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Abstract

Multi-view learning deals with data that is described through multiple rep-
resentations, or views. While various real-world data can be represented by
three or more views, several existing multi-view classification methods can
only handle two views. Previously proposed methods usually solve this issue
by optimizing pairwise combinations of views. Although this can numerically
deal with the issue of multiple views, it ignores the higher order correlations
which can only be examined by exploring all views simultaneously. In this
work new multi-view classification approaches are introduced which aim to
include higher order statistics when three or more views are available. The
proposed model is an extension to the recently proposed Restricted Kernel
Machine classifier model and assumes shared hidden features for all views,
as well as a newly introduced model tensor. Experimental results show an
improvement with respect to state-of-the art pairwise multi-view learning
methods, both in terms of classification accuracy and runtime.
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1. Introduction

In many real world applications, data is described through a number
of different features. Often, these features can be naturally partitioned into
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groups. Think, for example, about learning with social media data, where one
could have features related to the user profile as well as features describing
the friend links [1], or when predicting an Alzheimer’s disease diagnosis both
neuroimaging and genetics data could be used [2], and so on. These groups
of features can be referred to as views, and multi-view learning techniques
deal with data that is represented by multiple views.

Several existing multi-view classification techniques are a form of late
fusion. This means that the coupling, or fusion, of the information from the
different views, is done late in the training process. Typical examples are
committee-like [3] methods, where different models are trained on all views
separately and the final prediction is done using a (weighted) combination
of these view-specific models, as was e.g. done by Wang et al. [4] for multi-
view clustering. The advantage of late fusion techniques is that the separate
submodels have a high degree of freedom to model the views differently,
which is a strong advantage when the data is inherently different over the
views. A drawback of late fusion is that since the information is coupled
late, the submodels take little advantage of the information provided by the
other views. Early fusion techniques aim to include the information from all
views as soon as possible in the training process. A typical example is simply
concatenating the features of all views, as was done e.g. by Karevan et al. [5]
to perform temperature prediction based on measurements in multiple cities.
In order to combine the advantages of both early and late fusion, some multi-
view classification techniques aim to exploit the information from multiple
views early on while still allowing for some degree of freedom to model the
views differently.

Another issue for multi-view learning is the ability to handle more than
two views. While data can often be represented by numerous views, several
multi-view methods are only able to account for two views. E.g. multi-
view GEPSVMs [6] is only defined for two views where it maximizes the
agreement between them. Even the methods that can handle more than two
views, often do this by coupling the views in a pairwise fashion. Multi-View
Least Squares Support Vector Machines (MV-LSSVM) Classification [7], for
example, consist of a coupling term that minimizes the product of the er-
ror variables of two views. For three or more views, the model optimizes the
sum of the pairwise coupling terms. Another example is Multi-View Learning
with Least Squares loss function, a multi-view semi-supervised classification
model proposed by Minh et al. [8], that introduces between-view regulariza-
tion by adding up pairwise regularization terms between two views. While
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(a) Pairwise correlations (b) Higher-order correlations

Figure 1: An example with three views to motivate tensor learning in multi-view learning.
(a) Standard coupling: only the pairwise correlations between the views are taken into
account. (b) Tensor approach: the higher-order correlations between all views are modeled
in a third order tensor.

this is a popular approach in the existing multi-view learning techniques, it
fails to incorporate higher-order correlations (correlations between three or
more views) that could only be discovered by simultaneously considering all
views. This issue was raised by Luo et al. [9], where the authors propose
an extension to Canonical Correlation Analysis (CCA) [10], called Tensor
CCA, that analyzes a covariance tensor over the data from all views. See
Figure 1 for an illustration of the advantage of using a tensor to account for
higher-order correlations. While Tensor CCA is solved by performing a ten-
sor decomposition, we will propose a model that results in a linear system,
which decreases the computational cost significantly.

Note that the existence of higher-order correlations does not necessarily
mean that the views are strongly correlated. As we know from previous work
(e.g. Houthuys et al. [7]), when the information provided by the views is too
similar it often reduces the performance, and hence this should be dealt with
in pre-processing.

This paper explores novel multi-view classification methods which strive
to incorporate higher-order correlations when three or more views are avail-
able by incorporating principles of tensor learning. They can furthermore be
seen as a combination of both early and late fusion techniques. The proposed
methods are extensions of the Restricted Kernel Machine (RKM) Classifica-
tion [11] method where the RKM model is extended to the multi-view setting
by assuming shared hidden features over all different views. To introduce
more coupling, a weight tensor model is included which contains the weights
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corresponding to all views. Three multi-view methods are proposed, where
it is shown that the first two are special cases of the last method.

The main contributions of this paper can be summarized as:

� A novel multi-view classification model, called %TMV-RKM, is pro-
posed.

� Tensor learning is incorporated to account for higher order correlations.

� Experimental results show the merit of using a weight tensor.

� Comparisons with other methods show improvement in both accuracy
and time complexity.

� Multiple approaches to handle a large-scale dataset are proposed.

Related work. Tensor learning is appearing more and more in machine learn-
ing problems. For example, sometimes data is naturally described in a mul-
tidimensional manner. Video data, for example, can be described by a third-
order tensor with each frame a matrix, and time being the third dimension.
For instance, Vinayak et al. [12] propose a third order tensor to represent
three questions queries in order to perform crowdsourced clustering. Cichochi
et al. [13] and Sidiropoulos et al. [14] provide a thorough overview of the use
of tensors and tensor decompositions in signal processing and machine learn-
ing.

Instead of introducing tensors at a data level, they can also be used to
represent the model which is to be learned. For example, Signoretto et al. [15]
propose a tensor-based framework that represents the model and show how
it can be applied to learn from multi-dimensional data.

For multi-modal learning schemes, a third order tensor can be used where
an extra dimension is added to a two-dimensional representation of the data.
For example, Wimalawarne et al. [16] propose a multi-task learning scheme
where the weight vectors belonging to the different tasks are stacked to form
a third order weight tensor, where the third dimension indicates the task
index. Similarly Adeli et al. [17] stacks the weight tensors corresponding to
different measuring time points to perform multilinear regression for predic-
tion of infant brain development. Liu et al. [18] and Wu et al. [19] stack
similarity matrices for each view to form a similarity third order tensor, with
the third view indicating the view index. Zhang et al. [20] and Xie et al. [21]
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use a similar technique to perform multi-view clustering where the subspace
representations of each view are stacked.

Instead of adding only one dimension to represent the index of the view, a
tensor could also be used to model the interactions, or correlations, between
the views (as shown in Figure 1). For example, Lu et al. [22] extends matrix
factorization to multilinear factorization machines for multi-view multi-task
learning. A weight model tensor is formulated to simultaneously model the
weights corresponding to all views and tasks. The representation of the
features is manipulated, however, such that only the lower-order (pairwise)
interactions between the views are taken into account. Additionally, vari-
ous multi-view dimensionality reduction methods [23, 24] incorporate tensor
learning to account for higher-order correlations. Furthermore, Blondel et
al. [25, 26] present an efficient algorithm to train higher-order factorization
machines (HOFM), which model higher-order interactions between features.
Different from the model proposed in our paper, also the lower-order correla-
tions are taken into account. A low-rank tensor containing the weights of the
feature combinations is used. While factorization machines can be used to
perform multi-view learning, they generally disregard the view segmentation
by exploring interactions between all features, regardless of the corresponding
view. Cao et al. [27] furthermore extended factorization machines to explore
the full-order interactions by proposing the Multi-View Machines (MVM)
method. In contrast to factorization machines, MVM models the full-order
interactions between views in a tensor which are factorized collectively.

