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Constructing multidimensional difference equations from a state-space
representation using the generalized Cayley-Hamilton Theorem

Lukas Vanpoucke, and Bart De Moor, Fellow, IEEE, IFAC & SIAM

Abstract— We show that applying a generalization of the
Cayley-Hamilton Theorem to a state-space representation of a
single-output, multidimensional (mD), linear, shift-invariant,
causal, autonomous system, with distinct eigentuples results
in an equivalent difference equation representation. The
proposed method is also applicable to parameterize a set of
mD shift-invariant difference equations in terms of a given set
of eigenvalues. Lastly, a closed-form expression in terms of the
eigenvalues of the state-transition matrices is derived.

Keywords: Algebraic/geometric methods, Autonomous sys-
tems, Linear systems

I. INTRODUCTION

Discrete-time, linear, time-invariant (LTI) models provide
a great modeling tool for many engineering applications.
Nowadays, multidimensional data, where many other vari-
ables besides time are considered, is abundantly available. To
this end, many of the tools provided by LTI systems have
been generalized to the multidimensional (mD) setting. In
this work, we focus on the class of single-output, mD, linear,
shift-invariant, causal, autonomous models, as described by
the state-space representation in Equation (1), where ek ∈
Zm denotes the kth column of the identity matrix, the multi-
index of an m-dimensional gridpoint is denoted by1 κ ∈ Nm

0 ,
Ak ∈ Rn×n, k = 1, . . . ,m and C ∈ R1×n:
xκ+e1 = A1xκ ; . . . ; xκ+em = Amxκ ; yκ = Cxκ

where ∀i, j ∈ {1, . . . ,m} : AiAj = AjAi.
(1)

This model class, known by various different names, has
been studied extensively in the literature, [1], [2], [3], [4].
Through Equation (1), any initial state vector x0 ∈ Rn,
where n is the model order, defines an output signal yκ :
Nm

0 → R;κ 7→ yκ over the whole positive orthant Nm
0 .

Note that the commutativity of the state-transition matrices
Ak ∈ Rn×n is required for the well-definedness of the state
and output signals. For example, in 2D, when stepping from
x(0,0) to x(1,1), the outcome should be path-independent,
such that A2A1x(0,0) = A2x(1,0) = x(1,1) = A1x(0,1) =
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1Notation: N0 denotes the set of natural numbers including zero and N
is assumed to not include zero.

A1A2x(0,0). Consequently, by grouping the state-transition
matrices in the tuple A = (A1, . . . ,Am) and introducing a
shorthand notation2, the model output can be compactly writ-
ten as: yκ = CAκx0 = C

∏m
k=1 A

κk

k x0. This shows that
the model dynamics are invariant under a common similarity
transform T on the state-transition matrices. Indeed, defining
Anew = T−1AT ,xnew

0 = T−1x0 and Cnew = CT , the
output remains: ynew

κ = CnewA
κ
newx

new
0 = CAκx0.

In the current work, we consider the problem of con-
structing an equivalent difference equation representation
for a given, possibly parametric, single-output, autonomous
state-space model (1), with distinct eigentuples, that is
eigenvalues of the state-transition matrices grouped into m-
tuples3. Indeed, akin to the 1D case of LTI systems, it has
been shown in [3] that the considered class of mD models
can be equivalently described using difference equations
with constant coefficients, i.e., shift-invariant, also called
partial difference equations. For a minimal, single-output,
autonomous, LTI state-space model, the Cayley-Hamilton
Theorem implies that the characteristic polynomial of the
state-transition matrix A, readily expressed in terms of
the eigenvalues, forms an equivalent difference equation
representation for the model [5]. This contribution aims to
generalize this procedure to the mD setting.

A similar problem has been tackled in [5] using the
Buchberger-Möller algorithm [6], briefly illustrated in Exam-
ple I.1. From a system theoretic point of view, the algorithm
in [5] constructs a multidimensional observability matrix Γ4

[4], whose rows are Γl,: = CAκl , for a given set of N
gridpoints {κl| l = 1, ..., N} and an ordering on them.
The columns of an observability matrix then form a basis
for the model-compliant signals yκ restricted to the given
gridpoints. The algorithm then sequentially searches for a
set of linearly independent gridpoints κ to serve as initial
states, from which linear recurrence relations, a so-called
Gröbner basis, can be derived that define the signal values
in subsequent gridpoints. A drawback of this approach is
that the resulting set of initial states may vary depending
on the precise eigenvalues of the provided system matrices
A1, . . . ,Am [7]. In cases where the precise values of these
eigenvalues are unknown, e.g., when optimizing over them as
model parameters to find those that optimally fit the given
data [8], this may lead to invalid parameterizations of the
considered models, as illustrated in the 2D Example I.1.

