowledge of G is assumed in the classical deconvolution
approaches [4]. Then, G may be used in the construction of deconvolution
estimators. Recent approaches relaxing the exact knowledge of G can be found
in [5, 6]. Nevertheless, as one faces troubles of identifiability in problems with
unknown G, either more restrictive conditions on f [6], additional data [7] or
repeated measurements are required [6]. While there are discrete deconvolution
problems [8] where all probability mass of G is concentrated on a finite set,
all problems discussed in this tutorial paper deal with continuous convolution
models, where G has a density function g in the Lebesgue sense. Then, g is called
the error density or blurring density, according to the corresponding model

z = f ∗ g =

∫

f(x− y)g(y) dy.

Then, the integral is to be understood in the Lebesgue sense; and f and g are
real-valued functions mapping into R.

Let us roughly explain why Fourier methods are very popular in deconvolu-
tion problems. The Fourier transform of a distribution G, defined by

G(t) =

∫

exp(itx) dG(x), t ∈ R

and also the Fourier transform of a function f (not necessarily a density func-
tion), defined in the same way when dG(x) is replaced by f(x)dx, are utilized.
Throughout this tutorial paper, the Fourier transform is denoted by G and F ,
respectively. Using the Fourier transform is motivated by the fact that it changes
convolution into simple multiplication. More concretely, (1) is equivalent with

Z = F · G.

It is now clear that the construction of f from z just becomes dividing Z (em-
pirically accessible) by G in the Fourier domain. As rough guidelines we give the
following scheme for the construction of deconvolution estimators:

1. Estimate Z based on empirical information, denoted by Ẑ.

2. Calculate Ẑ and divide it by G, leading to F̂ .

3. Regularize F̂ so that the inverse Fourier transform f̂ exists.

However, this scheme seems straightforward but the mathematical effort for the
regularization must not be underestimated.

This paper is organized as follows. Section 2 discusses the estimation of a
density via kernel methods when only a contaminated sample from the density is
available. Section 3 describes the errors-in-variables problem. Section 4 presents
a short overview regarding the current research in this area. Section 5 states the
conclusions.



2 Density deconvolution

2.1 Assumptions and general estimation procedure

In many real-life situations, direct data are not available since measurement er-
ror occurs. Then, we observe the contaminated data Y1, . . . , Yn instead of the
true data X1, . . . , Xn. The elementary model of noisy data is the additive mea-
surement error, that is, any empirical access is restricted to the data Y1, . . . , Yn
with

Yj = Xj + εj , j ∈ {1, . . . , n}

instead of the incorrupted independent and identically distributed (i.i.d.) ran-
dom variables X1, . . . , Xn. Nevertheless, our goal is still to estimate the density
f of the incorrupted, but unobserved random variable X . The i.i.d. random
variables ε1, . . . , εn represent the error or the contamination of the data; the
density of the random variables ε, consequently called error density, is denoted
by g. Further, we assume that Xj and εj are real valued, independent and that
E(εj |Xj) = 0 and Var(εj |Xj) <∞.

Following the classical approach to this model, g is assumed to be exactly
known; although in many real-life situations this condition cannot be justified.
However, in most practical applications, we are able to estimate the error density
g from replicated measurements. Discussion on the case of unknown g is a current
topic of research in the area of nonparametric statistics and therefore we will give
a brief summary in Section 4 so, in what follows, we assume that g is perfectly
known so that we can fully concentrate on the deconvolution step itself. It is
an elementary result of probability theory that the density of the sum of two
independent random variables is equal to the convolution of the densities of both
addends. Hence,

z = f ∗ g =

∫

f(x− y)g(y) dy,

where z denotes the density of the observation Y . Since any direct empirical
access is restricted to z, the problem is included in the general deconvolution
framework.

Following the general deconvolution scheme in the introduction, the first
step is estimating the density z of the observations Yj . But we see that the main
intention at this stage is making the Fourier transform Z empirically accessible.
As the characteristic function ΨY of a random variable Y is just the Fourier
transform of the density of Y , we have

Z(t) =

∫

exp(itx)z(x) dx = E exp(itY ) = ΨY (t).

By replacing the expectation by averaging with respect to the i.i.d. data yields

Ψ̂Y (t) =
1

n

n
∑

j=1

exp(itYj).