Several subspace learning based multi-view methods also consider all
views simultaneously [28, 29, 30, 31]. For example, Zheng et al. [28] perform
low-rank regression in the subspace of each view, with a shared regression
parameter matrix over all views. More recently, Yang et al. [29] proposed a
method where the features are mapped to a discriminative low-dimensional
subspace. Moreover, Xie & Sun [32] introduced a multi-view method for bi-
nary classification which contains a pairwise regularization term as well as
a combination weight. The latter explores the complementary information
among different views simultaneously.

Finally, multi-view learning is naturally related to the field of multiple
kernel learning (MKL) [33, 34, 35], where a linear or non-linear combination
of different kernel functions is used. Although generally MKL is used to
model the same data with different feature maps, it can also be applied to
different views.
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Notation. We will denote matrices as bold uppercase letters, vectors as bold
lowercase letters and higher-order tensors by calligraphic letters. The super-
script [v] will denote the v -th view for the multi-view method. Whereas the
superscript (l) will denote the l -th binary classification problem in case there
are more than two classes.

2. Background

This section briefly reviews the methods Restricted Kernel Machine (RKM)
and Multi-View Least Squares Support Vector Machines (MV-LSSVM).

2.1. RKM Classification

This section summarizes the Restricted Kernel Machine (RKM) classi-
fication model as described by Suykens [11] which is closely related to the
well known Least Squares Support Vector Machine (LS-SVM) [36] model. In
analogy with Restricted Boltzmann Machines (RBM) [37], RKM offers an
expression in terms of visible and hidden layers related to respectively the
primal and dual variables. The dual formulation is obtained by means of
conjugate feature duality. Suykens [11] further shows how multiple RKM’s
can be stacked together to form a deep RKM formulation. As for LS-SVM,
RKM uses the kernel trick to map the data into a high dimensional feature
space in which one constructs a linear separating hyperplane.

By formulating a lower bound on the primal formulation of LS-SVM,
one obtains the RKM objective. Given a training set of N data points
{(xk, yk)}Nk=1 where xk ∈ Rd denotes the k-th input pattern and yk ∈ {−1, 1}
the k-th label, the objective J of RKM classification is:

J =
η

2
wTw +

N∑
k=1

(
1− (ϕ(xk)

Tw + b)yk
)
hk −

λ

2

N∑
k=1

h2
k (1)

where b is a bias term, λ and η are positive real regularization constants and
hk ∈ R are the hidden features. The feature map ϕ : Rd → Rdh , which maps
the input to a high dimension, is usually not explicitly defined but rather
implicitly by the use of the kernel trick. Based on Mercer’s theorem [38]
we can use a positive definite kernel function K : Rd × Rd → R and define
K(xi,xj) = ϕ(xi)

Tϕ(xj). This allows to work in a high, even infinite, dimen-
sional feature space without having to explicitly define it. The RKM model
can be represented graphically as in Figure 2.
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Figure 2: A graphical representation of the RKM model for classification [11]. The feature
map ϕ(x) maps the input vector x to a high dimensional feature space (this mapping is
depicted in yellow). The hidden features are obtained through an inner pairing eTh where
e denotes the error on the input x given by e = 1− (wTϕ(x) + b)y, where w is depicted
in blue.

By characterizing the stationary points of J and eliminating the unknown
weight vector w the linear problem as stated in [11, Eq.(3.22)] is obtained.

The formulation can easily be extended to the multiclass setting by intro-
ducing multiple outputs y(l) ∈ RN for l = 1, . . . ,m. The number of output
values m depend on the type of coding used to encode nc classes. E.g., one
could choose the one-versus-all (OVA) encoding where m = nc, which results
in binary decisions between each class and all other classes. Another popu-
lar encoding is the minimum output encoding (MOC), which is mostly used
when the number of classes is very high as it uses m outputs to encode up
to nc = 2m classes.

Suykens introduced multiclass RKM by formulating one linear system [11,
Eq.(3.22)] with all binary subproblems included. Due to the block structure,
however, it is equivalent to solving the linear system for the binary class
RKM for each output:[

1
η
Ω(l) + λ(l)IIIN 1N

1TN 0

] [
y(l) � h(l)

b(l)

]
=

[
y(l)

0

]
(2)

where (l) denotes the l-th output, � denotes the element-wise product, 1N
is a one column vector of dimension N and IIIN is the identity matrix of
dimension N × N . Note that the hidden features for a certain datapoint
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xk are comprised of the values h
(l)
k for all outputs l = 1, . . . ,m. The kernel

matrix Ω(l) can be determined as follows:

Ω
(l)
ij = ϕ(l)(xi)

Tϕ(l)(xj)

= K(l)(xi,xj), i, j = 1, . . . , N.
(3)

When η = 1, The solution of Eq. (2) is equivalent to the LS-SVM dual
formulation.

2.2. Multi-View LS-SVM Classification

This section summarizes the Multi-View Least Squares Support Vector
Machines (MV-LSSVM) Classification model as described by Houthuys et
al. [7]. This model was proposed as a multi-view extension to LS-SVM clas-
sification where a coupling term is introduced which minimizes the product
of the error variables of two views. When there are more than two views, the
coupling is done in a pairwise manner, i.e. the objective function includes an
addition of the coupling between all pairs of views.

Given a training set of N data points {(x[v]
k , y

(l)
k )}k=N,l=m

k=1,l=1 for each view

v = 1, . . . , V where x
[v]
k ∈ Rd[v] denotes the k-th input pattern and y

(l)
k ∈

{−1, 1} the l-th output unit corresponding to the k-th input, the primal
formulation of the MV-LSSVM model is formulated as:

min
w[v](l) ,

e[v]
(l)

,

b[v]
(l)

1

2

m∑
l=1

V∑
v=1

w[v](l)Tw[v](l)+
1

2

m∑
l=1

V∑
v=1

γ[v](l)e[v](l)Te[v](l) + ρ
m∑
l=1

V∑
v,u=1;v 6=u

e[v](l)Te[u](l)

(4)

s.t. Z[v](l)T w[v](l) + y(l) b[v](l) = 1N − e[v](l)

for v = 1, . . . , V and l = 1, . . . ,m

where (l) denotes the lth output. e[v](l) ∈ RN are error variables, b[v](l) are
bias terms and y(l) = [y

(l)
1 ; . . . ; y

(l)
N ]. The regularization parameters γ[v](l) and

the coupling parameter ρ are positive real constants. The feature matrices

Z[v](l)T ∈ RN×d[v]
(l)

h are defined as Z[v](l)T = [y
(l)
1 ϕ[v](l)(x

[v]
1 )T ; . . . ; y

(l)
N ϕ

[v](l)(x
[v]
N )T ]

where ϕ[v](l) : Rd[v] → Rd
[v](l)

h are the mappings to high (possibly infinite) di-
mensional feature spaces.

