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Abstract

Inpatient length of stay (LoS) is an important managerial metric which if known in advance can be used
to efficiently plan admissions, allocate resources and improve care. Using historical patient data and
machine learning techniques, LoS prediction models can be developed. Ethically, these models can not
be used for patient discharge in lieu of unit heads but are of utmost necessity for hospital management
systems in charge of effective hospital planning. Therefore, the design of the prediction system should be
adapted to work in a true hospital setting. In this study, we predict early hospital LoS at the granular
level of admission units by applying domain adaptation to leverage information learned from a potential
source domain. Time-varying data from 110,079 and 60,492 patient stays to 8 and 9 intensive care units
were respectively extracted from eICU-CRD and MIMIC-IV. These were fed into a Long-Short Term
Memory and a Fully connected network to train a source domain model, the weights of which were
transferred either partially or fully to initiate training in target domains. Shapley Additive exPlanations
(SHAP) algorithms were used to study the effect of weight transfer on model explanability. Compared
to the benchmark, the proposed weight transfer model showed statistically significant gains in prediction
accuracy (between 1% and 5%) as well as computation time (up to 2hrs) for some target domains. The
proposed method thus provides an adapted clinical decision support system for hospital management that
can ease processes of data access via ethical committee, computation infrastructures and time.
Keywords— Length of Stay; Time-Series Prediction; Domain Adaptation; Long-Short Term Memory;
SHAP feature explanability

1 Introduction

Monitoring patients’ health condition or recovery trajectory as soon as they are admitted to the hospital or
to a critical life-saving unit such as the intensive care unit (ICU) is important to determine and anticipate
their needs throughout their entire stay. Patients could transit from a stable to an acutely ill state while
under treatment, requiring immediate assistance leading to a prolonged stay. By continuously feeding Al-
powered data-driven models, including deep learning methods, with continuously charted patient data (labs,
vital signs, medications, prescriptions, etc.), researchers have been able to predict patients’ risk of mortality
[1-5], risk of extended length of hospital stay (LoS) [6, 7], remaining time in ICU [2, 5, 8-10], hours or
days ahead of effective discharge or death. Predictions of LoS or remaining time in ICU would then enable
hospital management systems to efficiently allocate both human and logistic resources [2, 11, 12], reassure
family members and more importantly improve patient care and satisfaction [1, 13]. LoS, defined as the
duration of inpatient stay from admission to discharge in a single care episode [14], is a tool used to assess
the efficiency and effectiveness of hospital management systems. LoS predictions for each individual patient
within the hospital at time ¢ would enable timely capacity planning and management. With the large
volumes of data being generated by patients during their hospital stay, accurate, robust and generalizable
LoS prediction models can be developed. Robustness being accounted for by the heterogeneous nature of the
patient population within an entire hospital.

However, the heterogeneity in the patient population that is reflected in the data, for e.g., the difference in
the length and density of data points between ICU and non-ICU patients as mentioned in [15], or in varying
frequencies of recording of the same parameters across different units [16], different age or disease groups,
poses a number of challenges. One of which is the risk of affecting the overall model accuracy especially
when the underlying distribution in each sub-population is different. In order to handle this diversity in
patient populations, several authors have restricted their work on specific patient sub-populations delineated
by age groups [17, 18], diagnostics [19] or medical units [20, 21]. In the work presented in [16], the authors
highlighted this difference in patient behaviors by identifying that PCO2 was more frequently measured

in cardiac ICU while Troponin T more frequently in coronary ICU. More specifically, regarding patient



heterogeneity and clinical outcome prediction, [22] first clustered ICU patients to obtain more homogeneous
groups (clusters) onto which a multitask model was learned for mortality prediction. Multitask learning,
much related to transfer learning (TL) [23] was used to simultaneously train and share learned parameters
for mortality risk predictions for all clusters. Similarly, by considering four ICU sub-populations as different
domains (either source or target), domain adaptation was applied in [16] for fine-tuning pre-trained weights
from a CNN-LSTM-FCN network for mortality risk predictions.

Domain adaptation is a subclass of TL in which a learned model from a source domain is transferred
to a target domain for the prediction of the same task, while accommodating to the difference in data
distributions across domains [23]. In the present work, domain adaptation is also applied, for LoS prediction.
In both [16] and [22], the authors acknowledged the specificities in patient populations for which individual
models were constructed using a mechanism (domain adaptation and multitask learning respectively) that
also allowed to simultaneously learn the existing similarities in these different populations with a net result in
prediction accuracy gains as well as computation time. In our work, the specificity of each patient population
is emphasized by not restricting the input spaces across all populations to be identical. More specifically,
by setting a threshold on the frequency of recording of patient parameters, most recorded features in each
population were kept for modelling. Domain adaptation was then applied to transfer pre-trained weights
from a source to a target domain, where these two domains could have non-identical input spaces. By so
doing, the transfer of pre-trained weights only happened for coinciding features between the two domains and
for non-coinciding features, random weights were used. As a means to understand this simultaneous training
of both pre-trained and random weights, an analysis was carried out by employing discriminative learning
[24] where different learning rates were assigned to the two sets of features (coinciding and non-coinciding).

In the present work, we employ domain adaptation by transferring knowledge learned from one medical
unit or population (source domain) unto others (target domains). Benefits of this approach when transposed
to a real hospital environment are multifold because it can help overcome technical challenges related to data
modelling and accuracy as well as managerial challenges related to data access and ethical approvals from
a hospital. On the technical side, the storage, manipulation, curation, pre-processing and modelling of all
patients’ data of an entire hospital might stand as a big computing resource challenge in terms of memory
capacity and computation time. The latter which might even be more problematic for a real time LoS
prediction setup. On the managerial side, obtaining ethical approval for accessing a portion or a unit-level
hospital data with addendum for a single unit at a time can be easier and more importantly, faster than
requesting one for all patients in the entire hospital. Moreover, given that most hospitals (e.g. in Europe)
have been incentivized to work in a very decentralized manner [25], i.e. allowing decision making at the local
hospital unit levels, launching projects like LoS predictions at a unit (smaller) level by the unit head can be
more effective and faster than from the hospital top management.