2Notation: the shorthand notation xα =
∏

i x
αi
i will be used for general

multivariate monomials described by the multi-exponent (multi-index) α.
3This grouping is defined precisely in Section III, after Lemma III.1
4Notation: The index ‘:’ indicates all rows or columns are selected.



Example I.1. Consider the following state-space model with
eigentuples, (a1, b1) and (a2, b2) ∈ C2 and system matrices:

A1 =

[
a1

a2

]
,A2 =

[
b1

b2

]
,C = [1 1] .

To find a set of difference equations that the outputs yκ of
this model must satisfy, we first construct a multidimensional
observability matrix Γ. To this end, we define an appropriate
ordering on the gridpoints, for instance, consider the ordering
used in [4], which, in (2D), is : (0, 0) ≺ (1, 0) ≺ (0, 1) ≺
(2, 0) ≺ (1, 1), . . .. Then, we respectively arrange the output
signals yκ = x0(A

κ)C corresponding to the initial states
x0

T = [1 0] and x0
T = [0 1] in the rows of ΓT below.

Note that, due to the linearity of the model, the rows of ΓT

form a basis for the model-compliant output signals, since
any initial state can be written as a linear combination of
the two considered states. Considering the points κ ∈ N2

0,
where ∥κ∥1 ≤ 2, this results in the following matrix:

ΓT =

[y(0,0) y(1,0) y(0,1) y(2,0) y(1,1) y(0,2)

1 a1 b1 a21 a1b1 b21
1 a2 b2 a22 a2b2 b22

]
.

When a1 ̸= a2, the first and second column of ΓT are linearly
independent. Clearly, all subsequent columns can then be
written as linear combinations of these independent columns,
e.g., (a1 − a2)y(0,1) = (a1b2 − a2b1)y(0,0) + (b1 − b2)y(1,0)

and y(2,0) = (a1+a2)y(1,0)−a1a2y(0,0), where yκ ∈ R2×1.
Note that due to the multi-shift invariance of the model
outputs, these relations can be ‘shifted’ throughout the grid
Nm

0 by left multiplying by Ak
T, leading to linear relations

that define yκ for κ ∈ N2
0 with y(0,0), y(1,0) as initial values.

However, in case a1 = a2, the relation y(1,0) = a1y(0,0)

holds, so that y(1,0) is linearly dependent on y(0,0) and thus
cannot be considered an initial value. Instead, y(0,0) and
y(0,1) then act as initial values if b1 ̸= b2.

When considering the eigentuples as variables, it is not
know which case applies, though. As it is the generic case,
one might use the recurrence equations provided by the case
a1 ̸= a2 as a parameterization for the model in terms of these
variables. Then, substituting a1 = a2 into these recurrence
relations yields (b1 − b2)y(1,0) = a1(b1 − b2)y(0,0) and
y(2,0) = 2a1y(1,0) − a21y(0,0), which acts as a set of 1D
difference equations. Consequently, all signals of the form
yκ = aκ1

1 yκ2
, where yκ2

can be any 1D signal, satisfy this
set of difference equations, as will be explained in Example
I.3. As such, these equations then describe an infinite-order
systems, instead of the intended second-order system. In
essence, the parameterization ‘breaks down’ in this non-
generic case, describing an infinite order model, which does
not allow a finite dimensional state-space representation (1),
instead of the intended second-order model [3], [7].

Aside from the theoretical value in offering an alterna-
tive transition from a state-space to a difference equation
representation, the approach presented in this work provides
the advantage of a more general parameterization of models
w.r.t. the Gröbner-based methods. The presented construction
relies on combining the properties of commuting matrices,

with the Generalized Cayley-Hamilton Theorem, introduced
in Section II. To this end, we first explain the link between
multivariate polynomials and mD difference equations.

Formally, difference equations can be generalized to the
multidimensional setting by introducing the linear shift op-
erators: σi = yκ = yκ+ei

, that a set of difference equations
can be characterized by a multivariate polynomial matrix
in these operators σ = [σ1, . . . , σm], as illustrated by the
following example of 2D homogeneous difference equations.

Example I.2. Consider the following set of 2D difference
equations with constant coefficients in the scalar signal yκ :[

yκ − yκ+(1,1) + yκ+(2,0)

6yκ − 5yκ+(0,1) + yκ+(0,2)

]
=

[
1− σ1σ2 + σ2

1

6− 5σ2 + σ2
2

]
yκ

= R(σ)yκ = 0, ∀κ ∈ N2
0.