By taking the Lagrangian of the primal problem, deriving the KKT op-
timality conditions and eliminating the primal variables w[v](l) and e[v](l) , we
obtain the dual problem as shown in [7, Eq. (11)].
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3. Including Tensor learning in Multi-View Classification

In this section novel multi-view classification algorithms are proposed
where the correlation between all views is coupled simultaneously instead of
pairwise.

3.1. Multi-View RKM Classification

We first introduce the Multi-View Restricted Kernel Machine (MV-RKM)
Classification model. This is an extension to RKM classification where data
comes from multiple views. The views are coupled by means of shared hidden
features.

Given a number of V views, a training set of N data points {(x[v]
k , yk)}k=N

k=1

for each view v = 1, . . . , V where x
[v]
k ∈ Rd[v] denotes the k-th input pattern

and yk ∈ {−1, 1} the k-th label, we aim at maximizing

V∑
v=1

N∑
k=1

(
1−(ϕ[v](x

[v]
k )Tw[v]+b)yk

)
hk −

λ

2

N∑
k=1

h2
k (5)

where b is a common bias term, and the hidden features hk are shared over
all views 2. The full objective including regularization terms of the proposed
MV-RKM classification model is:

J =
η

2

V∑
v=1

w[v]Tw[v]+
V∑
v=1

N∑
k=1

(
1−(ϕ[v](x

[v]
k )Tw[v]+b)yk

)
hk −

λ

2

N∑
k=1

h2
k (6)

where λ and η are positive real regularization constants. ϕ[v] : Rd[v] → Rd
[v]
h

are the view-specific feature maps which map the input of each view to a
high dimension. Similarly to RKM, we will not work with this feature map
explicitly, but use a positive definite kernel function K [v] : Rd[v] ×Rd[v] → R.
This model is presented in Figure 3a.

The stationary points for this objective function can be found in Appendix
A.

2This expression (5) is a lower bound on the L2 loss function on the errors. The full
objective (6) is hence a lower bound on the LS-SVM objective function, consisting of a
loss function and regularization term, see [11]
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By eliminating the weights w[v], the following linear system is obtained:[
1
η

∑V
v=1 Ω[v] + λIIIN VN

1TN 0

] [
y � h
b

]
=

[
V y
0

]
(7)

where VN is a column vector of dimension N where each element equals V
and Ω[v] is the (unlabeled) kernel matrix corresponding to view v.

Note that this solution is similar to the single-view RKM problem in
Eq. (2), with the main difference being the addition of the view-specific
kernel matrices.

3.2. Tensor Multi-View RKM Classification

Even though in the MV-RKM formulation the views are coupled by the

shared hidden features, there is still a model weight vector w[v] ∈ Rd
[v]
h for

each view v. Here the Tensor Multi-View Restricted Kernel Machine (TMV-
RKM) Classification model is presented which introduces a model tensor

W ∈ Rd
[1]
h ×...×d

[V ]
h comprised of the weights of all views.

The objective of the TMV-RKM model is given by:

J =
η

2
〈W ,W〉+

N∑
k=1

(
1− (〈Φ(k),W〉+ b)yk

)
hk −

λ

2

N∑
k=1

h2
k (8)

where W ∈ Rd
[1]
h ×...×d

[V ]
h is a V th order weight tensor and Φ(k) ∈ Rd

[1]
h ×...×d

[V ]
h

is a rank-1 tensor composed by the outer product of the view-specific feature
maps, i.e. Φ(k) = ϕ[1](x

[1]
k )⊗ . . .⊗ ϕ[V ](x

[V ]
k ). The notation 〈·, ·〉 denotes the

tensor inner product, defined as

〈A,B〉 :=

I1∑
i1=1

· · ·
IM∑
iM=1

Ai1···iMBi1···iM (9)

for two M -th order tensors A,B ∈ RI1×...×IM .
The TMV-RKM model can be represented graphically as in Figure 3b.

When comparing Figure 3a and Figure 3b it is apparent that TMV-RKM
does not only introduce more coupling through the model tensorW , but also
that the coupling is done earlier in the input transformation process. In other
words, we can hence note that in TMV-RKM the information is fused earlier
on than in MV-RKM, while still being able to model the views differently by
using different feature maps for each view.
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(a) MV-RKM
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(b) TMV-RKM

Figure 3: A graphical representation of MV-RKM and TMV-RKM for classification for
V views. Each feature map ϕ[v](x[v]) maps the input vector x[v] to a high dimensional
feature space (this mapping is depicted in yellow). For MV-RKM there is a separate error

e[v] = 1 − (w[v]Tϕ[v](x[v]) + b)y on each input which is paired with the common hidden

features as e[v]
T

h. For TMV-RKM, the outer product of the view-specific features maps
make up the feature tensor Φ. The hidden features are shared over all views and are
obtained through the inner pairing eTh where e denotes the error on the input x[1:V ]

given by e = 1− (〈W,Φ〉+ b)y, where the interconnection tensor W is depicted in blue.
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The stationary points for this objective function can be found in Appendix
B.

By eliminating the weights, the following linear system is obtained:[
1
η

⊙V
v=1 Ω[v] + λIIIN 1N

1TN 0

] [
y � h
b

]
=

[
y
0

]
(10)

where
⊙V

v=1 denotes the element-wise multiplication over the indices v =
1, . . . , V .

Note that the obtained linear system results in an element-wise multi-
plication of the view-specific kernel matrices. This multiplication can have
some unwanted results. To illustrate this, take for example two kernel matri-
ces Ω[v1] and Ω[v2] comprised of linear kernel functions and two elements Ω

[v1]
ij

and Ω
[v2]
ij which are both � 0. Since the values are very low, this indicates

that the similarity between x
[v1]
i and x

[v1]
j (and between x

[v2]
i and x

[v2]
j ) is very

low. However, the element-wise multiplication will result in a highly posi-
tive value for the pair of input data, indicating a strong similarity. Even for
kernel matrices comprised of Radial Basis Function (RBF) kernel functions,
where the values lie between zero and one, a poor view indicating a certain
data point pair incorrectly as non-similar and hence assigning a value close
to zero, could influence the final result too harshly.

In order to counteract these effects, a third model, called %-Tensor Multi-
View Restricted Kernel Machine (%TMV-RKM) Classification, is proposed
which combines the principles of the two previously proposed methods. A
parameter % ∈ [0, 1] is added in order to determine the influence of each
principle. The objective is formulated as:

J =− λ

2

N∑
k=1

h2
k +

η(1− %)

2

V∑
v=1

w[v]T w[v]

+ (1− %)
V∑
v=1

N∑
k=1

(
1− (w[v]Tϕ[v](x

[v]
k ) + b)yk

)
hk

+
η%

2
〈W ,W〉+ %

N∑
k=1

(
1− 〈Φ(k),W〉+ b)yk

)
hk.

(11)

By deriving the stationary points of the objective and eliminating the
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weights, the following linear problem is obtained:[
1
η

(
(1−%)

∑V
v=1Ω

[v]+%
⊙V

v=1Ω
[v]
)

+λIIIN τN

1TN 0

][
y � h
b

]
=

[
τy
0

]
(12)

where τ = (1 − %)V + % and τN is a column vector of dimension N where
each element equals τ . The full derivation can be found in Appendix C.

Note that if % = 0 this model equals the MV-RKM model, and that if
% = 1 the model equals the TMV-RKM model. The parameter % could hence
be seen as an indicator of the early versus late fusion importance, where a
small value indicates a more late, and a large value a more early, type of
fusion.