The key contributions of this work are as follows;

e We apply domain adaptation from a source to target domains for LoS predictions for ICU patients

using first 24h of data and obtain significant gains in both prediction accuracy and computation time.

e By using a second dataset with four potential source domains, we investigate and gain insights into the

choice of a suitable source domain for weights initialization on the target domains.

e We perform further analysis to understand the relevance and gains of domain adaptation including;
discriminative learning to understand the effect of simultaneously training pre-trained and random
weights on model accuracy and computation time, the effect of weight transfer on feature importance
on the target domains, the transfer of the full model and the use of source domain hyperparameters on

all target domains.



The remainder of this work is organized as follows; Section 2 describes the datasets, the model architecture
including domain adaptation, expected gradients method and evaluation metrics. Section 3.2 covers all results
including additional analyses carried out followed by a discussion on these results in Section 4. Finally, in

Section 5, the work is concluded, limitations are discussed and the direction for future work is provided.

2 Materials and Methods

This section discusses the datasets used with descriptive statistics of each ICU unit, the prediction task
and the proposed modelling strategies for domain adaptation via weight transfer with and without applying

discriminative learning.

2.1 Datasets

The multi-centre eICU collaborative research database (eICU-CRD) [26] and uni-centre MIMIC-IV [27, 28]
database were used. By modifying the pipeline by [2], we selected and pre-processed the first 24 hours of
data into ICU. In eICU-CRD, data from 91,277 unique patients corresponding to 110,079 stays admitted to 8
ICU units; Medical Surgical (Med-Surg ICU), Coronary care - cardio-thoracic ICU (CCU-CTICU), Medical
ICU (MICU), Neurological ICU (NICU), Cardiac ICU (CICU), Surgical ICU (SICU), Cardio-thoracic ICU
(CTICU) and Cardio-surgical ICU (CSICU) was extracted. Similarly, data from 44,245 unique patients and
60,492 ICU stays admitted to 9 ICU units; Medical ICU (MICU), Medical Surgical (Med-Surg ICU), Cardiac
Vascular ICU (CVICU), Surgical ICU (SICU), Trauma ICU (TICU), Coronary care ICU (CCU), Neuro
surgical ICU (Neuro SICU), Neuro intermediate (NT), Neuro stepdown (NS) was extracted from MIMIC-IV.
After hourly sampling extracted data using the mean, features were only kept for modelling if at least 2
unique recordings over 24h were present for at least 30% of the patients.!. Missing values were then imputed

by first forward filling and then backward filling the most recent value for each patient, as in [29, 30].

Table 1: Baseline Characteristics per ICU unit in elCU-CRD. Total No. features = (No.Inputs x 2)+1 2

ICU unit No. ICU No.Inputs Mean(LoS) Std(LoS)  Median(Age) Gender
stays (% Male)
Med-Surg ICU 58,335 25 7.55 6.88 66 52.9
MICU 10,128 24 9.24 8.65 65 52.1
CCU-CTICU 9,950 27 7.24 6.78 67 59.0
NICU 8,777 25 8.26 8.04 63 51.9
CICU 7,744 25 7.87 7.61 65 50.4
SICU 7,684 26 9.45 8.47 65 57.5
CTICU 4,286 33 8.79 7.58 66 62.5
CSICU 3,175 35 7.32 6.39 69 59.8
All stays 110,079 26 7.93 7.36 65 54.3

Isee Appendix A for details on feature extraction

2The input space was augmented with binary indicators of the same size as the original input space to indicate imputed and
newly recorded parameter values following [31]. A variable hour indicating the time of the day at which a record was done was
also added.



Table 2: Baseline Characteristics per ICU unit in MIMIC-IV. Total No. features = (No.Inputs x 2)+1

ICU unit No. ICU  No.Inputs Mean(LoS) Std(LoS)  Median(Age) Gender
stays (% Male)
MICU 12,378 29 9.88 8.99 65 544
CVICU 11,070 38 8.05 7.03 69 67.4
Med-Surg ICU 10,152 23 9.93 9.41 66 51.3
SICU 9,262 28 10.82 9.94 64 53.5
TSICU 6,992 35 7.87 7.61 64 57.6
CCU 6,881 24 8.36 7.72 72 57.1
Neuro SICU 1,646 28 11.71 10.75 67 50.6
NI 1,491 20 7.15 7.67 68 50.6
NS 620 20 7.53 7.46 68 52.6
All stays 60,492 33 9.69 9.02 67 56.5

2.2 Prediction task

In this study, we predict the time lapse between ICU admission and hospital discharge using the first 24h of
data into ICU. Selected admissions in both datasets are such that they have spent at least 24h in ICU to

prevent data leakage. Datasets were split into train, validation and test sets following the 70:15:15 ratio.

2.3 Model architecture

The model architecture used consists of an LSTM layer followed by a fully connected layer (FCN) to handle

the temporal dimension in the data and output the LoS prediction (in fractional days) respectively.

2.3.1 Long-Short Term Memory neural network (LSTM)

previous states forget gate input gate output gate

cell state

Input

Figure 1: LSTM architecture with forget gate [32]

LSTM networks [33] belong to the family of RNNs [34-37] used to model and learn long-term dependencies
from sequential data. The structure used in this work is given in Figure 1. At the core of RNNs like LSTM



is the recurrent cell with its memory cell state ¢; that holds previous states and current input information.

The recurrent cell of the LSTM in Figure 1 is given by;

& = g (Wanhi—1 + Wezzy + bz)
et = fr-c—1 4+ G (1)
he = ot - g(ct),

where h; is the hidden state at a discrete time ¢ (here, ¢ = 1 hour), W, are weight parameters from layers a
to b, - is the element-wise product and g(), a non-linear activation function applied to the results of matrix
operations. Here, g() was taken as the rectified linear Unit (ReLU) [38];

ReLU(z) = maz(0,z). (2)

The gate functions f;,0; and i; control the amount of information flow via a sigmoid (logistic) activation

function. These gates are respectively the forget, the output and the input and are defined as;

iy = 0 (Winhi—1 + Wizze + b;)
fe =0 Wnhi—1 + Wyzae + by) (3)
0t =0 (Wohht—l + Womxt + bo) .

