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Abstract. In many real-life applications data can be described through
multiple representations, or views. Multi-view learning aims at combining
the information from all views, in order to obtain a better performance.
Most well-known multi-view methods optimize some form of correlation
between two views, while in many applications there are three or more
views available. This is usually tackled by optimizing the correlations
pairwise. However, this ignores the higher-order correlations that could
only be discovered when exploring all views simultaneously. This paper
proposes novel multi-view Kernel PCA models. By introducing a model
tensor, the proposed models aim to include the higher-order correlations
between all views. The paper further explores the use of these models as
multi-view dimensionality reduction techniques and shows experimental
results on several real-life datasets. These experiments demonstrate the
merit of the proposed methods.
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1 Introduction

Principal component analysis (PCA) [12] is an unsupervised learning technique
that transforms the initial space to a lower dimensional subspace while maintain-
ing as much information as possible. The technique is wildly used in applications
like dimensionality reduction, denoising and pattern recognition. PCA consist of
taking the eigenvectors corresponding to the np largest eigenvalues, also known
as the principal components, of the covariance matrix of a dataset, which span a
subspace that retains the maximum variance of the dataset. For dimensionality
reduction these principal components make up the lower dimensional dataset,
and thus the new dimension equals np.

Several nonlinear extensions to PCA were proposed. One well-known exten-
sion is kernel PCA (KPCA) [21]. Instead of working on the data directly, it first
applies a, possibly nonlinear, transformation on the data that maps the input
data to a high-dimensional feature space.

In multi-view learning the input data is described through multiple represen-
tations or views. A dataset could for example consist of images and the associ-
ated captions [14], video clips could be classified based on image as well as audio
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features [13], news stories could be covered by multiple sources [7], and so on.
Multi-view learning has been applied in numerous applications both as super-
vised [3,28] and unsupervised [2,4] learning schemes. Multi-view dimensionality
reduction reduces the multi-view dataset to a lower dimensional subspace to
compactly represent the heterogeneous data, where each datapoint in the newly
formed subspace is associated with multiple views. Dimensionality reduction is
often beneficial for the learning process, especially when the data contains some
sort of noise [6,8].

Most multi-view methods optimize a certain correlation between variables of
two views. For example, in CCA [10] the correlation between the score variables
is maximized, and in Multi-view LS-SVM [11] the product of the error vari-
ables is minimized. In real-world applications, however, data is often described
through three views or more. This is usually accounted for by optimizing the
sum of the pairwise correlations between different views. Due to this approach,
higher-order correlations that could only be discovered by simultaneously con-
sidering all views, are ignored. This issue was pointed out by Luo et al. [16],
where the authors propose an extension to CCA, called Tensor CCA, that ana-
lyzes a covariance tensor over the data from all views. The model is formed
by performing a tensor decomposition, which has a computational cost that is
significantly higher than the cost of regular CCA. This idea of including tensor
learning is presented in Fig. 1.

View 1

View 2

View 3View 3

View 2

View 1

View 2

View 3

View 1

Fig. 1. An example with three views to motivate tensor learning in multi-view learning.
(left) The standard coupling: only the pairwise correlations between the views are taken
into account. (right) The tensor approach: the higher-order correlations between all
views are modeled in a third order tensor.

Tensor learning in machine learning methods has been studied before. For
example, Signoretto et al. [22] propose a tensor-based framework to perform
learning when the data is multi-linear and Wimalawarne et al. [27] collect the
weight vectors corresponding to separate tasks in one weight tensor to achieve
multi-task learning.

This paper investigates the use of tensor learning in multi-view KPCA, in
order to include the higher-order correlations. The paper proposes three multi-
view KPCA methods, where the first two are special cases of the last method.
Experiments, where the multi-view KPCA methods are used to reduce the
dimensionality for clustering purposes, show the merit of our proposed methods.
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We will denote matrices as bold uppercase letters, vectors as bold lowercase
letters and higher-order tensors by calligraphic letters. The superscript [v] will
denote the vth view for the multi-view method. Whereas the superscript (j) will
correspond to the jth principal component.