Similarly to RKM, it is possible to formulate the %TMV-RKM model for
multi-class classification by solving the problem in Eq. (12) for each binary
subproblem. Let m be the number of outputs encoding the nc classes, the
multi-class %TMV-RKM model is formulated as follows:[

1
η

(
(1−%(l))

∑V
v=1Ω

[v](l) +%(l)
⊙V

v=1Ω
[v](l)
)

+λ(l)IIIN τ
(l)
N

1TN 0

] [
y(l) � h(l)

b(l)

]
=

[
τ (l)y(l)

0

]
(13)

for l = 1, . . . ,m. Note that one could define a different influence parameter
% for each output. For ease of notations we will omit the (l) superscript when
the statement is true for all outputs.

3.3. Decision rule

The model in Eq. (13) will be solved based on the available training data.
The extracted variables h and bias term b are used to construct the classifier
ŷ(xt

[1:V ]) that is able to classify a new unseen test data point xt
[1:V ] where

the superscript [1:V ] is shorthand for ‘for all views v = 1, . . . , V ’. Both the
primal (P ) as the dual (D) representation will be shown.

This classifier can be defined in two ways:

1. Through a combination of kernel functions:

(P ) : ŷ(xt
[1:V ])=sign

(
(1−%)

V∑
v=1

w[v]Tϕ[v](xt
[v]) + %〈Φ(xt

[1:V ]),W〉+b

)
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(14)

(D) : ŷ(xt
[1:V ])=sign

(
1

η

N∑
k=1

ykhk

[
(1−%)

V∑
v=1

K [v](xt
[v],x

[v]
k )

+%
V∏
v=1

K [v](xt
[v],x

[v]
k )

]
+ b

) (15)

where Φ(xt
[1:V ]) = ϕ[1](xt

[1]) ⊗ . . . ⊗ ϕ[V ](xt
[V ]). Notice that % plays a

similar role here in the classifier as in the %TMV-RKM training phase.

2. Similarly to the classifier in pairwise MV-LSSVM:

(P ) : ŷ(xt
[1:V ])=sign

(
V∑
v=1

β[v]w[v]Tϕ[v](xt
[v])+b

)
(16)

(D) : ŷ(xt
[1:V ])=sign

(
1

η

V∑
v=1

β[v]

N∑
k=1

ykhkK
[v](xt

[v],x
[v]
k )+b

)
(17)

where usually
∑V

v=1 β
[v] = 1. Note that while the decision rule in

itself does not include the higher-order tensor terms, the model is still
trained with these terms included. It can be noted that, while there are
multiple ways to determine the values for β[v], taking the mean, and
hence taking β[1] = . . . = β[V ] = 1/V , produces overall good results.
Therefore we will use this throughout the rest of the paper. If prior
knowledge is available about the usefulness of certain views regarding
the decision rule, these weights could be altered to obtain a weighted
average.

3.4. Model Selection

The number of tuning parameters increases with the number of classes
and views. Therefore, to decrease the tuning complexity, the same regu-
larization parameters and kernel function (including parameters) for each
output is chosen. Thus λ = λ(1) = . . . = λ(m), % = %(1) = . . . = %(m) and
K [v](·, ·) = K [v](1)(·, ·) = . . . = K [v](m)

(·, ·). Notice that different views can
still have different corresponding kernel functions. Furthermore, the param-
eter η is set to 1, since in RKM, the influence of this parameter is of most
importance when multiple RKMs are stacked to form a deep RKM. Hence, in
total there are two hyperparameters to tune, in addition to potential kernel
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parameters. As we will later show, the proposed method is relatively fast in
comparison to other multi-view methods, so the tuning overhead should not
pose a problem. However, if needed one could decrease the tuning complexity
even further by assuming the same kernel function over all views, or choos-
ing parameter-free kernel functions (like e.g. a linear kernel). The resulting
algorithm is described in Algorithm 1, where θ[1:V ] denotes the kernel param-
eters (if any) and ’decision rule’ indicates whether the classifier is defined
by Eq. (17) (decision rule=mean) or by Eq. (15) (decision rule=add). The
superscript (1:m) is shorthand for ‘for all binary subproblems l = 1, . . . ,m’.

Algorithm 1 %TMV-RKM training and prediction

Input: X [1:V ] = {y(l)
k ,x

[1:V ]
k }k=N,l=m

k=1,l=1 , K [1:V ], θ[1:V ], λ, %,X [1:V ]
t =

{xt
[1:V ]
k }k=Nt

k=1 , decision rule

1: for l = 1 to m do
2: for v = 1 to V do
3: Ω[v] ← Eq.(3)(X [v], K [v], θ[v])
4: end for
5: b(l),h(l) ← Eq.(13)(Ω[1:V ], λ, %,y(l))
6: if decision rule == add then
7: ŷ(l)(xt

[1:V ])← Eq.(15)(h(l),y(l), b(l), %,K [1:V ], θ[1:V ], X [1:V ]
t )

8: else if decision rule == mean then
9: ŷ(l)(xt

[1:V ])← Eq.(17)(h(l),y(l), b(l), K [1:V ], θ[1:V ], X [1:V ]
t )

10: end if
11: end for

Output: ŷ(1:m)(xt
[1:V ])

The optimal parameters are found through Simulated Annealing and 5-
fold cross validation using only the training set. The model is then evaluated
using an independent test set. This model selection process is described in
Algorithm 2.

4. Experiments

In this section the results of %TMV-RKM are shown and compared to
other state-of-the-art multi-view classification methods. Note that since MV-
RKM and TMV-RKM are special cases of %TMV-RKM (with % = 0 and
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Algorithm 2 Model selection

Input: for X [1:V ] = {y(l)
k ,x

[1:V ]
k }k=N,l=m

k=1,l=1 , K [1:V ],X [1:V ]
t = {xt

[1:V ]
k }k=Nt

k=1 , deci-
sion rule

1: θ[1:V ], λ, %← Simulated Annealing & 5-fold crossvalidation (Algorithm 1,
X [1:V ], K [1:V ], decision rule) with criteria: classification accuracy

2: ŷ(1:m)(xt
[1:V ]) ← Algorithm 1 (X [1:V ], K [1:V ], θ[1:V ], λ,

%,X [1:V ]
t ,decision rule)

Output: ŷ(1:m)(xt
[1:V ])

% = 1 respectively), we implicitly also compare with these methods. First,
the accuracy and runtime for several real-world datasets is discussed. Next, a
parameter study is performed showing the stability of the trade-off parameter
%. Furthermore, the statistical significance of the results is demonstrated
using the Wilcoxon signed-rank test and a confidence interval on the test
accuracy. The section ends with a discussion of approaches to handle large-
scale datasets.

4.1. Datasets

A brief description of the real-world datasets used is given. The important
statistics of them are summarized in Table 1.

� Ads dataset: The Ads dataset3, as described by Kushmerick [39],
consists of hyperlinks which are labeled as an advertisement or not
an advertisement. The features are divided over three views in the
same way as was done by Luo et al. [9], where the first view describes
the images, the second view describes the URL of the website and
the last view describes the anchor URL. The dataset consists of 458
advertisements, and 2821 non-advertisements

� Flower species dataset: This dataset describes the classification of
17 flower species and was originally proposed by Nilsback & Zisser-
man [40, 41]. The data comes from 1360 images segmented from the

3Available at http://archive.ics.uci.edu/ml/datasets/Internet+

Advertisements
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background4. Similarly to the work of Minh et al., [8] seven features
are extracted and used as views: HOG, HSV histogram, boundary
SIFT, foreground SIFT, and three features derived from color, shape
and texture vocabularies.