For implementation, we used the open source deep learning (DL) library, Keras [39] with Tensorflow [40] as
back-end. In Keras, the weights Wy, are distributed in the kernel, the recurrent kernel and the bias term of
the LSTM layer. The kernel stores all weights multiplied by the inputs z;, i.e., Wy = {Waz,, Wis, Wia, Wou }s
the recurrent kernel, those multiplied by the hidden state h;_1, i.e., Wy, = {Wap, Win, Wyn, Wop } and the
bias stores all bias terms, i.e., b = {bs, b;, by, b, }. Therefore, the kernel weight matrix is of shape (np x 4H),
where np is the input dimension of the domain D (source or target) and H, the number of hidden units of
the LSTM layer. The recurrent weight matrix is of shape (H x 4H ) and the bias is a vector of shape (4H x 1).
From equations (1) and (3), it follows that the model generates a prediction at each time-step ¢ given by
hi. This structure sometimes referred to as a many-to-many LSTM architecture was not used in this work,

rather the many-to-one structure, in order to get only the prediction at the last time-step (¢ = 24h).

2.3.2 Fully connected network (FCN)

Given the last hidden state h; from the LSTM layer, the final LoS prediction was computed as;

Ut = g Wy, he +by,) (4)

with ¢ again taken as the ReLU to output positive predictions. This fully connected layer contains only one

unit to perform LoS regression and output a unique value for LoS.

2.4 Domain adaptation
2.4.1 Domain adaptation via weight transfer

The literature has shown that the use of pre-trained weights can be more beneficial than using random initial
weights, sometimes, regardless of the difference in prediction tasks [41] and even from one related dataset
to another [42, 43]. The net benefit of fine-tuning these pre-trained weights on the target domain is often

computation time for hyperparameters optimization and model training [44].



Given the input space X extracted from the database, the model inputs X are obtained by augmenting this

input matrix with a matrix of binary indicators X such that, X = concat(X; X) where,

% 0,if Xis recorded
1,if Xis imputed,

following [31].

Following feature extraction in section 2.1, the input matrix X can differ both in the number of features
and/or the features themselves (see, Tables 1 and 2 and Appendix A) between units. Thus given a source
(S) and a target (T'), we have;

XS C XT (6&)
XS §Z X7 or X §Z XS (Gb)
Xsg=Xr or X7 C Xg (6C)

In the case of (6a) and (6b), only partial weight transfer from the source to the target can occur for coinciding
features between the two domains. In case (6¢), where all inputs in T are found in S, total weight transfer

occurs. The proposed architecture is given in Figure 2.

Source domain (.5) Target domain (7'

learned weights on S pre-tained and
random weights on T'

Figure 2: Proposed architecture: Domain adaptation via weight transfer from the source domain to the target
domains. I, In,, Hyg, Og, Or are respectively, the source inputs, target inputs, source hidden unit, source
output and target output and ng # nr. Black dots are weights of coinciding features and orange diamonds
are random weights for non-coinciding features.

The pseudo algorithm used for assigning pre-trained weights (either partially or totally) from the source to
the target is given in Algorithm 1. After initializing the LSTM model for each T, model weights are set using
the fully trained model from S and/or random kernel weights following Algorithm 1, recurrent kernel and
bias weights from S, i.e., [W,r, Whg, bg].

2.4.2 Domain Adaptation via weight transfer and discriminative learning

During TL, all hyperparameters from S except the batch size are transferred, i.e., the learning rate, the

dropout rate and the number of hidden units from S are all transferred to 7. Our intuition here is that



Algorithm 1 Weight Transfer from Source domain S to Target domain T’

Inputs: Given:
Target inputs of size mp x 24 x ny: X1 = {214, ...,ant}, t=1,..,24
Source inputs of size mg x 24 X ng: Xg = {14, ...,xnst}, t=1,..,24
W,s= load source model kernel weights of size Ng x 4H
Output: Target kernel weight matrix W, of size Ny x 4H
Initialization of weight matrix Wy using Glorot uniform distribution [45]
for x € X1 do
target_index = X[z
if z € Xg then
W,r[target_index] = W, g[source_index]
else
WzT[x} = WzT[x}
end if
end for

during training, coinciding features between T and S that receive fully trained weights are overfitting whilst
the random weights of non-coinciding features are still learning. To study this, discriminative fine-tuning was
applied, (see Figure 3), s.t., different learning rates (Ir) are assigned to the two groups of inputs (layers) and

optimized using a multi-optimizer [24, 46].

Irs if X X
oy — 17 [ Xré¢Xs )
alrg if Xg=Xr

The learning rate from S is transferred to the non-coinciding features (features in 7' not in S) while it is

reduced by a power of « for coinciding features.

input: | [(None, 24, 49)]
output: | [(None, 24, 49)]

] input: | [(None, 24, 22)]
input_nc: InputLayer

input_c: InputLayer
put_c: InputLay output: | [(None, 24, 22)]

- input: | (None, 24, 49)
mask_c: Masking
output: | (None, 24, 49)

input: | (None, 24, 22)

mask_nc: Masking

output: | (None, 24, 22)

I

input: | (None, 24, 49) input: | (None, 24, 22)
Istm_c: LSTM Istm_nc: LSTM
output: (None, 64) output: (None, 64)
| input: | [(None, 64), (None, 64)] |
concat: Ci
[ output: | (None, 128) |
input: None, 128
LoS: Dense P ( )
output: | (None, 1)

Figure 3: Transfer learning model with different learning rates assigned to layers Istm_c (layer with coinciding
features) and Istm_nc (layer with non-coinciding features) for CSICU in eICU dataset

2.5 Interpretability using Expected gradients:

Expected gradients (EG) method [47] were used in order to unlock the black-box nature of our LSTM models
and appreciate the effect of weights transfer on overall feature importance. The gradient explainer of the

SHAP software package ® was used. Ample details on the method can be found in [47].