In the behavioral framework for systems theory, model-
compliant signals are defined as signals that satisfy such a
set of difference equations at each gridpoint κ ∈ Nm

0 , i.e.,
any yκ that lies in the kernel of the difference operator, i.e.,
R(σ)yκ = 0,∀κ ∈ Nm

0 . Hence, this is type of represen-
tation is a kernel representation. Due to the linearity of the
shift operators σ, this kernel forms a vector space over C,
which can be thought of as the column space of an infinitely
long mD observability matrix Γ ∈ R∞×n, i.e., constructed
using the whole grid Nm

0 [9], [10], [11]. Since the model
class considered in this paper admits a finite-dimensional
state-space system description as described in Equation (1),
the kernel of the operator R(σ) that characterizes the system
dynamics is also finite-dimensional [3].

As previously stated, we restrict ourselves to single-output,
autonomous systems, such that this leads to homogeneous
scalar difference equations. For the considered class of
difference equations, a basis for the kernel of R(σ) is readily
obtained by filling in an exponential of the form yκ = λκ

and subsequently solving R(σ) as a set of multivariate
polynomials, as illustrated in Example I.3 below [12].

Example I.3. Substituting a signal of the form yκ = λκ1
1 λκ2

2

into the difference equations from Example I.2 we obtain:{
λκ1
1 λκ2

2

(
1− λ1λ2 + λ2

1

)
= 0

λκ1
1 λκ2

2

(
6− 5λ2 + λ2

2

)
= 0

∀κ ∈ N2
0,

which corresponds to the set of polynomial equations
R(λ1, λ2) after dividing away the factor λκ1

1 λκ2
2 .

Example I.3 illustrates that when the polynomials R(σ)
has a finite number of common roots λi, i = 1, . . . , n, its is
n-dimensional with λκ

i as its basis signals. These roots then
correspond to the eigentuples of an equivalent state-space
model [3], [4]. As such, the considered problem, that is,
constructing an equivalent difference equation representation
R(σ) for a given state-space model (1), can be thought of as
constructing a set of multivariate polynomials that precisely
describes a given a set of n mD points as its set of common
roots. In general, these basis functions are not necessarily
of the form λκ , for example, when there are eigentuples
with a multiplicity greater than one [4]. Such cases are not
considered in this work, however.



The rest of this paper is organized as follows: Section II
introduces the generalized Cayley-Hamilton Theorem, and
the multivariate polynomials associated with it. Then, Section
III shows that, under an observability-like condition, for
systems with distinct eigentuples, these polynomials are a
difference equation representation of a single-output, mD,
linear, shift-invariant, causal, autonomous system. A closed-
form expression for this set of difference equations in terms
of the eigentuples is then presented in Section IV.

II. THE GENERALIZED CAYLEY-HAMILTON THEOREM

Like the classical Cayley-Hamilton Theorem, the Gener-
alized Cayley-Hamilton (GCH) Theorem, as first presented
in [13], describe relations between sets of matrices and their
higher-order powers. The ideas behind this construction are
illustrated in Example II.1 which is quite simple, but it
generalizes easily. While the given matrices are not required
to commute for the GCH Theorem, since it will be applied
to the state-transition matrices, we present a version adapted
to commuting matrices in Theorem II.1 to avoid confusion.

Example II.1. Reconsider the state-space model from Ex-
ample I.1 and define the matrix B = c1A1+c2A2, ck ∈ C.
Now compute the characteristic polynomial of B: χ(x) =
x2 +x(−b2c2 − b1c2 − a2c1 − a1c1)+ (b1c2 + a1c1)(b2c2 +
a2c1). Introducing the variables λ1 and λ2 and substituting
x = c1λ1 + c2λ2, results in the following equation:

χ(c1λ1 + c2λ2) =

(λ2
1 − λ1(a2 + a1) + a1a2)︸ ︷︷ ︸

µ(2,0)(λ1, λ2)

c21 + (λ2
2 − λ2(b2 + b1) + b1b2)︸ ︷︷ ︸

µ(0,2)(λ1, λ2)

c22

+ (2λ1λ2 − λ2(a2 + a1)− λ1(b2 + b1) + a1b2 + a2b1)︸ ︷︷ ︸
µ(1,1)(λ1, λ2)

c1c2,

(2)

where the multi-index α of the coefficient µα refers to the
monomial cα with which it is associated. Due to the Cayley-
Hamilton Theorem, expression (2) evaluated in (λ1, λ2) =
(A1,A2), equals zero as a polynomial in c1, c2, implying
that each of its coefficients µα are zero. Consequently,
it holds that 0 = µ(2,0)(A1,A2) = µ(1,1)(A1,A2) =
µ(0,2)(A1,A2). Note that µ(2,0) and µ(0,2) are the charac-
teristic polynomials of A1 and A2, respectively.