� Image-caption web dataset: Kolenda et al. [42] collected this dataset
by retrieving sport, aviation and paintball images and their associated
captions. We thank the authors of [42] for providing the dataset. The
data is described through three views, where the first two views rep-
resent extracted features of the images (HSV color and image Gabor
texture) and the third view consists of the term frequencies of their
associated caption text5.

� YouTube Video dataset: This dataset, describing YouTube videos
of video games, was originally proposed by Madani et al. [43]. The
videos are represented by three high-level feature families: textual,
visual and auditory features6. For this paper we selected three features
to be the different views, namely the textual feature LDA, the visual
Motion feature through CIPD [44] and the audio feature MFCC [45].
From each of the seven most occurring labels (excluding the last label,
since these data points represent videos not belonging to any of the
other 30 classes) 300 videos were randomly sampled.

� Digits dataset: This dataset, originally proposed by van Breukelen et
al. [46], represents handwritten digits (0-9) and is taken from the UCI
repository [47]7. The dataset consists of 2000 digits which are repre-
sented through six views describing the Fourier coefficients, profile cor-
relations, Karhunen-Loève coefficients, pixel averages, Zernik moments
and morphological features.

� NUS-WIDE dataset: The large NUS-WIDE dataset8 was proposed
by Chua et al. [48] and consists of images collected from Flickr. We

4Available at http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html .
5Detailed description of these features can be found in Kolenda et al. [42].
6Available at http://archive.ics.uci.edu/ml/datasets/youtube+multiview+

video+games+dataset .
7Available at https://archive.ics.uci.edu/ml/datasets/Multiple+Features .
8Available at https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

17



Table 1: Details of the datasets used in the experiments. N and Nt denote respectively
the number of data points in the training and test set. V denotes the number of views
and nc the number of classes of the dataset.

Dataset N Nt V nc Encoding

Ads 2623 656 3 2 -

Flower species 1088 272 7 17 MOC

Image-caption web 960 240 3 3 OVA

YouTube Video Games 1680 420 3 7 MOC

Digits 1600 400 6 10 MOC

NUS-WIDE 4776 1194 5 10 MOC

use a subset that consists of 5970 images, each belonging to one of
the ten nature-themed classes: sunset, water, beach, sky, clouds, snow,
lake, street, ocean and tree. The images are described through five
views: Color Histogram, Local Self-Similarity, Pyramid HOG, SIFT,
Color SIFT and SURF features.

For the Flower species dataset, data is already provided as kernels. For
the Ads dataset, the Digits dataset, the NUS-WIDE dataset and the first
two views of the Image-caption web dataset, the radial basis function (RBF)
kernel is chosen. For the YouTube Video dataset the dimension of the fea-
tures range between 512 and 2000 and the dimension of the third view of
the Image-caption web dataset is 3522. Because these features are so high
dimensional (and sparse), using an RBF kernel, and hence bringing the data
to a even higher feature space, is not recommended. Therefore a linear ker-
nel is chosen for these views. Since this simple kernel function resulted in
a good performance other appropriate kernel functions for text-data such as
polynomial kernels, Chi-square kernels [49] or String kernels [50] were not
considered.

The data is randomly divided into a test and training set three times
where 80% of the data belongs to the training set. The results shown are
averaged over the three splits.
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4.2. Baseline Algorithms

The performances of the proposed method %TMV-RKM on the different
datasets are compared to two single-view methods, two typical early and late
fusion techniques and seven state-of-the-art multi-view methods:

� Best Single View (BSV): The results of applying RKM classifica-
tion on the most informative view, i.e., the one which results in the
best performance.

� BSVb=0: RKM with bias b = 0 on the most informative view.

� Feature Concatenation (FC): A typical early fusion method where
the features of all views are concatenated. RKM is used to do classifi-
cation on this concatenated view representation.

� Committee RKM (Comm): A typical example of late fusion where
a separate model is trained for each view and a weighted average is
taken as the final classifier [3]. For this baseline method, RKM is
applied on each view separately and the weights are calculated based on
the training error covariance matrix in the same way as for Committee
LS-SVM regression [36].

� Multi-View LS-SVM classification (MV-LSSVM): The pair-
wise multi-view classification method described in Section 2.2. In anal-
ogy with the experiments in [7] (and with the experiments done with
%TMV-RKM), the same regularization parameter and kernel parame-
ter are chosen for each binary subproblem, yet they can differ over the
views. In addition to these parameters, also the coupling parameter is
tuned.

� Multi-View Learning with Least Square loss function (MVL-
LS): This method, proposed by Minh et al. [8], is a pairwise multi-
view classification model based on SVM that can handle labeled as
well as unlabeled data. To fairly compare with our proposed multi-
view method we use the same (labeled) data and do not add unlabeled
data. The method has three regularization parameters as well as kernel
parameters to be tuned.

� Multi-View Fisher Discriminant Analysis (MFDA): This multi-
view extension to Fisher Discriminant Analysis was proposed by Diethe
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et al. [51]. The method aims to minimize the variance of the data
along the projections and to maximize the distance between the average
outputs of each class, over all views. The parameters to be tuned are
a regularization parameter and kernel parameters.

� SimpleMKL: This multiple kernel learning method, based on SVM,
is proposed by Rakotomamonjy et al. [52]. The kernel is defined as
a linear combination of multiple kernels. The SimpleMKL problem is
defined through a weighted 2-norm regularization formulation with a
constraint on the weights that encourages sparse kernel combinations.
It has one regularization parameter as well as kernel parameters to be
tuned.

� EasyMKL: A popular multiple kernel learning method proposed by
Aiolli & Donini [34]. EasyMKL is often used due to its scalability w.r.t.
the number of kernels. The resulting kernel is defined as a weighted
sum of multiple kernels, with positive weights. It has one regularization
parameter (γ ∈ [0, 1]) as well as kernel parameters to be tuned.

� Multilinear Factorization Machine (MFM): This tensor-based
method proposed by Lu et al. [22] is described as a multi-view multi-
task method. However it is also used in the paper for classification,
where the different tasks correspond to the different binary classifica-
tion problems related to multi-class classification. The method models
the feature interactions among the different views and tasks, as a ten-
sor structure by taking the tensor product of their respective feature
spaces. In our experiments we use the three variations as stated in [22]
and reported the best result, moreover the fixed parameters are set in
the same way. The regularization parameters remain to be tuned.

� t-SVD based Multi-view Subspace Clustering (t-SVD-MSC):
This multi-view clustering method, proposed by Xie et al. [21], uses
tensor learning by stacking the subspace representation matrices of the
different views to form a tensor and subsequently rotating it such that
the higher order correlations between the views are explored. Despite
it being a clustering method, the method achieves a good performance
and is therefore included in the experiments. It has one regularization
parameter to be tuned, which will be tuned based on the labels (hence
in a supervised manner).
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Note that MV-LSSVM and MVL-LS handle multiple views in a pairwise
fashion, while MFDA, SimpleMKL, EasyMKL, MFM and t-SVD-MSC con-
sider the information from all views simultaneously. The parameters of these
baseline algorithms are selected in the same way as for %TMV-RKM (see
Algorithm 2). Since the data from the Flower Species dataset is provided
as kernel matrices, the non-kernel methods MFM and t-SVD-MSC are not
applied on it.