Shttps://github.com/slundberg/shap
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2.6 Evaluation metrics:

Model training was carried out using the mean squared log error (MSLE) to take into account the skewness

in the outcome and model performance reported using the following metrics,

1 & 1 &y — 9 1 &
MAE = — i — Ui|, MAPE = — 22N MSE = — i — i),
nD;\y il - ; " nD;(y i)

where np is the number of stays in each domain.

3 Results

This section discusses all numerical results without and upon applying weights transfer, including some further
analyses such as no hyperparameter optimization on target domains, full model transfer and discriminative

learning.

3.1 Hyperparameter Optimization

Training and model optimization were done following a systematic procedure (see Appendix B.1) by carefully
monitoring both the generalization error (error on test set) and the loss curves in Figures 4 and 5. The batch
size, the dropout, the number of hidden layers (No.layers), the number of hidden units (No.units) and the
learning rate (Ir) were all model hyperparameters obtained via Bayesian optimization [48, 49] and are shown

in Tables 3 and 4. The Adam optimizer was used.

3.1.1 eICU-CRD data

Table 3: Hyperparamters results on eICU. S: source domain and T: target domain.

ICU data batch size No.layers No.units Ir dropout domain type
Med-Surg ICU 512 1 64 le-3 0.1 S
MICU 128 1 32 8.99e-4 0.1 T
CCU-CTICU 128 1 16 1.129e-3 0.2 T
NICU 128 1 16 le-3 0.2 T
CICU 32 1 64 le-3 0.2 T
SICU 64 1 32 8.99e-4 0.2 T
CTICU 64 1 16 le-3 0.2 T
CSICU 64 1 64 le-4 0 T
All stays 512 1 64 0 1.129e-3
Med Surg_ICU loss curves. Early stopping at 23 epoche CTICU loss curves. Early stopping at 16 epochs MICU loss curves. Early stopping at 21 epochs
: - : - i -
(a) Med-Surg ICU (b) CTICU (c) MICU

Figure 4: Training and Validation curves obtained after model optimization on some eICU-CRD units.



3.1.2 MIMIC-IV data

Table 4: Hyperparamters results on MIMIC-IV. S: source domain and T: target domain.

ICU data batch size No.layers No.units Ir dropout domain type
MICU 128 1 32 7.142e-4 0.3 SorT
CVICU 128 1 64 5.46e-3 0.3 SorT

Med-Surg ICU 128 1 64 8.99e-4 0.2 SorT
SICU 128 1 64 4.833e-4 0.2 SorT
TSICU 64 1 64 le-2 0.3 T
CCU 64 1 16 le-2 0.1 T
Neuro SICU 16 1 8 6.952e-4 0.2 T
NI 16 1 16 4.833e-4 0.2 T
NS 8 1 16 1.624e-4 0.1 T
All stays 512 1 64 0.1 1.438e-3
All_patients loss curves. Early stopping at 16 epochs Med_Surg_ICU loss curves. Early stopping at 11 epochs TSICU loss curves. Early stopping at 17 epochs
022 - vaal:zat\on ;: - \T/::zation z:; - c—aal‘ization
- . - N
— T s N
(a) All patients data (b) Med-Surg ICU (c¢) TSICU

Figure 5: Training and Validation curves obtained after model optimization on some MIMIC-IV units.

3.2 Baseline and weight transfer models

The performance of the weight transfer model was compared to that of the baseline model, where individual
models were constructed for each unit using the hyperparameters obtained from optimization and listed
in Tables 3 and 4. Also, for comparisons with the common practice in the literature, a model was ran
where all units are considered as a single homogeneous entity and their data learned together in a single “all

)

stay” model. For the weight transfer model, all hyperparameters except the batch size from the source are
transferred to the targets. All models were ran 100 times by shuffling the data to obtain a distribution of
the prediction error on the test set. 95% confidence intervals were estimated by calculating the 2.5th and
97.5th percentiles of the prediction error on the test set. Pairwise t-test in population means between “all
stay” model and each population model in Tables 5 and 6 are indicated with stars (* p< 0.05, **p< 0.001).
The red stars on boxplot figures indicate instances where the model stagnates, i.e., doesn’t learn and stops

after a few epochs due to the early stopping condition (that prevents overfitting).

3.2.1 eICU-CRD data

Table 5 shows that feeding the model with all ICU stays data for LoS predictions irrespective of their admission
units can sometimes overestimate the error in a unit. Looking at the most interpretable error measure, that
is, MAE (reported in fractional days), we see that the error of the “all stay” model significantly over estimates
that of Med-Surg ICU, CCU-CTICU, CICU and CSICU by 3.9, 6.35, 1 and 8.69 hours respectively.

10



Table 5: eICU-CRD: Baseline models for each unit and “all stay model”: error estimates on test set with
95% confidence intervals: All stays data fitted in one model and one model per ICU domain (individuals

models are learned and trained on each ICU domain).