This construction can be easily extended to the general
case of m matrices Ak and variables ck, leading to a
set of polynomials µα(λ), giving rise to the generalized
Cayley-Hamilton Theorem, Theorem II.1. Note that only
monomials cα of exactly degree n occur in χ(

∑
k ckλk),

which can be readily deduced from the cofactor expansion of
the determinant. To this end, we denote the set of monomials
in m variables and of exactly degree n as An = {α| α ∈
Nm

0 , ∥α∥1 = n}, implying that the GCH construction results
in #An =

(
m+n−1
m−1

)
equations.

Theorem II.1 (GCH [13], [14]). Given m pairwise commut-
ing matrices A1, . . . ,Am ∈ Cn×n. Let χ be the characteris-
tic polynomial of the polynomial matrix

∑m
k=1 ckAk = B ∈

Cn×n[c]. Define the variables λ and define the polynomials

µα by writing χ(
∑

k ckλk) such that:

χ(
∑
k

ckλk) =
∑

α∈An

µα(λ1, ..., λm)cα. (3)

It then holds that ∀α ∈ An : µα(A1, . . . ,Am) = 0.

III. OBTAINING DIFFERENCE EQUATIONS THROUGH THE
GENERALIZED CAYLEY-HAMILTON THEOREM

As illustrated in Example II.1, the application of the
Generalized Cayley-Hamilton Theorem to a set of com-
muting matrices can be used to build a set of multivariate
polynomials {µα(λ)| α ∈ An} with a finite subset of
predefined roots, i.e., the eigentuples of the given matrices.
Such a set of multivariate polynomials then naturally leads to
a set of homogeneous, single-output mD difference equations
by evaluating them in the shift operators σ, as discussed in
Section I. In this section, we show that the eigentuples of the
state-transition matrices, when distinct, correspond exactly to
the common roots of µα, implying that both representations
describe the same set of model outputs. This is first illustrated
in Example III.1 below.

Example III.1. Reconsider the polynomials R(σ)
T

=[
µ(2,0)(σ) µ(1,1)(σ) µ(0,2)(σ)

]
as defined in (2). While

it is obvious from Theorem II.1 that (a1, b1) and (a2, b2) are
common roots of these polynomials, it is not immediately
clear that they form the complete set of common roots.
Indeed, using the same grid ordering as in Example I.1,
writing out R(σ)y(0,0) = 0 readily leads to values for
y(2,0), y(1,1), y(0,2), which thus seems to define a recurrence
relation with y(0,0), y(1,0), y(0,1) as initial values. This would
imply that there are three basis signals instead of the two of
the original model in Example I.1. Indeed, the difference
equations R(σ) impose restrictions on the signal at all
gridpoints, i.e., ∀κ ∈ N2

0 : R(σ)yκ = R(σ)σκy(0,0) =
σκR(σ)y(0,0) = 0, not only in κ = (0, 0). For example,
let (a1, b1) = ( 1+i√

2
, i) and (a2, b2) = ( 1−i√

2
,−i) in Equation

(2), we can then write out the difference equations at the
gridpoints ∥κ∥1 ≤ 1 as a linear system:

0 = My =

1 −
√
2 0 1 0 0 0 0 0 0√

2 0 −
√
2 0 2 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 1 0 −
√
2 0 0 1 0 0 0

0
√
2 0 0 −

√
2 0 0 2 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 −
√
2 0 0 1 0 0

0 0
√
2 0 0 −

√
2 0 0 2 0

0 0 1 0 0 0 0 0 0 1

R(σ)

σ1R(σ)

σ2R(σ)





y(0,0)
y(1,0)
y(0,1)
y(2,0)
y(1,1)
y(0,2)
y(3,0)
y(2,1)
y(1,2)
y(0,3)


.

Clearly, constructing y appropriately from any signal yκ in
the kernel of R(σ) solves this system. Moreover, the right
null space of M is of dimension two, such that the basis
signals ( 1+i√

2
)κ1(i)κ2 and ( 1−i√

2
)κ1(−i)κ2 generate two basis

vectors for it. Note that these basis vectors correspond to the
columns of a 10 × 2 extended version of the observability
matrix Γ from Example I.1, from which it was deduced that
for the given ordering, y(0,0) and y(1,0) act as initial values.
Now, like in Example I.1 consider the case where a1 = a2



and b1 ̸= b2, e.g., let (a1, b1) = (1, 1) and (a2, b2) = (1, 2), a
similar analysis then reveals that the basis signals 1κ11κ2 and
1κ12κ2 again lead to two basis vectors y spanning null(M).
Thus, as discussed in Example I.1 y(0,0) and y(0,1) act as
initial values and the GCH parameterization does not break
down.