4.3. Experimental Results

Table 2 shows the accuracy of all baseline algorithms and of the proposed
%TMV-RKM model on the real-world datasets. The BSV results were ob-
tained with the anchor URL terms for the Ads dataset, with the foreground
SIFT features for the Flowers species dataset, with the term frequencies of
the caption for the Image-caption dataset, with the LDA text feature for
the YouTube Video dataset, with the Fourier coefficients for the UCI Digits
dataset and with the color histogram features for the NUS-WIDE dataset.
%TMV-RKMadd and %TMV-RKMmean represent the proposed method with
the decision function in Eq. (15) and Eq. (17) respectively.

A first observation is that the proposed multi-view method has a higher
accuracy than BSV on all datasets examined. This indicates the improvement
of using multiple views. It further improves on the simple coupling schemes
FC and Comm on all datasets examined. The other multi-view methods also
improve on these simple schemes in most of the cases, indicating that these
simple coupling schemes are not sufficient.

Furthermore the table shows that the proposed method %TMV-RKM
is able to outperform the two pairwise multi-view methods on all studied
datasets. Especially on the Flowers, Digits and NUS-WIDE datasets the
improvement of including higher order correlations is significantly. Notice
that MVL-LS is inherently a semi-supervised algorithm and is hence not op-
timized to handle a large amount of labeled data, as is especially the case
for the NUS-WIDE dataset. So it is not surprising this resulted in an out-
of-memory error. In addition, %TMV-RKM is certainly competitive with
the last five baseline methods. In most experiments %TMV-RKM is able
to achieve a higher accuracy. Only for the YouTube Video dataset en the
NUS-WIDE dataset only SimpleMKL and MFM, respectively, are able to
outperform %TMV-RKM. Since the NUS-WIDE dataset consist of a high
number of classes, it is not surprising MFM outperforms all other methods,
as MFM is designed to also take into account the higher and lower order
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Table 2: Mean classification accuracy on the test set of the three splits for the real-world
datasets. The standard deviation is shown between parentheses. ”OM” is short for ”out-
of-memory error” while running the experiments. Since the Flowers dataset is provided as
kernel matrices, only the kernel-based methods can be applied. For the proposed %TMV-
RKM method, also the mean optimal % over all splits is shown. The highest accuracies
are indicated in bold.

Method Ads Flowers Image-caption YT Video Digits NUS-WIDE

BSV 95.73 44.31 96.81 91.03 74.25 29.31
(±0.46) (±1.96) (±0.24) (±1.37) (±10.03) (±1.16)

BSVb=0 95.83 28.82 98.89 91.51 78.67 29.82
(±0.93) (±2.65) (±0.24) (±3.24) (±0.88) (±1.77)

FC 97.05 5.49 79.17 91.03 9.25 31.75
(±0.38) (±1.39) (±1.50) (±2.16) (±2.18) (±0.91)

Comm 85.26 30.98 32.50 66.67 12.25 18.79
(±1.04) (±14.3) (±3.31) (±12.47) (±21.22) (±7.99)

MV-LSSVM 97.20 49.91 98.06 90.71 74.42 29.98
(±1.56) (±3.40) (±1.97) (±5.32) (±15.46) (±2.96)

MVL-LS 88.50 8.43 97.50 89.21 89.10 OM
(±1.37) (±4.42) (±1.82) (±5.41) (±1.52)

MFDA 96.95 62.25 99.44 92.78 79.83 OM
(±0.79) (±3.38) (±0.48) (±1.92) (±8.61)

SimpleMKL 85.26 10.88 97.64 95.24 94.67 32.48
(±1.04) (±5.88) (±1.27) (±1.04) (±1.91) (±1.92)

EasyMKL 95.93 11.05 89.44 91.74 85.42 16.61
(±0.92) (±0.45) (±3.37) (±2.16) (±8.29) (±0.46)

MFM 94.00 − 98.84 91.71 94.09 60.16
(±1.03) (±0.16) (±6.00) (±2.69) (±16.74)

t-SVD-MSC 85.26 − 82.08 62.38 87.50 27.67
(±1.04) (±1.25) (±1.86) (±3.91) (±0.78)

%TMV-RKMadd 97.66 56.37 99.72 91.98 94.92 34.73
(±0.88) (±1.67) (±0.24) (±1.82) (±1.04) (±0.63)

(% = 0.83) (% = 0.00) (% = 0.27) (% = 0.8) (% = 0.40) (% = 0.97)

%TMV-RKMmean 97.61 66.67 99.72 92.86 84.83 33.81
(±0.58) (±1.45) (±0.24) (±2.30) (±11.27) (±1.06)

(% = 0.20) (% = 0.00) (% = 0.13) (% = 0.47) (% = 0.67) (% = 0.20)
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correlations between the different binary classification problems. Whereas
%TMV-RKM considers each classification problem separately. However, as
is shown later in this section, most methods have a much higher time cost
than the proposed %TMV-RKM.

The table further notes the mean optimal % over all splits. We can see
that for the Flower dataset, % equals zero. Another observation for this
dataset is that the FC method performs quite badly, while Comm is able to
achieve an acceptable performance. Both observations indicate a strong need
for late fusion, and hence more freedom to model the views differently, for
this particular dataset. A stability study of this parameter is performed in
the next section.

4.4. Parameter Study

Another set of experiments were performed where for each value of % ∈
[0, 0.1, 0.2, . . . 1] the regularization and kernel parameters are tuned through
simulated annealing. The resulting test accuracy of %TMV-RKM on the
different datasets can be found in Figure 4.

A first observation is that the accuracy on the test set for a certain value
of % is fairly stable over the three data splits, the accuracy rarely differs more
then 2− 3% in accuracy.

While Figure 4a shows that the value % does not influence the performance
on the Ads dataset considerably, the other other figures show that finding an
appropriate value of % is crucial for the performance. For the Image-caption
and the YouTube Video dataset the results are fairly stable expect for the
extreme value % = 1. For the Flowers and the Digits dataset, however, the
graphs indicate that lower values of % are better than high values, where
for the Flowers dataset the performance even drops drastically when % > 0.
This suggest that for these dataset late fusion is more appropriate, which is
also supported by the accuracy results in Table 2, as the late fusion method
Comm achieves a higher accuracy than the early fusion method FC. Figure 4f
for the NUS-WIDE dataset, however, shows an opposite trend, indicating the
need for early fusion. Again this is in line with the results of FC and Comm
on this dataset, where FC performs better than Comm.

4.5. Statistical significance of the results

In order to argue the significance of the results, the Wilcoxon signed-rank
test is used. Since there is no reason to assume that the performances across
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(c) Image-caption
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(d) YT Video
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(f) NUS-WIDE

Figure 4: Test accuracy of %TMV-RKM applied on the three training-test data splits, with
respect to %, on the different datasets.
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Table 3: Results of the Wilcoxon signed-rank test for the comparison of %TMV-RKM with
each baseline algorithm. If T < T0.2 we can reject the null-hypothesis that both methods
perform equally well with confidence level 0.8.