ICU unit MAE MAPE MSE

Med-Surg ICU 4.0311(4.0183-4.0559)**  0.6909(0.6614-0.7111)**  45.2873(44.8557-46.2811)**
MICU 5.3410(5.3158-5.4591)**  0.7722(0.7692-0.8431)**  80.4968(77.6054-82.2602)**
CCU-CTICU 3.9303(3.8816-4.0206)**  0.6497(0.6532-0.7227)**  49.6607(47.1492-50.0401)**
NICU 5.1263(5.0596-5.2009)**  0.8481(0.7985-0.8689)**  68.9331(67.0461-70.8095)**
CICU 4.1531(4.1224-4.2743)**  0.7305(0.6959-0.8269)**  48.8806(46.7863-50.0562)**
SICU 5.2859(5.2696-5.2966)**  0.6854(0.6463-0.7260)**  78.4585(77.5238-83.1262)**
CTICU 4.5133(4.3767-4.5937)**  0.5555(0.5179-0.5918)**  59.7552(55.8821-60.9689)**
CSICU 3.8328(3.8235-4.0838)**  0.6930(0.6703-0.7971)**  41.4605(41.4058-47.2725)**
All stays 4.1948(4.1851-4.2203) 0.6786(0.6568-0.7030) 50.3304(49.9702-51.4429)

Figure 6 shows the effect of using pre-trained weights from S as initial weights for coinciding features and
assigning all hyperparameters (except the batch size) from S to T. In Figure 6(a), we see that model
convergence always occurs significantly faster even when a good number of the features in 7" are not in S, as
it is the case for CSICU and CTICU. Figure 6(b) shows that for most of the units, specifically, CCU-CTICU,
MICU, NICU, CICU and CTICU, weight transfer significantly improves prediction accuracy.

0 [0 Optimized model on sub-ICU unit 550 [Z=0 Optimized model on sub-ICU unit
3 B Weights Transfer model % é BN Weights Transfer model

5.25

o 30 . =

2 %

] 5.00
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&2 ’ 2 450

2 " .

Z I

815 - ' ! 425 % ;
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' ' ' ' ' | '
SICU  CCU_CTICU* MICU** NICU** cicu* cTicu* csicu

Target Domains(T)
. , , 7 \ , .
51002 51014 47042 4744 47)4]4 510116  49)2[22
Total No. Coinciding features| Features in S not in T| Features in T not in S

' ' ' ' ' | |
SICU™ CCU_CTICU** MICU™ NICU** clcu*  CTICU*  CsICu™

Target Domains(T)
. . . ? , , .
51002 510014 47142 47|44 47]44  51[0/16  49)2]22
Total No. Coinciding features| Features in S not in T| Features in T not in S

(a) Number of epochs to reach convergence. (b) Mean absolute error in days on test set

Figure 6: Distribution of number of epochs and error measures on Test set with (blue) and without (lemon
green) transfer learning on eICU. Statistically significance per unit performed using a t-test (* p< 0.05,
*%

p< 0.001).

3.2.2 MIMIC-IV data

The observation drawn from Table 5 holds for MIMIC-IV data in Table 6, where the “all stay” model does
not always perform significantly better than unit models as seen for CVICU, CCU and NI. For these units,
the “all stay” model MAE error over estimates the MAE error by 1.79, 0.57 and 1.15 days respectively.
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Table 6: MIMIC-IV: Baseline models for each unit and “all stay” model: error estimates on test set with

95% confidence intervals: All stays data fitted in one model and one model per ICU domain.

ICU unit MAE MAPE MSE

Med-Surg ICU  5.6835(5.5664-5.7218)**  0.8407(0.7480-0.8633)**  91.4511(88.7403-94.8977)**

MICU 5.1596(5.0864-5.2703) 0.7046(0.6942-0.7968)**  68.3557(65.0615-69.3762)**

CVICU 3.3207(3.2265-5.9338)**  0.4041(0.3746-0.7682)**  42.7216(40.8025-78.0702)**

SICU 5.8401(5.8017-5.9516)**  0.6782(0.6808-0.7909)**  92.8705(87.6492-93.3682)**

TSICU 6.4758(6.3811-6.5416) 0.7936(0.6962-0.8180) 102.7655(98.9423-108.4076)

CCU 4.5474(4.4818-4.6177)%*  0.7174(0.6637-0.7590)**  62.6330(61.2112-64.7852)**

Neuro SICU 7.2245(7.1893-8.1933)**  0.9108(0.8435-1.0569)**  141.0862(132.4134-
220.3568)**

NI 3.9619(3.9564-4.2511)%*  0.6184(0.6421-0.7700)**  50.7301(48.9124-55.6811)**

NS 5.5758(5.0034-5.7128)**  0.8699(0.6902-0.9102)**  94.2374(83.9943-
102.3467)**

All stays 5.1140(5.0508-5.1424) 0.6687(0.6125-0.6781) 73.8215(73.0283-76.9459)
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Figure 7: Distribution of number of epochs to reach convergence with (blue) and without (lemon green)
transfer learning on MIMIC-IV with Med-Surg ICU, MICU, SICU and CVICU as potential source domains.
Statistically significance per unit performed using a t-test (* p< 0.05, **p< 0.001).

Looking at the four potential source domains on Figures 7 and 8, low populated ICUs like Neuro-SICU,
NI and NS experience the highest gains with all source domains. As target domain, Med-Surg ICU gives the
overall best improvement either in computation time, prediction accuracy or even both (see Figures 7(a) and
8(a)). As target domain, CVICU is negatively impacted by weight transfer (Figures 7(d) and 8(d)).
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Figure 8: Distribution of MAE error on test set with (blue) and without (lemon green) transfer learning
on MIMIC-IV with Med-Surg ICU, MICU, SICU and CVICU as potential source domains. Statistically
significance per unit performed using a t-test (* p< 0.05, **p< 0.001).

3.3 Model Interpretability

Given a trained model and the 3D training data set (number of patients x number of time-steps x number
of inputs), 3D feature contributions for model prediction on the test set are obtained for each patient, at
each time-step and for each input. Overall feature importance is then plotted by averaging over the time
dimension and subsequently the patient dimension.

Patient features which can globally be split under charted parameters and labs are observed to be present

before and after applying weight transfer as seen in Figure 9, though the order is not conserved.