There is a simple multiplicative link between Z and F because

Z(t) = ΨY (t) = E exp(it(X + ε)) = E[exp(itX) exp(itε)]

= E exp(itX) ·E exp(itε) = ΨX(t) ·Ψε(t) = F(t) · G(t),

where the independence of X and ε implies the independence of exp(itX) and
exp(itε). It would be reasonable to consider

Ψ̂X(t) =
1

n

∑n
j=1

exp(itYj)

G(t)

as an estimator of F(t) assuming G is bounded away from zero. It is easy to
show that this estimator is unbiased and consistent (by the strong law of large
numbers). Hence, by taking the inverse Fourier transform, a naive estimator of
f is

f̂naive(x) =
1

2π

∫

exp(−itx)Ψ̂X(t) dt,

where the integral is taken over the whole real line. However, the estimator
f̂naive is not well-defined as Ψ̂X is neither integrable nor square integrable over
R. Unlike its true counterpart F to be estimated, which is square-integrable
whenever f is square-integrable, due to Parseval’s identity. Apparently, for large
|t|, Ψ̂X(t) is no good estimator for F(t) as the tail behavior is significantly
different. Therefore, there is some necessity to regularize Ψ̂X before the Fourier
inversion is employed.

2.2 Rozenblatt-Parzen kernel density deconvolution estimator

One of the most well-known methods for density estimation based on direct data
(i.e., the error-free case) is the Rosenblatt-Parzen kernel density estimator [9],
defined by

ẑ(x) =
1

nh

n
∑

j=1

K

(

x− Yj
h

)

, (2)

with kernel function K : R → R
+ and a bandwidth parameter h > 0. If

K ∈ L1(R) ∩ L2(R), that is, the intersection of the sets of all absolutely or
square integrable functions over the whole real line, respectively, in Lebesgue
sense, the estimator ẑ also lies in L1(R)∩L2(R) almost surely so that its Fourier
transform exist. It is given by

Z(t) =
1

nh

∫ n
∑

j=1

exp(itx)K

(

x− Yj
h

)

dx=
1

nh

n
∑

j=1

∫

exp(itx)K

(

x− Yj
h

)

dx

=
1

n

n
∑

j=1

∫

exp(it(uh+ Yj))K(u)du =
1

n

n
∑

j=1

exp(itYj)

∫

exp(ithu)K(u)du

= Ψ̂Y (t) · K(th),



by using u = (x − Yj)/h and let K denote the Fourier transform of the kernel
K. Then,

Ψ̂X(t) =
Ψ̂Y (t)K(th)

G(t)
(3)

is a second empirical version for F . There are kernel functions whose Fourier
transforms are bounded and compactly supported, for example, the de la Vallée
Poussin kernel K(x) = (1/2π)[sin(1

2
x)/ 1

2
x]2 having Fourier transform K(t) =

max(1− |t|, 0). It can be shown that both integrability and square-integrability
of (3) hold. Hence, the inverse Fourier transform can be applied to (3) leading
to the estimator

f̂(x) =
1

2π

∫

exp(−itx)K(th)
1

n

∑n
j=1

exp(itYj)

G(t)
dt, (4)

which is well-defined for any nonvanishing G whenever K is compactly supported.
This in contrast to the naive estimator f̂naive. The estimator (4) has become
known as the standard deconvolution kernel density estimator (see [10, 4, 11] for
a rigorous study of this estimator).

Example 1 To illustrate the effect of a contaminated sample on density esti-
mation we consider the following example for 1000 data points. We applied the
classical Rosenblatt-Parzen kernel density estimator and the estimator (4) to
simulated examples from two densities fX : (1) X ∼ 0.5N(−3, 12) + 0.5N(2, 12)
and (2) 0.5N(0, 12)+0.5N(3, (1/2)2). The error density g is Laplace distributed,
L(µ, b), with location parameter µ = 0 and scale parameter b = 0.5. The Fourier
transform of the error density is G(t) = 4/(4 + t2). For the two examples we
have chosen de la Vallée Poussin kernel.
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Fig. 1: (a), (b) Effect of a contaminated sample on density estimation for two
normal mixtures. The thine line is the true density, bold line is the estimated
density based on (4) and bold dashed line represents the estimate based on the
Rosenblatt-Parzen kernel density estimator.