%TMV-RKM BSV BSVb=0 FC Comm MV-LSSVM MVL-LS
T 0 0 0 0 0 0

T0.2 3 3 3 3 3 2

%TMV-RKM MFDA SimpleMKL EasyMKL MFM t-SVD-MSC
T 0 4 0 5 0

T0.2 2 3 3 2 2

data sets are distributed normally, Demšar [53] recommends the Wilcoxon
test over other alternatives (e.g. the t-test or sign test).

For each baseline algorithm the difference in performance w.r.t. %TMV-
RKM is calculated for each dataset, and ranked according to the absolute
value of the difference. Let R1 be the sum of the ranks for the datasets on
which %TMV-RKM outperforms the baseline, and R2 the sum of the ranks
on which the baseline outperforms %TMV-RKM. We can then define T as
T = min(R1, R2). Table 3 shows the value T for each baseline method.

Define the null-hypothesis as the hypothesis that %TMV-RKM and the
baseline algorithm perform equally well. We can then use the table of exact
critical values for the Wilcoxon’s test to find the critical value Tα for a con-
fidence level (1− α), and reject the null-hypothesis if T < Tα. Note that Tα
only depends on α and the number of datasets.

The critical values for α = 0.2 are stated in Table 3. Note that since the
number of datasets is relatively small (5 or 6), we can not choose a higher
confidence level. We can see that for most baseline algorithms we can reject
the null-hypotheses, hence we can state with 80% certainty that %TMV-RKM
outperforms these baseline methods significantly.

We can furthermore determine the confidence intervals on the classifica-
tion accuracy obtained on the test set. If we assume that the test samples are
independent and identically distributed we can use the Wilson score inter-
val [54]. Table 4 shows the 95% confidence intervals c95 for the test accuracy
of %TMV-RKM (see Table 2) on each dataset.

Even though we chose a high confidence level (0.95), most confidence in-
tervals are rather small. The largest interval is found for the Flowers dataset,
but even if the true accuracy equalled the lower bound (61.07) %TMV-RKM
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Table 4: The 95% confidence interval (c95) for the test accuracy of %TMV-RKM.

Ads Flowers Image-caption
c95 [96.50, 98.82] [61.07, 72.27] [99.05, 100]

YT Video Digits NUS-WIDE
c95 [90.40, 95.32] [92.78, 97.07] [32.03, 37.43]

would still outperform almost all baseline algorithms.

4.6. Time complexity and large-scale experiment

Another advantage of the proposed method becomes evident when looking
at the time complexity of the model. Table 5 shows the runtime of the
different methods on all considered datasets. For these timing results all
experiments were run in Matlab (R2014b) on an Ubuntu 16.04 LTS system
with a 12-core Intel i7 (2.2GHz) CPU and 16.0 GB RAM.

Unsurprisingly it shows that multi-view learning takes more time than
learning from only one view. Also, since RKM is a kernel based model, a
higher number of features will not significantly increase the complexity. This
is supported by the runtime results of FC, which are similar to the BSV
results.

Another, more interesting, observation is that %TMV-RKM is much faster
than the other seven multi-view methods, especially when compared to the
runtime of MFDA, SimpleMKL, MFM and t-SVD-MSC. The improvement
in runtime with regard to MV-LSSVM can be explained by looking at the
time complexity. For both methods the time complexity of the training phase
is heavily dominated by the time it takes to calculate the kernel matrices and
by solving a linear problem ([7, Eq. (11)]) for MV-LSSVM and Eq. (13) for
%TMV-RKM). The authors in [7] showed that for MV-LSSVM these steps
have a time complexity of O(V N2 d̄) and O(mN3V 3) respectively, where d̄ is
the mean of the data dimensions over all views. For %TMV-RKM the number
of operations to calculate the kernel matrices is the same as for MV-LSSVM
plus V N2 additions and multiplications, which leads to the same big order
time complexity O(V N2 d̄). The left-hand size matrix in the linear problem
of %TMV-RKM, however, is much smaller than in the dual problem of MV-
LSSVM. The dimensions are ((N + 1)V × (N + 1)V ) and (N + 1×N + 1)
respectively. Since this needs to be calculated for all m outputs, it entails
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Table 5: Mean runtime (in seconds) of training and test procedures for the real-world
datasets on 15 runs. The standard deviation is shown between parentheses.

Method Ads Flowers Image-caption YT Video Digits NUS-WIDE

BSV 0.72 0.13 0.17 0.33 0.43 4.71
(±0.39) (±0.01) (±0.09) (±0.13) (±0.05) (±0.07)

BSVb=0 0.30 0.13 0.17 0.22 0.40 5.10
(±0.09) (±0.05) (±0.01) (±0.01) (±0.01) (±0.27)

FC 0.84 0.15 0.19 0.52 0.43 5.72
(±0.14) (±0.01) (±0.03) (±0.13) (±0.07) (±0.25)

Comm 2.11 1.43 0.48 1.20 3.01 26.72
(±0.17) (±0.06) (±0.13) (±0.21) (±1.61) (±0.22)

MV-LSSVM 9.37 13.30 1.34 4.03 42.35 367.89
(±1.82) (±0.57) (±0.14) (±1.57) (±21.71) (±2.81)

MVL-LS 16.24 3.84 0.94 1.99 29.31 −
(±7.96) (±0.65) (±0.16) (±0.06) (±63.57)

MFDA 1.58 · 103 0.69 · 103 33.89 970.24 225.68 −
(±85.33) (±58.26) (±2.99) (±19.61) (±2.16)

SimpleMKL 3.05 · 103 0.13 · 103 4.92 11.45 182.95 1.73 · 104

(±4.99e+03) (±0.17) (±0.13) (±0.12) (±90.37) (±688.30)

EasyMKL 17.88 0.16 · 103 4.21 15.04 11.00 124.25
(±7.40) (±1.12) (±0.57) (±0.98) (±1.14) (±3.69)

MFM 617.49 − 44.02 135.53 673.56 6.15 · 103

(±22.79) (±1.53) (±10.12) (±88.09) (±7.97)

t-SVD-MSC 1.01 · 103 − 122.97 375.18 1.79 · 103 6.31 · 103

(±14.00) (±0.32) (±6.64) (±4.45) (±4.08)

%TMV-RKMadd 1.52 0.46 0.30 0.67 1.38 14.68
(±0.21) (±0.02) (±0.03) (±1.20) (±0.07) (±1.03)

%TMV-RKMmean 1.64 0.51 0.30 0.72 1.44 15.24
(±0.24) (±0.01) (±0.01) (±0.22) (±0.10) (±0.15)
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Table 6: Time complexity of the training and test phase of MV-LSSVM method and
%TMV-RKM method.

MV-LSSVM %TMV-RKM
Calculate kernel matrices O(V N2 d̄) O(V N2 d̄)
Solving linear system O(mN3V 3) O(mN3)
Total training O(mN3V 3) O(mN3)
Total test O(V NNt d̄) O(V NNt d̄)

a time complexity of O(mN3) for calculating the linear system of %TMV-
RKM, which is smaller than the time complexity of MV-LSSVM with a
factor of V 3. The dimensions of the datasets are usually either small or the
features are very sparse. Since most numeric programming languages have
fast routines to multiply sparse matrices (like e.g. Matlab), one can usually
assume that the training time is mostly dominated by the second step. This
training complexity is summarized in Table 6. The test phase consists of
computing the classifiers (Eq. (17) or Eq. (15)) for all Nt test points. The
time complexity of the test phase is also given in Table 6.