In general, as long as enough gridpoints are considered,
i.e., ∥κ∥1 ≤ d for d ‘sufficiently large’, it has been shown
that for any set of polynomials R(σ), the kernel of the
associated Macaulay matrix M is spanned by vectors similar
to y, generated by the basis signals5 λκ

i , where λi are the
common roots of the multivariate polynomials R(σ) [15].

We now extend the observation of Example III.1 to general
n and m. First, note that the state-transition matrices in (1)
can be brought into upper triangular form through a common
Schur transform, as stated in Lemma III.1. Notice that this
reveals the eigenvalues of the state-transition matrices on the
diagonals, allowing us to group them into eigentuples.

Lemma III.1 ([16] ). Schur triangularization for commut-
ing matrices: Let Ak ∈ Cn×n, k = 1, . . . ,m be a set of
commuting matrices, then there exists a unitary Q ∈ Cn×n

such that Tk = Q−1AkQ are upper triangular.

For the practical computation of Q, we refer the reader
to [17]. Now, by Lemma III.1 and since Q−1BQ =
Q−1(c1A1 + · · · + cmAm)Q = c1T1 + · · · + cmTm, the
characteristic of polynomial B and, by extension, the GCH
equations defined in Theorem II.1 are invariant under a
common similarity transform on the matrices Ak, so that
we can assume these to be upper triangular without loss of
generality. Denoting the eigentuples, i.e., the m-tuples of ith
diagonal entries, as ai = [(T1)i,i (T2)i,i · · · (Tm)i,i]

T,
i = 1, . . . , n, the characteristic polynomial of B is then
χ(x) =

∏n
i=1(x − c · ai), where · denotes the dot product,

since the determinant of an upper triangular matrix is equal
to the product of its diagonal entries. Finally, to construct
the GCH equations, the variables λ ∈ Cm are substituted
into the polynomial:

χ(c · λ) =
n∏

i=1

(c · λ− c · ai) =

n∏
i=1

c · (λ− ai). (4)

This can then be rewritten to obtain the set of m-variate
polynomials {µα(λ) | α ∈ An}, as constructed in Theorem
II.1, whose common roots of are described in Theorem III.1.

Theorem III.1. Given a set of m pairwise commuting
matrices M = {Ak ∈ Cn×n | k = 1, . . . ,m}. As in Lemma
III.1, jointly triangularize these matrices resulting in Tk and
define the eigentuples as ai = [(T1)i,i · · · (Tm)i,i]

T,
where i = 1, . . . , n. Let the set of

(
m+n−1
m−1

)
equations

{µα(λ) | α ∈ An} be the GCH polynomials constructed
from M, as described in Theorem II.1. The set of affine com-

5The common roots of the polynomials are revealed by the eigentuples
of the state-transition matrices, which can be obtained through the shift
equations Γκl,:Ak = Γκl+ek,: built from the observability matrix Γ in
the null space of a Macaulay matrix.

mon solutions6 of these GCH polynomials is then precisely
V = {ai | i = 1, . . . , n}.

Moreover, when a1, . . . ,an comprise n unique tuples, i.e.,
∀i, j ∈ {1, . . . , n}, i ̸= j : ai ̸= aj , each solution in V has
a multiplicity of precisely one.

Proof. As previously noted, the GCH polynomials are in-
variant under common similarity transforms applied to Ak.
We thus assume the upper triangular format without loss of
generality. Let λ∗ be a solution for the set of polynomials
{µα(λ) | α ∈ An}. By Equations (4) and (3), this implies
that ∀ c ∈ Cm : χ(c · λ∗) =

∑
α∈An

µα(λ
∗) · cα =∏n

i=1 c · (λ∗−ai) = 0. This can only equal zero, regardless
of the value of c, when ∃i ∈ {1, . . . , n} : λ∗ − ai = 0.