2 Kernel PCA

Suykens et al. [26] formulated the kernel PCA problem in the primal-dual
framework typical of Least Squares Support Vector Machines (LS-SVM) [25],
where the dual problem is equivalent to the original kernel PCA formulation of
Schölkopf et al. [21]. An advantage of the primal-dual framework is that it allows
to perform estimations in the primal space, which can be used for large-scale
applications when solving the dual problem becomes infeasible. The formulation
further provides an out-of-sample extension to deal with new unseen test data.

Suykens [24] later formulated the kernel PCA in the Restricted Kernel
Machines (RKM) framework, which preserves the advantages of the previous for-
mulation. The primal and dual model are formed by means of conjugate feature
duality, and give an expression in terms of visible and hidden layers respectively,
in analogy with Restricted Boltzmann Machines (RBM) [9]. The dual problem
is equivalent to the LS-SVM formulation (and hence the original formulation)
up to a parameter. Furthermore it is shown how multiple RKMs can be coupled
to form a Deep RKM, which combines deep learning with kernel based methods.

Given data {xk}N
k=1 ⊂ R

d, the primal formulation of KPCA in the RKM
framework is as follows:

min
w,hk

η

2
wTw −

N∑

k=1

ϕ(xk)Tw hk +
λ

2

N∑

k=1

h2
k (1)

for k = 1, . . . , N . The feature map ϕ(·) : Rd → R
dh maps the input data to a

high-dimensional (possible infinite) feature space. λ and η are positive regular-
ization constants and the hidden features hk correspond to the projected values.
The dual problem related to this primal formulation is:

1
η
Ω h = λ h (2)

where h = [h1; . . . ;hN ] and Ω ∈ R
N×N is a centered kernel matrix defined as

Ωkl = (ϕ(xk) − μ̂)T (ϕ(xl) − μ̂) , k, l = 1, . . . , N (3)

with μ̂ = (1/N)
∑N

k=1 ϕ(xk). The feature map ϕ(·) is usually not explicitly
defined, but rather through a positive definite kernel function K : Rd × R

d →
R. Based on Mercer’s condition [20] we can formulate the kernel function as
K(xk,xl) = ϕ(xk)T ϕ(xl).

Every eigenvalue-eigenvector pair (λ−h) can be seen as a candidate solution
of Eq. (1). The first principal component, i.e. the direction of maximal variance in
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the feature space, is determined by the eigenvector corresponding to the highest
eigenvalue of 1

η Ω. The maximum number of components that can be extracted
equals the number of datapoints N .

For an unseen test point x, the projection into the subspace spanned by the
jth principal component, i.e. the score variable ê(x)(j), can be obtained as

ê(x)(j) =
1
η
Ωtesth(j) (4)

where h(j) is the eigenvector corresponding to the jth largest eigenvalue λ and
Ωtest is the centered test kernel matrix calculated through the kernel function
K(xk,x) = ϕ(xk)T ϕ(x) for all k = 1, . . . , N .

If KPCA is used to perform dimensionality reduction, the new dimension of
the data equals the number of selected components np.

3 Multi-view Kernel Principal Component Analysis

In this section we conceive a KPCA model when the data is described through
different representations, or views. Instead of coupling the different views pair-
wise, we formulate an overall model so that also higher order correlations between
the different views are considered.

3.1 KPCA-ADD: Adding Kernel Matrices

A first model, called KPCA-ADD, is formed by adding up the different KPCA
objectives and assuming that all views share the same hidden features h.