(a) CTICU patients (b) TSICU patients

Figure 9: Top 25 most important features on CTICU (from eICU) and TSICU (from MIMIC-IV) targets
before and after applying weight transfer
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3.4 Further Analyses

To further understand the benefits of domain adaptation, we conducted three further analyses using eICU-
CRD dataset. The first in which we do not optimize hyperparameters on each domain 7" and use those
found on S, as seen in Figure 10. This was performed in order to understand whether weight transfer gains
were due to poor hyperparameter optimization on each target unit. In the second analysis, non-coinciding
features between S and T were removed and complete model transfer (including pre-trained weights and
model optimizer state) was carried out. As final analysis, different learning rates were imposed on input

feature groups as explained in section 2.4.2 and Eq(7) with o = 1071

3.4.1 No hyperparameter optimization on target units

Here, hyperparameters on all lemon green boxplots are obtain from the trained source domain model.
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Figure 10: Number of epochs and error measures with (blue) and without (lemon green) transfer learning on
elCU-CRD where hyperparameters are fixed from source domain.

Figures 10(a) and 10(b) show that pre-trained weights do speed model convergence and improve prediction

accuracy even when both models (with and without weight transfer) have the same hyperparameters.

3.4.2 Full Model Transfer

Here non-coinciding features are removed from the target domains such that there is complete correspondence
of the feature space between the source and the targets. In this way, not only the weights are transferred
but also the model optimizer state. Only SICU, CCU-CTICU and CTICU qualify for this exercise as their
input space is a subset of the target, Med-Surg ICU.

Early stopping at epochs

=

sicur cméu sicu cnéu

stioe, stbire

stibite sio2
Total No. Coinciding features| F s

notin T| Features in T notin

(a) Epochs (b) Error on test set

Figure 11: Number of epochs and error measures when performing full model transfer. Tukey’s HSD test
is used for multiple comparisons[50]. Individual model (lemon green), weight transfer (blue) and full model
transfer - including weights and optimizer state (dark green).
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Figure 11 shows that if we had restricted the input space across all domains to be identical and continued
training the source domain model on the target domains input data, thereby transferring not only the weights
but also the optimizer state, model convergence would have occurred earlier than when transferring only the
weights with an improvement in prediction accuracy. However, this would not be possible for all units because

not all most recorded features in S are found in all targets 7'

3.4.3 Weight Transfer with different learning rates

Here, non-coinciding and coinciding features are trained simultaneously using different learning rates as

explained in Section 2.4.2 and Eq (7).

== Optimized model on sub-ICU unit [==1 Optimized model on sub-ICU unit
30 BN Weights transfer model 415 BN Weights transfer model
BN Different learning rates model T EEE Different learning rates model

0
20
3.95
.
.
. 3.90
3.85
10
3.80

csicu csicu
Target Dgmains(T) Target Damains(T)
40222 40222
Total No. Coinciding features| Features in S not in T| Features in T notin S Total No. Coinciding features| Features in S not in T| Features in T notin S

Test_MAE

Early stopping at epochs

(a) Epochs (b) Error on test set

Figure 12: Number of epochs and error measures on CSICU from eICU-CRD dataset after assigning different
learning rates to different features for transfer learning. Tukey’s HSD test is used for multiple comparisons
[50]. Individual model (lemon green), weight transfer (blue) and different learning rates (red).

Here it can be observed that indeed imposing discriminative learning produces a finer confidence interval
(Figure 12(b)) for the prediction error while requiring more training time compared to weight transfer but

still less than optimizing a full model (12(a)).

4 Discussion

The experiments in section 3.2 show that even partial weight transfer significantly improves prediction ac-
curacy in a shorter time for most of the target domains. Furthermore, overall model importance is not
affected.

4.1 Prediction error

Section 3.2 showed that considering the ICU populations as a single homogeneous entity greatly reduces
model utility by hospital management systems because each patient is assigned to a bed belonging to a
specific unit. Thus the information of the LoS prediction at a more granular level of the unit is important.
Moreover, tables 5 and 6 showed that an “all stay” prediction model is not always an optimal estimation
model for individuals groups. For e.g., CVICU patients in MIMIC-IV have a prediction error of 3.32 days,
which is 1.79 days less than the former model. In eICU-CRD (Figures 6(a) and 6(b)), benefits are visible
on populations such as CCU-CTICU (51,4), MICU (47,2) and CTICU (51,16) pairs of coinciding and non-
coinciding features. However we notice that with (49,22), the prediction error increases for CSICU patients.

Though the difference in the mean prediction error for SICU population is not statistically significant, we
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observe that weight transfer model produces more confident results with a finer boxplot.
In MIMIC-IV, the main gain as observed in Figure 7 is that finer boxplots are obtained after weight transfer.
For some targets, e.g., CVICU, a significant drop in prediction accuracy is observed in Figures 7(a), 7(b),
7(c) and 7(d). This could be associated to the fact that this unit has the highest number of input features.
Thus, as target, a considerable number of non-coinciding features receive random weights (30 in Med-Surg
ICU, 18 in MICU and 20 in SICU) that train alongside pre-trained weights.

The three further analyses carried out show that weight transfer has a significant positive impact on the

model convergence and in several cases on the prediction error with at least, more confident error estimates.

4.2 Computation time

On average, the CPU time measured using python timer for the systematic Bayesian optimization procedure
as explained in Appendix B.1 was 1 hour and 45 minutes (depending on the data size). Table 7 shows the
execution times for some ICU units. OPF,,: Optimized model on each ICU unit, WT,,: Weight transfer
model, F'T,,: Full model transfer.

Table 7: CPU time in hours for re-training all models 100 times in elCU-CRD data.
ICU units 100 xOP,, 100 xWT,, 100 xFT,,

NICU 2.24 1.40

MICU 2.99 1.95
CSICU 1.75 1.07

SICU 2.87 2.39 1.86

Given our resources (see headline of Appendix B) and the size of these units, a minimum of 1 hour was
saved on units like MICU, CSICU taking into account the time needed for hyperparameter optimization.
Optimization not done during TL since hyperparameters come from the source. Regarding MIMIC-IV data
on Table 8, over 2 hours are saved for target domain NS. As discussed before, weight transfer has a negative

impact on CVICU as a target domain requiring more computation time.