To prove the absence of higher-order multiplicities when
there are n unique solutions, let v · ∇λ be any linear
combination of first-order partial differentiation operators
w.r.t. the variables λ, that is, ∇λ =

[
∂

∂λ1
· · · ∂

∂λm

]T
and

v ∈ Cm. Applying this differentiation operator to χ(c · λ)
leads to the following expression, where we denote dχ(x)

dx by
χ′(x):

(v · ∇λ)χ(c · λ) =
∑

α∈An

(v · ∇λ)µα(λ)c
α

= χ′(c · λ)(v · ∇λ)(c · λ) = χ′(c · λ)(v · c).
(5)

Now assume that the set of equations has a multiplicity of
at least two for some solution λ∗, that is, ∃v ∈ Cm\{0}
such that ∀α : µα(λ

∗) = (v · ∇λ)µα(λ
∗) = 0 [18]. It then

follows that ∀c ∈ Cm : (v · ∇λ)χ(c · λ∗) = 0, due to the
first equality in (5). Then, due to the third equality in (5),
it is clear that: ∀c ∈ Cm such that c · v ̸= 0 it holds that
χ′(c · λ∗) = 0.

Applying the product rule for differentiation to χ′(c · λ)
results in:

χ′(c · λ) =
n∑

j=1

n∏
i=1,i̸=j

c · (λ− ai). (6)

Since any solution λ∗ is an element of V , i.e., λ∗ = ak for
some k ∈ {1, . . . , n}. However, when a1, . . . ,an comprise n
unique tuples, all the factors c·(λ−ai) are unique, implying
that when we evaluate (6) in λ = ak, the kth term is the
only one without the factor c · (λ − ak) and thus the only
one to not vanish. Additionally, when λ = ak it holds that
λ−ai ̸= 0, where i ̸= k, such that the kth term cannot vanish
for all values of c in the open set {c ∈ Cm : c · v ̸= 0},
thus contradicting the initial assumption that a solution to
the equations with a multiplicity of at least two exists.

Remark: Note that Equation (6) implies that in case there
is a multiple in the set of diagonal entries, i.e., ∃i, j ∈
{1, . . . , n}, i ̸= j : ai = aj , χ′(c · λ) will vanish in said
solution point ai, regardless of c. By (5), this implies that
all the first-order partial derivatives (v ·∇λ)µα(λ) vanish in
ai, implying a multiplicity of at least m+1, while generally,
multiplicities in the range 2 to m can be achieved [18]. As

6Additional solutions in projective space, i.e., solutions at infinity, are
excluded since homogenizing with a variable λ0 and setting λ0 = 0 results
in µα(0,λ) = λα (see Section IV), which only vanishes in (λ0,λ) = 0.



such, parameterizations based on the GCH construction may
describe models of an order higher than n in these cases,
though not of infinite order. Moreover, the parameterization
is more general than those obtained by the Buchberger-
Möller algorithm, since for any choice of initial values, the
so-called normal set, an infinite, measure zero collection of
sets of distinct eigentuples exists for which this normal set
is invalid, as illustrated in Example I.1. [7]

Lastly, we show that, under a condition akin to observabil-
ity, the state-space model (1) and the difference equations
built from the GCH equations describe exactly the same set
of output signals. Theorem III.2 shows this equivalence.

Theorem III.2. Let Ak ∈ Cn×n, k = 1, . . . ,m be a set of
upper triangular commuting matrices, define a state-space
model (1) with these matrices and C ∈ R1×n, and denote
ai = [(A1)i,i · · · (Am)i,i]

T. If ∀i, j ∈ {1, . . . , n}, i ̸=
j : ai ̸= aj , and there exists a finite set of gridpoints κl, l =
1, . . . , N such that the matrix Γ ∈ RN×n : Γl,: = CAκl ,
is of rank n, then, the set of signals described by the GCH
difference equations constructed from Ak in Theorem III.1
equals the set of signals described by the state-space model.

Proof. Let R(σ) ∈ C#An×1[σ] denote the GCH difference
equations. As established in Section I and due to Theorem
III.1 any signal yκ : Nm

0 → R;κ 7→ yκ that is model-
compliant, i.e., R(σ)yκ = 0, can be written as yκ =∑n

i=1 γia
κ
i , where γi ∈ C, such that the associated kernel

is the span of signals YGCH = span(aκ
1 , . . . ,a

κ
n ). The

outputs of the state-space model lie in the span of signals
span(CAκe1, . . . ,CAκen) = Yss, where ei is the ith
column of the identity matrix. All entries of the vector signal
CAκ then lie in YGCH , since by Theorem II.1, ∀κ ∈ Nm

0 :
R(σ)CAκ = CR(A1, . . . ,Am)Aκ = 0. Consequently,
Yss is a linear subspace of YGCH , more precisely: ∃V ∈
Cn×n : ∀κ ∈ Nm

0 : [aκ
1 · · · aκ

n ]V = CAκ . Now,
V is of rank n and thus invertible, because Γ is of rank
n and ∀l : Γl,: = [aκl

1 · · · aκl
n ]V . This implies that

∀κ ∈ Nm
0 : [aκ

1 · · · aκ
n ] = CAκV −1, such that YGCH

is a linear subspace7 of Yss, and thus YGCH = Yss.