Let V be the number of views, given data {x[v]
k }N

k=1 ⊂ R
d[v]

the primal
formulation is stated as follows:

min
w[v],hk

η

2

V∑

v=1

w[v]Tw[v] −
V∑

v=1

N∑

k=1

ϕ[v](x[v]
k )Tw[v] hk +

λ

2

N∑

k=1

h2
k (5)

The stationary points of this objective function, denoted as J , in the primal
formulation are characterized by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂hk

= 0 → λhk =
V∑

v=1

w[v]T ϕ[v](x[v]
k ),

∂J
∂w[v]

= 0 → w[v] =
1
η

N∑

k=1

ϕ[v](x[v]
k )hk,

where k = 1, . . . , N and v = 1, . . . , V.

(6)

By eliminating the weights w[v], the dual formulation is obtained:

1
η

(
Ω[1] + . . . + Ω[V ]

)
h = λ h (7)
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where Ω[v] is the centered kernel matrix corresponding to view v, defined as

Ω
[v]
kl =

(
ϕ[v](x[v]

k ) − μ̂[v]
)T (

ϕ[v](x[v]
l ) − μ̂[v]

)
for k, l = 1, . . . , N .

Notice that this coupling results in adding up the kernel matrices belonging
to the different views.

The score variables corresponding to a test point x can be calculated by:

ê(x)(j) =
1
η

V∑

v=1

Ω
[v]
testh

(j). (8)

4 Including Tensor Learning in Multi-view KPCA

Even though in the KPCA-ADD formulation the views are coupled by the shared
hidden features, there is still a model weight vector w[v] ∈ R

d
[v]
h for each view

v. In order to introduce more coupling, a model tensor W ∈ R
d
[1]
h ×...×d

[V ]
h is

presented. By using a tensor comprised of the weights of all views, instead of
coupling them pairwise, it becomes possible to model higher order correlations.

4.1 KPCA-PROD: Product of Kernel Matrices

The introduction of a model tensor W leads to the KPCA-PROD model, where
the primal formulation is given by:

min
W,hk

η

2
〈W,W〉 −

N∑

k=1

〈Φ(k),W〉 hk +
λ

2

N∑

k=1

h2
k (9)

where 〈·, ·〉 is the tensor inner product defined as

〈A,B〉 :=
I1∑

i1=1

· · ·
IM∑

iM=1

Ai1···iM Bi1···iM (10)

for two M -th order tensors A,B ∈ R
I1×...×IM . The rank-1 tensor Φ(k) ∈

R
d
[1]
h ×...×d

[V ]
h is composed by the outer product of the feature maps of all views,

i.e. Φ(k) = ϕ[1](x[1]
k ) ⊗ . . . ⊗ ϕ[V ](x[V ]

k ).
The stationary points of the objective function J in the primal formulation

are characterized by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂hk

= 0 →λhk = 〈Φ(k), W〉 =

d
[1]
h∑

i1=1

· · ·
d
[V ]
h∑

iV =1

ϕ[1](x
[1]
k )i1 · · · ϕ[V ](x

[V ]
k )iV Wi1...iV

∂J
∂Wi1...iV

= 0 → Wi1...iV =
1

η

N∑

k=1

ϕ[1](x
[1]
k )i1 · · · ϕ[V ](x

[V ]
k )iV hk,

where k = 1, . . . , N and iv = 1, . . . , d
[v]
h for v = 1, . . . , V.

(11)
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By eliminating the weights, the following dual problem is derived:

1
η

(
Ω[1] � . . . � Ω[V ]

)
h = λ h (12)

where � denotes the element-wise product. Notice that the dual problem results
in element-wise multiplication of the view-specific kernel matrices.

The score variable corresponding to an unseen test point x can hence be
calculated by:

ê(x)(j) =
1
η

V⊙

v=1

Ω
[v]
testh

(j) (13)

where
⊙

is the element-wise multiplication operator.

4.2 KPCA-ADDPROD

Taking the element-wise product of kernel matrices can have some unwanted
results. Take for example kernel matrices comprised of linear kernel functions.
An element of such a linear kernel matrix could be negative, indicating a low sim-
ilarity between two points. By multiplying the elements of the kernel matrices,
highly negative values could result in a high positive value for a certain data-
point pair, which would indicate a very high similarity which is clearly unwanted.
Even for kernel matrices comprised of RBF kernel functions, where the values
lie between zero and one, a poor view indicating a certain datapoint pair as
non-similar and hence assigning a value close to zero, could influence the final
result to harshly.