Table 8: CPU time in hours for re-training models 100 times in MIMIC-IV data

100 x OP,, on T}, 100 x WT,, with S;
NS Med-Surg ICU MICU SICU CVICU
3.63 1.66 1.78 1.85 1.59

Neuro-SICU Med-Surg ICU MICU SICU CVICU

3.44 2.32 2.26 2.21 2.60
NI Med-Surg ICU MICU SICU CVICU
2.75 2.11 2.23 2.28 2.29
CVICU Med-Surg ICU MICU SICU CVICU
1.75 1.99 2.18 2.10 /
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4.3 Insights into domain adaptation

This section intends to discuss first, the reasons why domain adaptation works even when only partial
information is transferred and secondly, the choice of the source domain.

Regarding eICU-CRD data (Figure 6), where the Med-Surg ICU unit is the only source domain, statistical
significant improvements both in terms of early convergence and prediction error on all target populations
except CSICU are observed. For CSICU, the error distribution appears to increase after partial weight
transfer which could be due to the highest number of non-coinciding features (22) that receive random
weights. As later shown in Figure 12, by assigning different learning rates, the error distribution is narrower
(Figure 12(b)).

In an attempt to investigate the effect of the choice of the source domain, MIMIC-IV data was used with
four potential source domains. Figures 7 and 8 show that contrary to elCU-CRD where the source domain
Med-Surg ICU occupies over 50% of the data, this same domain returns the overall best performance when
its weights are used to initiate training in the rest of the domains. Med-Surg ICU that contains both medical
and surgical patients, that is a diverse patient population, has the greater impact on the other populations
when used as source domain. In terms of similarity between populations, Figure 7(c¢) shows that the source
domain SICU has the greatest impact on the target TSICU. However, instances when TL works or not could
not all be explained. For e.g., in Figure 7(d), CVICU has a slightly negative though non-significant impact on
CCU. Though CVICU is a surgical unit type, and CCU a medical one, SICU which is also surgical appears
to have a significant positive impact on CCU (Figure 7(c)) with exactly the same 49 coinciding features.
Thus pre-trained weights of CVICU used for total weight transfer do not improve learning as much as those
of SICU.

4.4 Effects of domain adaptation on model interpretability

As shown in Figures 9(a) and 9(b), overall, the most important features which can be grouped under vital
signs and lab parameters for early prediction of LoS are not affected by weight transfer though with slight
changes in the order. Since the same groups of features appear as important before and after performing

weight transfer.

4.5 True hospital setting

Though our work was not tested in a true hospital setting due to inability to access hospital data, we believe
that transposing this to a true hospital setting where measures like the LILRANK [51] can be used to group
or cluster departments based on their mode of functioning and other factors, our method can be applied at
low cost within these clusters. Here the source can be chosen as a diverse population within the cluster and
its weights used to initiate training to targets of the same cluster. This method can be of great benefit also
for units with very small data sizes where their data will serve for fine-tuning pre-trained models rather than

training a model from scratch.

5 Conclusions and Limitations

In this work, domain adaptation is exploited to reuse knowledge learned from a source unto target domains
by transferring learned weights from the trained source model. By not restricting the input space such that
it is identical across all units, we allow both shared and unit-specific information to be disseminated in the
targets by fine-tuning both pre-trained (from the source) and random (unit-specific) weights. This resulted

in statistically significant improvements in computation time as well as prediction accuracy for most of the

17



targets. However, we noticed that weight transfer was not always beneficial, especially when the target
had a high number of non-coinciding features that receive random weights. By implementing discriminative
learning and assigning different learning rates to the two feature groups (coinciding and non-coinciding),
an improvement in the prediction error was noticed. In terms of feature importance, it appeared that the
proposed approach maintains the overall importance by keeping the majority of important features though it
displaces the order. Insights into this work showed that significant improvements in both prediction accuracy
and computation time are observed when the source domain consists of a diverse population.

This work has a number of limitations. First, we couldn’t fully understand all instances where weight
transfer do not work. Secondly, when performing discriminative learning, a fixed factor of a = 10! was used
to reduce the learning rate for coinciding features. Thirdly, only time-varying features were used to predict
LoS. Finally, the method was not evaluated in a true hospital setting. As future work, optimization of «, the
use of an adaptive learning rate and implementing mechanisms of data privacy, such as, differential privacy

during weight transfer to prevent data leakage are envisaged.
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Appendix

A Patient features extracted per ICU unit

1. By using the pipeline by [2], SQL queries were used to extract data tables (vitalperiodic, vitalaperiodic, respiratorycharting,
lab, nursecharting from eICU-CRD and labevents, chartevents from MIMIC-IV) by imposing thresholds of presence of
each feature in at least 25% 13% or 12.5% of all adult patients.

2. Next, using the unit type column from patient table in elCU-CRD and first_careunit column from icustays table in
MIMIC-IV, stay ids were collected for each ICU unit type.
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3. Extracted tables in 1. were then filtered on stays ids from 2. of each ICU unit for both datasets.

4. Again by modifying the pipeline by [2], data curation and pre-processing was done per ICU unit type for both datasets

one at a time.

5. In the pre-processing, all stays data tables for each unit, were merged, re-sampled hourly using the mean and scaled.
From this, only features with at least 2 unique values for at least 30% of the patients were retained for modelling. For
each dataset and for each ICU unit type, final extracted features are grouped under the table they appear in the original

database.

6. Steps 2., 3., 4. and 5. were also performed on the initial tables extracted in 1. without filtering per unit type which

constitutes the all stays data.

A.1 eICU data
A.2 MIMIC-IV data
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B Implementation details

All algorithms were written in Python language. All experiments were performed on a 128GB RAM computer with Intel(R)
Core(TM) i9-10900X CPU processor and NVIDIA GeForce RTX 2080 Ti GPU.

B.1 Hyperparameter Search Methodology and Implementation Details

The hyperparameter search space for all ICU units is given in the table below. An asterisk * is indicated for those in which the

space was enlarged for particular units.