IV. CLOSED-FORM EXPRESSION

In this section, we derive an explicit expression for the
GCH polynomials µα(λ) in terms of their given set of
roots. The construction of a specific equation µα can then
be viewed as a combinatorial problem, which will first be
outlined using the Example IV.1, Afterwards, we derive a
general formulation in similar fashion. For an easier exposi-
tion, we first introduce the function count(k, j) : Nn

0 ×N →
N0; (k, j) 7→ #{i ∈ {1, . . . , n}| ki = j}, which counts the
number of occurrences of j in the n-tuple k.

Now, let ai,k denote the kth entry of ai, then by (3) and
(4), it holds that:∑

α∈An

µα(λ) · cα =

n∏
i=1

(
m∑

k=1

ck(λk − ai,k)

)
. (7)

7Note that V −1 essentially transforms the state-space outputs into the
outputs of a model defined by the diagonal matrices diag(Ak), implying
that a similarity transform exists that jointly diagonalizes the matrices Ak .

Example IV.1. Consider the GCH polynomials constructed
from the matrices A1 = diag(1, 2, 3) and A2 = diag(3, 2, 1),
such that a1 = [1 3]

T
,a2 = [2 2]

T and a3 = [3 1]
T and

c = [c1 c2]
T. To keep the exposition brief, we focus on

building the single polynomial µ(2,1), i.e., for α = (2, 1).
For notational conciseness, denote di,k = (λk − ai,k) and
expand the right-hand side of (7):

(c1d1,1 + c2d1,2)(c1d2,1 + c2d2,2)(c1d3,1 + c2d3,2). (8)

This expression can be expanded into eight individual terms,
each corresponding to one of the four third-degree monomi-
als in c. To construct µ(2,1), we filter out the terms associated
with c(2,1) = c22c1, as stated in the construction procedure
in Theorem II.1, resulting in:

µ(2,1) = d1,1d2,1d3,2︸ ︷︷ ︸
(1,1,2)

+ d1,1d2,2d3,1︸ ︷︷ ︸
(1,2,1)

+ d1,2d2,1d3,1︸ ︷︷ ︸
(2,1,1)

. (9)

The (1, 1, 2)-term in (9) then corresponds to selecting the
first term in the first factor of (8), the first term in the second
factor and the second term in the third factor, as encoded by
the tuple (1, 1, 2). The selection pattern is similarly encoded
for the other terms. Notice that for each tuple k associated
with a term in (9), it holds that count(k, 1) = 2 and
count(k, 2) = 1, ensuring the product involves a factor c(2,1).

Now, we further expand each of these terms. Let us focus
on the (1, 1, 2)-term. Filling in di,k = (λk − ai,k) results in:

d1,1d2,1d3,2 = (λ1 − 1)(λ1 − 2)(λ2 − 1). (10)

To further expand this in terms of monomials in (λ1, λ2), one
has to choose between the constant or the λk-term in each of
these three factors. We focus on the λk terms first. Notice that
λ1 can achieve any exponent β1 ∈ {0, 1, 2} and, similarly,
λ2 can achieve any exponent β2 ∈ {0, 1} in the terms of the
expansion of Equation (10). In short, β = (β1, β2) ≤ α =
(2, 1), where ≤ denotes elementwise comparison. A Similar
observation holds for the other selections patterns.

The latter observation shows which (λ1, λ2)-monomials
occur in µ(2,1). As such, we now consider a specific
monomial, for instance, λ(1,1), and attempt to construct its
coefficient. Note that, by the full expansion of Equations (8),
(7), this monomial can only be obtained through a factor
of the form c(1,1)λ(1,1), which still needs to be multiplied
by a factor involving c1 to arrive at the required factor
c(2,1). Since we fixed the monomial λ(1,1), we can only
choose factors of the form −ckai,k to achieve this. As such,
disregarding the λk-part of di,k, we can inspect eligible parts
of the individual factors of (8):

(−c1 − 3c2), (−2c1 − 2c2), (−3c1 − c2) (11)

Clearly, to achieve the goal of multiplying by c1, we can
select the first term in either the first, second or third factor,
selection patterns that can be encoded as (1, 0, 0), (0, 1, 0)
and (0, 0, 1), respectively. Notice that for these selections
k : count(k, 1) = 1 and k : count(k, 2) = 0. Summing over
all these contributions to the coefficient of λ(1,1) then yields:
−1− 2− 3 = −6. However, fully expanding (9) results in:



µ(2,1) = −26 + 26λ1 + 11λ2 − 6λ2
1 − 12λ1λ2 + 3λ2

1λ2

The missing factor two results from the different permuta-
tions by which the monomial λ(1,1) can be obtained. For
example: selecting the term −c1 corresponds to the selection
pattern (1, 0, 0) in (11). For this pattern, one can either select
c1λ1 as the second factor and c2λ2 as the third, or vice versa,
as both choices result in a monomial c(2,1) when multiplied
by −c1.

We now derive an expression for the general case. Using
distributivity, Equation (7) can be expanded into mn terms
of the form

∏n
i cki

(λki
− ai,ki

) for some selection of k-
indices: (k1, . . . , kn) ∈ Nn and ki ≤ m. To arrive at a
specific monomial cα in this expansion, one has to make
a selection such that: for every j = 1, . . . ,m, the jth term is
chosen precisely αj times over all the n factors. This set of
α-compatible can thus be formally described as Sn

α = {k ∈
Nn

0 | ki ≤ m,∀j ∈ {1, . . . ,m} : count(k, j) = αj}.
A term corresponding to some α-compatible selection can

then be expanded further by choosing between the ckλk

and −ckai,k terms in each of the n factors. First, we focus
on the former type of terms. Observe that the products of
subselections of the ckλk-type terms lead to contributions of
the form f(a1, ...,an)c

βλβ for any β ∈ Nm
0 and β ≤ α.

Now, given that a factor cβλβ has been obtained through
some subselection of terms, it is clear that a factor cα−β is
still required to arrive at the monomial cα. Any (α − β)-
compatible subselection of n − ∥α− β∥1 factors −ckai,k
provides the required factor cα−β. Such a selection can be
encoded by a tuple k ∈ Sn

α−β, in which a zero entry ki
indicates selection of a ckλk-type factor at position i.

Finally, note that there are multiple subselections by which
β can be formed. To account for this, one has to count the
number of β-compatible selections out of ∥β∥1 positions,
i.e., #S

∥β∥1

β . To do so, first consider the number of selections
of β1 positions out of ∥β∥1, i.e.,

(∑
s≥1 βs

β1

)
; next, consider

the number of selections of β2 positions out of ∥β∥1 − β1,
i.e.,

(∑m
s≥2 βs

β2

)
, and so on. Taking the product then results in

a total of
∏m

j=1

(∑m
s≥j βs

βj

)
possibilities.

Combining all the observations above then leads to the
following formula in terms of the parameters for the equation
associated with multi-index α:
µα(λ) =∑
0≤β≤α

m∏
j=1

(∑m
s≥j βs

βj

)
λβ

∑
k∈Sα−β

(−1)∥α−β∥1

n∏
i:ki ̸=0

ai,ki
.

To construct the set Sn
α−β, first construct all selections of

(α − β)1 out of n positions and assign ‘1’ to the selected
positions; then, combine this with all possible selections of
(α− β)2 out of the remaining n− (α− β)1 positions and
assign ‘2’; and so on.

V. CONCLUSION AND FUTURE WORK

It was shown that the Generalized Cayley-Hamilton The-
orem of [13] can be used to construct a difference equation
representation of a given state-space representation of a

single-output, mD, linear, shift-invariant, causal, autonomous
system with simple eigentuples. Additionally, the proposed
methodology allows for the parameterization of a difference
equation representation in terms of a general, finite set of
n affine eigentuples of multiplicity precisely one — or
equivalently, the parameterization of a set of multivariate
polynomial equations in terms of its n solutions with multi-
plicity one. This generality distinguishes it from the existing
approaches in the literature [5], [6], which make a choice
of initial states that depends on the precise eigentuples at
hand, leading to discontinuities for parameterizations when
considering these tuples as model parameters [7]. Addition-
ally, we derived a closed-form expression for the resulting
set of equations, expanding each equation in terms of its
monomials and the corresponding coefficients.

Since general systems of multivariate polynomials can
have both so-called solutions at infinity in projective space
and solutions with some multiplicity structure [4], we aim to
extend the presented methodology to deal with these more
general cases in future work. Additionally, we hope to extend
this approach to multiple-output systems and systems with
inputs. Furthermore, we aim to apply this parameterization
to the data-driven estimation of the difference equations [8],
[19], To this end, it is imperative that we investigate the
numerical accuracy and scalability of this approach.
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