3 Nonparametric regression with errors-in-variables

3.1 Errors-in-variables problem formulation

As a broad field in statistics in general, the investigation of the link or the de-
pendence between some quantity, which is affected by random noise, and some
circumstances, under which the quantity is observed, is referred to as regression.
We assume that those circumstances may be represented by a real number X ,
which is called the covariate or the independent variable. In the standard non-
parametric measurement error model, we assume that the covariates X can only
be observed with some additive independent noise. Therefore, we change the
observation scheme into the i.i.d. dataset (W1, Y1), . . . , (Wn, Yn), where

Wj = Xj + δj and Yj = m(Xj) + εj for j = 1, . . . , n (5)

and m is the regression function. The covariate errors δj are i.i.d. unobservable
random variables having error density g. Note that they are different from the
regression errors εj . The δj are stochastically independent of the Xj and the Yj .
As in the previous section on density deconvolution, we assume that g is known
in the standard setting, while the distribution of the εj need not be known.

3.2 Kernel regression with errors-in-variables

In case the covariates are not affected by contamination, the Nadaraya-Watson
estimator [12, 13] is a well-known kernel regression estimator. It is defined as
follows

m̂(x) =

n
∑

j=1

K
(

x−Xj

h

)

Yj
∑n

j=1
K

(

x−Xj

h

) , (6)

with K : R → R and bandwidth h > 0. As we may equivalently multiply the
numerator and the denominator by 1/(nh), we realize the close relation to the
kernel density estimator (2). Indeed, the kernel density estimator of fX based
on the i.i.d. data X1, . . . , Xn occurs as the denominator of m̂.

We can now focus on extending the Nadaraya-Watson estimator to our
contaminated data (W1, Y1), . . . , (Wn, Yn). The denominator of the Nadaraya-
Watson estimator may be replaced by the deconvolution kernel density estima-
tor (4) using the data W1, . . . ,Wn, which are additively corrupted by unobserv-
able random variables with density g. Then the denominator is an empirical
version of the density fX as in the error-free setting. We must also alter the
numerator of the Nadaraya-Watson estimator so it does not require knowledge
of the unobservable data X1, . . . , Xn but only uses the data W1, . . . ,Wn. This
can be done as follows. The kernel deconvolution estimator (4), based on the
data W1, . . . ,Wn, can be written as

n
∑

j=1

∫

exp(−itx)K(th)
exp(itWj)

G(t)
dt

2nπ
=

n
∑

j=1

∫

exp

[

−i

(

x−Wj

h

)

u

]

K(u)

G(uh )
du

2πnh
,



by using the substitution u = th. Then, the latter can be written as

f̂(x) =
1

nh

n
∑

j=1

H

(

x−Wj

h

)

,

where

H(x) =
1

2π

∫

exp(−ixu)
K(u)

G(uh )
du. (7)

By appealing to (4), (6) and (7), the following kernel regression estimator in-
volving errors-in-variables is given by [14]

m̂(x) =

1

nh

n
∑

j=1

H

(

x−Wj

h

)

Yj

1

2nπ

n
∑

j=1

∫

exp(−itx)K(th)
exp(itWj)

G(t)
dt

. (8)

The steps in deriving the Nadaraya-Watson kernel regression estimator involv-

ing errors-in-variables boil down to replacing the unobserved K
(

x−Xj

h

)

by an

observable quantity H
(

x−Wj

h

)

satisfying (see also [15])

E

[

H

(

x−Wj

h

)

|Xj

]

= K

(

x−Xj

h

)

.

In the usual nomenclature of measurement error models, this simply means that
H ((x −Wj)/h) is an unbiased score for the kernel function K ((x−Xj)/h).

Example 2 To illustrate the effect of a contaminated sample on regression esti-
mation via model (5), we consider the following example for 350 equispaced data
points. We consider the following regression function

m(x) = 2x exp(−10x4/81) with x ∈ [−2, 2]

with ε ∼ N(0, 0.22), δ ∼ L(0, 0.2) and the δj are independent of the (Xj , Yj).
Figure 2 shows the result for the artificial data set and illustrate the difference
between the observed and uncontaminated data.

Remark 1 (Berkson regression) There is another errors-in-variables prob-
lem in nonparametric regression, which is closely related to the model (5), but not
identical. In literature, it is usually referred to as the Berkson regression model.
It was first mentioned in the paper of [16] which had been published before conven-
tional nonparametric techniques such as kernel smoothing were introduced. The
main difference between the Berkson model and (5) concerns the fact that, in the
Berkson context, the covariate is affected by additive noise after it was measured.
In the Berkson model, we observe the i.i.d. data (X1, Y1), . . . , (Xn, Yn) where

Yj = m(Xj + δj) + εj , j = 1, . . . , n.
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Fig. 2: (a) Difference between the observed and uncontaminated data;(b) Effect
of a contaminated sample on regression estimation. The thine line is the true
regression function, the bold line is the regression estimate based on (8) and
the bold dashed line represents the regression estimation using the standard
Nadaraya-Watson estimator assuming the error-free case.