Table 11: Hyperparameters search space and corresponding scale. No. Hidden units was enlarged to the
interval [4 - 512] for Neuro-Stepdown ICU patients in MIMIC-IV and the learning rate to [le™® — 1e=2] for
Medical-Surgical ICU patients in MIMIC-IV

Hyperparameter Search Space Interval Scale

No.Hidden Layers [1-2] Linear
No.Hidden units* [8 - 512] log,
Learning rate* [le™* — 1le~?] log;,
Dropout [0.1 - 0.5] Linear
Batch Size [4 - 512] log,

Hyperparameter search was performed in a systematic manner for each of the patient populations using the Bayesian Optimizer
from KerasTuner [48, 49]. Essentially, Bayesian Optimization makes use of both a prior function and an acquisition function.
The former is used as a surrogate to obtain estimates of the objective function and the latter, that measures the evaluation
of the objective function at a new point and proposes next candidate points within the search space [52]. When using the
Bayesian optimization, we minimize the validation loss, that is the, mean squared logarithmic error on the validation dataset.
As explained before, the candidate hyperparameters values used at each trial are proposed depending on the performance of the
previously chosen values. We noticed that orienting the search direction seriously affects the number of hidden units. Therefore,
the hidden units space was split into two resulting in a three-step procedure as follows;

1. Firstly, the search space involving all hyperparameters except the batch size and No. hidden units in the interval [8 - 64]

was used.
2. Secondly, the previous step was repeated with No. hidden units in the interval [64 - 512].
3. In the third step, the refined space following model performance was used and hyperparameter search was repeated.

4. The best hyperparameters from step three were then used to fit the model using early stopping to prevent overfitting.

By monitoring the validation loss over six epochs, early stopping occurs if this doesn’t further decrease by at least 0.5%.

In steps 1 and 2, ten trials were done with two executions per trial. In step 3, ten trials were done with three executions per
trial. By performing multiple executions per trial ensures that the reported hyperparameter values return the lowest and most

stable average error over all trials.

C Loss Curves

Additional loss curves from Section 3.1
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CSICU loss curves. Early stopping at 22 epochs SICU loss curves. Early stopping at 13 epochs

304 —— Train 091 —— Train
Validation Validation
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(a) CSICU patients (b) SICU patients

Figure 13: Loss curves obtained after training CSICU and SICU in eICU-CRD data with optimized hyper-
parameters

MICU loss curves. Early stopping at 20 epochs SICU loss curves. Early stopping at 20 epochs
1.0 —— Train 1.8+ —— Train
00] Validation 1.64 Validation
1.4
0.81
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0.71
1.09
0.6 0.84
0.5 0.6
_
0.4 . . . . 0.4 . . . . .
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(a) MICU patients (b) SICU patients

Figure 14: Loss curves obtained after training MICU and SICU in MIMIC-IV data with optimized hyperpa-
rameters as in Section 3.1.

D Multiple comparisons of Means using Tukey test

Complementary results for Figure 11 and 12.

Table 12: SICU: Multiple comparison of Means for epochs and Test MAE using Tukey HSD [50], o = 5%.
OM: Optimized Model on each sub-ICU unit, WTM: Weight Transfer Model, FTM: Full Transfer Model

group 1 group 2 mean diff p-adj lower upper  reject Hy

OM WTM -3.6331 0.001 -4.5746 -2.6917 True

Epochs
FTM OM 6.3301 0.001  5.3886  7.2716 True
FTM WTM -2.697 0.001  1.7531  3.6408 True
OM WTM -0.0071  0.2555 -0.0177  0.0035 False
Test MAE

FTM OM 0.0095 0.0891 -0.0011 0.02 False
FTM WTM 0.0024 0.8418 -0.0082  0.013 False
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Table 13: CCU-CTICU: Multiple comparison of Means for epochs and Test MAE using Tukey HSD, a = 5%.
OM: Optimized Model on each sub-ICU unit, WTM: Weight Transfer Model, FTM: Full Transfer Model

group 1 group 2 mean diff p-adj lower upper  reject Hp

Epochs OM WTM -7.07 0.001 -7.7585 -6.3815 True
FTM OM 9.04 0.001  8.3515  9.7285 True

FTM WTM 1.97 0.001 1.2815  2.6585 True

Test MAE OM WTM -0.0591  0.001 -0.0702  -0.048 True

FTM OM 0.0922 0.001 0.0812 0.1033 True
FTM WTM 0.0331 0.001  0.022 0.0442 True

Table 14: CTICU: Multiple comparison of Means for epochs and Test MAE using Tukey HSD, o = 5%. OM:
Optimized Model on each sub-ICU unit, WTM: Weight Transfer Model, FTM: Full Transfer Model

group 1 group 2 mean diff p-adj lower upper  reject Hy

OM WTM -6.2298 0.001  -7.0824 -5.3772 True

Epochs
FTM oM 7.8012 0.001  6.9487  8.6538 True
FTM WTM 1.5714 0.001  0.7146  2.42283 True
OM WTM -0.0829 0.001  -0.0992 -0.0666 True
Test MAE

FTM OM 0.1079 0.001  0.00916  0.1242 True
FTM WTM 0.0249 0.0011  0.0086  0.0413 True

Table 15: CSICU: Multiple comparison of Means for epochs and Test MAE using Tukey HSD, o = 5%. OM.:
Optimized Model on each sub-ICU unit, WTM: Weight Transfer Model, Diff LR: Different Learning Rates
Model

group 1 group 2 mean diff p-adj lower upper reject Hy

o . DifLR  OM 77071 0.001  6.6032  8.811 True
POCIS g LR WTM  -4.0707  0.001  -5.1746  -2.9668  True
OM  WTM -11.7778  0.001 -12.8817 -10.6739  True
Dif LR OM 00173 02146 -0.0069  0.0415  False
Test MAE
Dif LR WTM 00214  0.0961 -0.0029  0.0456  True
OM  WTM  0.0041 0.9  -0.0201 00283  False
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