To investigate the behavior of %TMV-RKM when dealing with large-scale
data, we use the Reuters dataset [47]9. This dataset, described by Amini et
al. [55], consists of documents originally written in five different languages
and their translations in each of the other four languages. All documents
belong to one of the six categories and are described by a bag-of-words style
feature. We took the largest possible Reuters set, which contains 29953
documents and consists of documents written in German and translations of
them in English, French, Spanish and Italian. Hence, considering that the
data is split up for training and testing in the same way as in the previous
section, for this large-scale dataset it holds that V = 5, nc = 6, N = 23962
and Nt = 5991. Furthermore, the dimension of the data over the views range
from 11547 to 34279 and the MOC encoding is used.

It is clear from the time complexity given in Table 6 that the training
part of %TMV-RKM will be very time consuming when N is this large. We
will present here two approaches for dealing with large-scale data.

9Available at https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+

Multilingual,+Multiview+Text+Categorization+Test+collection .
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Figure 5: Accuracy and timing results with the first large-scale approach on the Reuters
dataset with respect to M .

The first approach is simply taking only a small part of the data to
train the model and assume that it will generalize well to the unseen test
data. Similar to the work in [7, 56] we will randomly pick M points, with
M � N , from the total training set. However note that the selection of
this subset could also be based on certain criteria like e.g. a Rényi entropy
based criteria [57] as was used by Mehrkanoon & Suykens or [58] for semi-
supervised learning, or based on the angular similarity between the projected
values of KSC [59] for community detection as used by Mall et al. [60].

A first experiment investigates the effect of the chosen subset size M
of the first approach on the Reuters dataset. Figure 5 shows the accuracy
on the test set and the runtime of the training and test phase for M ∈
{0.5·102, 102, 0.5·103, 103, 0.5·104, 104}. Linear kernel functions are chosen for
all views and the decision function given by Eq. (17) is used.

Figure 5a shows that the accuracy on the test set increases as the subset
size increases. This is of course to be expected since more information is
used in the training phase. It can also be noted that the accuracy increases
drastically when M ≤ 500 but only slightly afterwards. Which indicates
that the model is able to generalize well with a relatively small training set.
Figure 5b shows that the training time increases faster with regard to M
than does the test time, which is in line with the time complexity given in
Table 6.

A second approach is based on the concept of committee networks. A
number of smaller subsets are randomly sampled out of the total training
set, and the final classifier is defined as a linear combination of the classifiers
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Figure 6: Accuracy and timing results with the second large-scale approach on the Reuters
dataset with respect to the number of subsets.

modeled for the subsets. This approach has been successfully applied for
single-view large-scale kernel methods in the past [36, 61].

For the Reuters dataset, we randomly pick a number of subsets with size
M = 1000. The weights of the final classifier are calculated in the same way
as for the baseline Comm method, i.e. based on the training error covariance
matrix. The regularization parameters belonging to the specific subsets are
separately trained for each subset to decrease tuning complexity. A first
experiment shows the influence of the number of subsets on the classification
accuracy and training and test runtime. The results are depicted in Figure 6.

Figure 6a shows that the accuracy increases with the number of subsets
used in the committee network, although this increase is not as drastic as in
Figure 5a. This would indicate that the subset size is of more importance
than the number of subsets used. Since for each extra subset, an extra model
needs to be trained in the training phase and an extra classifier needs to be
calculated in the test phase, the runtime will also increase with the number of
subsets, as depicted in Figure 6b. Since M = 1000, the training will however
always be significantly faster than the test phase.

Table 7 summarizes the performance of both approaches on the Reuters
dataset. Three random subsets are selected with M = 1000. The results
are averaged over three random training-test splits. Note that for the first
approach the results are averaged over the three splits as well as the three
subsets.

The table also depicts the performance of a third approach, which is an
extension to the committee approach where the weights of the final classifier
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Table 7: Mean classification accuracy on the test set over the three splits for the large-scale
Reuters datasets. The standard deviation is shown between brackets.

Simple
approach

Committee
approach

Committee
approach +
weights tuned

%TMV-RKMadd 64.46 (±2.13) 57.24 (±1.99) 69.53 (±0.80)

%TMV-RKMmean 69.45 (±1.54) 71.95 (±1.09) 73.23 (±0.54)

are tuned, instead of based on the training error. Tuning of the weights
seems to be favorable to the second approach in terms of performance, but
it clearly increases the time it takes to do model selection. The table further
indicates that the committee approach can improve on the simple approach
and that it is a natural and effective way to use the proposed %TMV-RKM
model for large-scale data.

5. Conclusion and perspectives

This paper proposes a novel multi-view method called %-Tensor Multi-
View Restricted Kernel Machine Classification (%TMV-RKM), to perform
classification when data is described through multiple views. The model in-
cludes principles from tensor learning to account for higher order correlations
when three or more views are available. A first extension to the RKM for-
mulation is shown, where shared hidden features are introduced. To increase
the degree of coupling, a second extension is shown that includes a model
tensor, containing the weights of all views. Finally a combination of both
methods, %TMV-RKM is proposed. The performance is shown on a variety
of real-world datasets and compared to the performance of state-of-the-art
multi-view methods. The experimental results show the merit of including
a weight tensor, both in terms of accuracy and time complexity. Multiple
approaches to handle a large-scale dataset are proposed.

Future research could investigate the possibility of stacking multiple %TMV-
RKM formulations, to perform deep multi-view learning with weight tensors.
Another possibility, in line with HOFM [25, 26], is to impose a low-rank re-
striction on the weight tensor by adding a regularization term which includes
the nuclear norm on the tensor.
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Appendix A. Stationary points of MV-RKM

The stationary points of the objective function J of MV-RKM, given by
Eq. (6), are characterized by:

∂J
∂hk

=0→ V =
V∑
v=1

(ϕ[v](x
[v]
k )Tw[v] + b)yk + λhk

for k = 1, . . . , N

∂J
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=0→ w[v] =
1

η

N∑
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ϕ[v](x
[v]
k )ykhk

for v = 1, . . . , V

∂J
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=0→
N∑
k=1

ykhk = 0.

(A.1)

Appendix B. Stationary points of TMV-RKM

The stationary points of the objective function J of TMV-RKM, given
by Eq. (8), are characterized by:
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)
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(B.1)

Appendix C. Derivation of %TMV-RKM solution to training prob-
lem

The stationary points of this objective function given by Eq. (11), denoted
as J , are characterized by:
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with τ = (1 − %)V + %. Given the definition in Eq. (9) we can rewrite the
first condition as:
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Since yk ∈ {−1, 1} and by substituting the weight vectors and weight
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tensor by means of the second and third condition it holds that:
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Since Eq. (C.3) holds for every k = 1, . . . , N , we can rewrite it as:

1

η

(
(1−%)

V∑
v=1

Ω[v]+%
V⊙
v=1

Ω[v]

)
(y � h) + λ(y � h) + τNb = τy. (C.4)

Together with the last condition in Eq. (C.1), that can be rewritten as
1TN(y � h) = 0, the formulation in Eq. (12) is obtained.
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