Therefore a last model is proposed, called KPCA-ADDPROD, where the two
principles of the previous models are combined. A parameter ρ is added in order
to determine the influence of each part. The primal formulation is given by:

min
W,w[v],hk

η

2
〈W,W〉 − √

ρ

N∑

k=1

〈Φ(k),W〉 hk +
λ

2

N∑

k=1

h2
k

+
η

2

V∑

v=1

w[v]Tw[v] −
√

(1 − ρ)
V∑

v=1

N∑

k=1

ϕ[v](x[v]
k )Tw[v]hk

(14)

where ρ ∈ [0, 1] ⊂ R. By deriving the stationary points of the objective and
eliminating the weights, the following dual problem is obtained:

1
η

(
(1 − ρ)

V∑

v=1

Ω[v] + ρ

V⊙

v=1

Ω[v]

)
h = λ h. (15)

Note that if ρ = 0 the model is equivalent to KPCA-ADD, and if ρ = 1 it is
equivalent to KPCA-PROD.
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5 Experiments

This section describes the experiments performed to evaluate the multi-view
KPCA models, as dimensionality reduction techniques. To assess the perfor-
mance, the KPCA methods are used as a preprocessing step for clustering, and
the clustering accuracy is regarded as the evaluation criterion.

Two clustering methods are considered: k-means (KM) [18], a well known
linear clustering algorithm and Kernel Spectral Clustering (KSC) [1], a non-
linear clustering technique within the LS-SVM framework. To determine the
clustering accuracy, the NMI [23] is reported1. Due to the local optima solutions
found by KM, these results are averaged over 50 runs.

The performances of the proposed multi-view models are compared to the
performances on the views separately. Both by clustering the views directly, and
by clustering after KPCA was performed.

Model Selection. The parameter η is set to 1 in all experiments, since this
parameter is of most importance when multiple RKMs are stacked to form a deep
RKM. The RBF kernel function was used for all experiments, both for the KPCA
methods as for KSC. The performance of the (multi-view) KPCA models depend
on the (view-specific) kernel parameter and the number of principal components
np. For KPCA-ADDPROD it will also depend on the parameter ρ. Both KSC and
KM depend on the number of clusters, and KSC also on the kernel parameter.
These parameters are tuned through a grid search with 5-fold crossvalidation.
Since the methods are all unsupervised, the model selection criteria has to be
unsupervised as well. Here the Davies-Bouldin index (DB) [5] criterion is used.

Datasets. A brief description of each dataset used is given here:

– Image-caption dataset: A dataset comprised of images, together with their
associated captions. We thank the authors of [14] for providing the dataset.
Each image-caption pair represent a figure related to sport, aviation or paint-
ball. For each of these categories, 400 records are available. The first two
views consist of different features describing the image (HSV colour and image
Gabor texture). The third view describes the associated caption text by its
term frequencies. Gaussian white noise is added to the first two views.

– YouTube Video dataset: A dataset describing YouTube videos of video
gaming, was originally proposed by Madani et al. [19]2. The videos are
described through textual, visual and auditory features. For this paper we
selected the textual feature LDA, the visual Motion feature through CIPD
[29] and the audio feature MFCC [17] as three views. From each of the seven

1 To calculate the NMI, and hence asses the performance, the labels of the dataset are
used. However, notice that they are never used in the training or validation phase
of KM, KSC or the proposed multi-view KPCA models.

2 http://archive.ics.uci.edu/ml/datasets/youtube+multiview+video+games+dataset.

http://archive.ics.uci.edu/ml/datasets/youtube+multiview+video+games+dataset
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most occurring labels (excluding the last label, since these datapoints rep-
resent videos not belonging to any of the other 30 classes) 300 videos were
randomly sampled.