4 Current state-of-the-art

The current state-of-the-art regarding deconvolution methods is to relax the as-
sumption that the error density g has to be known. Several approaches exist
to estimate this density. A first approach is based on additional data. This
means that the error density g is unknown but can be estimated directly from
i.i.d. data ε′1, . . . , ε

′

n, which are collected in a separate independent experiment.
This model was studied in [7, 17] and in the book [18]. Of course, its applica-
bility is restricted to cases where the system of measurement can be calibrated
somehow. In particular, the model should be considered when, in some cases,
the same individual or quantity can be observed both in an error-free way (call
this measurement X ′

j,1) and by a measurement procedure, which is affected by
nonnegligible noise (denote this observation by X ′

j,2). Then put ε′j = X ′

j,2−X
′

j,1

where ε′j is indeed a direct observation from the error distribution. The pre-
viously estimated error density may be employed in the deconvolution step for
that latter dataset.

A second approach is based on replicated measurements. Here, the same
incorrupted but unobserved random variable Xj is independently measured for
several times, but each measurement is affected by error. Suppose we observe
data Yj,k, j = 1, . . . , n and k = 1, . . . ,mj with mj ≥ 2 defined by

Yj,k = Xj + εj,k.

Then each εj,k has error density g. Consider the accessible differences (set mj =
2)

∆Yj = Yj,1 − Yj,2 = εj,1 − εj,2, j ∈ {1, . . . , n}.



It can be shown that characteristic function of ∆Yj yields

ψ∆Yj
(t) = E exp(it∆Yj) = |G(t)|2.

Hence, under some conditions on G, a reasonable estimate would be

Ĝ(t) =

∣

∣

∣

∣

1

n

n
∑

j=1

exp(it∆Yj)

∣

∣

∣

∣

1/2

as an estimator for G(t). Such approaches have been studied in [19] and [15].
Other topics within this area such as model selection methods [1], optimal

kernels for deconvolution [20] and establishing all its statistical properties is
an active research area. But perhaps one of the most challenging part is to
implement all these methods in a numerically stable way, see e.g. [8] and [6].

5 Conclusion

In this tutorial paper we have given an overview of deconvolution problems in
statistics. We have illustrated that classical kernel density and regression estima-
tion suffer when the independent variables are contaminated with measurement
error. This is due to the fact the classical estimators inherently assume an error-
free independent variable. In order to allow that the estimator can deal with
these measurement errors or error-in-variables, the classical estimators need to
be modified. The key method in the deconvolution approach is the Fourier
transform.

References

[1] A. Delaigle and I. Gijbels. Data-driven boundary estimation in deconvolution problems.
Computational Statistics & Data Analysis, 50(8):1965–1994, 2006.

[2] A. Delaigle and A. Meister. Rate-optimal nonparametric estimation in classical and
Berkson errors-in-variables. Journal of Statistical Planning and Inference, 141(1):102–
114, 2011.

[3] P. Qiu. Image Processing and Jump Regression Analysis. John Wiley & Sons, New York,
2005.

[4] L. Devroye. Consistent deconvolution in density estimation. The Canadian Journal of

Statistics, 17(2):235–239, 1989.

[5] A. Delaigle. An alternative view of the deconvolution problem. Statistica Sinica,
18(3):1025–1045, 2008.

[6] A. Meister. Deconvolution Problems in Nonparametric Statistics. Springer-Verlag, Berlin
Heidelberg, 2009.

[7] S. Efromovich. Density estimation for the case of supersmooth measurement error. Jour-
nal of the American Statistical Association, 92(438):526–535, 1997.

[8] P. Hall and P. Qiu. Discrete-transform approach to deconvolution problems. Biometrika,
92(1):135–148, 2005.

[9] E. Parzen. On estimation of a probability density function and mode. Annals of Mathe-

matical Statistics, 33(3):1065–1076, 1962.



[10] R.J. Carroll and P. Hall. Optimal rates of convergence for deconvolving a density. Journal
of the American Statistical Association, 83(404):1184–1186, 1988.

[11] L.A. Stefanski and R.J. Carroll. Deconvoluting kernel density estimators. Statistics,
21:169–184, 1990.

[12] E.A. Nadaraya. On estimating regression. Theory of Probability and its Applications,
9(1):141–142, 1964.

[13] G.S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics,
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