– UCI Ads dataset: This dataset, as described by Kushmerick [15]3, was
constructed for the task of predicting whether a certain hyperlink corresponds
to an advertisement or not. The features are divided over three views in the
same way as was done by Luo et al. [16]. The dataset consist of 2821 instances
not corresponding to advertisements, and 458 instances that do.

Results. The results of the performed experiments are depicted in Table 1. The
table shows the clustering accuracy found by using the clustering techniques on
the views directly, and when KPCA was applied as a dimensionality reduction
technique first. It further shows the accuracy when the proposed multi-view
KPCA techniques are applied. For the KPCA-ADDPROD method, also the
found optimal value for ρ is noted.

Table 1. NMI results, where the proposed methods function as dimensionality reduc-
tion methods for KM and KSC. The best performing methods, are indicated in bold.

Method Image-caption YouTube Video Ads
View 1 2 3 1 2 3 1 2 3
KM 0.502 0.301 0.206 0.434 0.200 0.052 0.068 0.028 0.071
KPCA+KM 0.516 0.328 0.412 0.375 0.207 0.065 0.016 0.021 0.047
KPCA-ADD+KM 0.596 0.273 0.016
KPCA-PROD+KM 0.154 0.076 0.291
KPCA-ADDPROD+KM 0.643 (ρ = 0.4) 0.279 (ρ = 0.2) 0.291 (ρ = 1)

KSC 0.061 0.107 0.066 0.028 0.025 0.030 0.017 0.077 0.312
KPCA+KSC 0.474 0.330 0.295 0.243 0.167 0.037 0.013 0.094 0.046
KPCA-ADD+KSC 0.520 0.166 0.085
KPCA-PROD+KSC 0.031 0.025 0.147
KPCA-ADDPROD+KSC 0.568 (ρ = 0.4) 0.248 (ρ = 0.2) 0.147 (ρ = 1)

A first observation is that the performance usually improves when using
KPCA as a dimensionality reduction method, when clustering the views sep-
arately. This encourages the use of dimensionality reduction in these datasets.
A notable exception is the accuracy when using KM on the first view of the
YouTube Video dataset.

A second observation is that the multi-view KPCA methods are able to
improve the clustering accuracy in five out of the six experiments, suggesting
the merit of using the multi-view techniques independently of the choice of clus-
tering technique. Only for YouTube Video dataset, the (multi-view) dimension-
ality reduction is not able to improve the result of applying KM on the first

3 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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view directly. Another interesting observation is that the found optimal ρ for
each dataset is equal for both clustering methods. Since ρ determines the impor-
tance of the tensor model vector, this could be an indication of the number of
relevant higher order correlations in a dataset. For the first two datasets ρ is
relatively small. For these two datasets KPCA-ADD outperforms KPCA-PROD
considerably, which is to be expected as it is shown that these two models are
actually special cases of KPCA-ADDPROD with ρ = 0 and ρ = 1 respectively.
For the Ads dataset the found optimal ρ equals 1, and hence only the tensor
model vector is taken into account, suggesting a high importance of higher order
correlations.

6 Conclusion

This paper introduced novel Multi-view Kernel Principal Component Analysis
methods to perform KPCA when the data is represented by multiple views.
Techniques from tensor learning are applied in order to account for higher order
correlations between the views.

The paper starts from the primal RKM formulation of KPCA and shows
three approaches for a multi-view extension. It is shown that, when assuming
shared hidden features, the dual model results in kernel addition. It further shows
that introducing a model tensor, containing the information of all views, results
in kernel product in the dual formulation. Finally a third method is suggested
combining the two techniques.

The gain of these multi-view techniques is shown by using it as a dimen-
sionality reduction step before clustering. Experiments on multiple real-world
datasets with two well known clustering techniques, show the improvement of
using multiple views. The parameter controlling the importance of the model
tensor seems to indicate the importance of the higher order correlations.
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