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ABSTRACT

With distributed signal processing gaining traction in
the audio and speech processing landscape through the
utilization of interconnected devices constituting wire-
less acoustic sensor networks, additional challenges arise,
including optimal data transmission between devices. In
this paper, we extend an adaptive distributed blind system
identification algorithm by introducing a residual-based
adaptive coding scheme to minimize communication costs
within the network. We introduce a coding scheme that
takes advantage of the convergence of estimates, i.e., van-
ishing residuals, to minimize information being sent. The
scheme is adaptive, i.e., tracks changes in the estimated
system and utilizes entropy coding and adaptive gain
to fit the time-varying residual variance to pre-trained
codebooks. We use a low-complexity approach for gain
adaptation, based on a recursive variance estimate. We
demonstrate the approach’s effectiveness with numerical
simulations and its performance in various scenarios.

Index Terms— adaptive coding, blind system identifica-
tion, alternating direction method of multipliers

1. INTRODUCTION

Blind system identification is an acoustic signal-processing
task that focuses on identifying the characteristics of an un-
known acoustic system using only its output signals. In other
words, the goal is to estimate a model of the system, such as
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its impulse or frequency response, without knowledge of the
input signal of the system. Various techniques have been de-
veloped to estimate impulse and frequency responses of the
system in question, such as [1, 2]. We consider single-input-
multiple-output (SIMO) systems, i.e., one acoustic source and
multiple acoustic sensors in a room.

Tackling the problem of estimating impulse responses
within the wireless acoustic sensor networks (WASN) [3],
i.e., a set of sensor nodes with processing capabilities that
can communicate with each other gives rise to challenges
regarding the inter-node communication, such as limited
transmission bandwidth, which we address in this paper. In
previous work [4], we proposed an adaptive distributed al-
gorithm for estimating impulse responses using the general-
form consensus alternating direction method of multipliers
(ADMM) [5, 6], avoiding the necessity of a fusion center for
multi-channel signal processing. Moreover, relevant existing
literature deals with quantisation in distributed algorithms
[7, 8], adaptive entropy encoding [9] and also learning-based
quantisation in ADMM [10, 11] as well as the effects of
quantisation in PDMM [12].

We extend the existing algorithm [4] to use residual trans-
missions, which we assume have approximately normal dis-
tributions. Using this assumption, we introduce an adaptive
coding scheme that utilizes Huffman codebooks [13]. In-
stead of adapting the encoder and decoder directly to the
time-varying distribution of residuals, we introduce a sim-
ple approach where the residuals are scaled before encoding
and inversely descaled after decoding, effectively resulting
in a gain-shape approach [14]. This simplifies the method
greatly, as it avoids adapting codebooks which may be com-
putationally inefficient. To adapt the gain, we propose a low-
complexity approach using a straightforward time-recursive
estimate of the decoded residual’s variances, which is com-
pared to the variance of the data used for codebook training,
and the data scaled accordingly. Finally, we use numerical
simulations to demonstrate the method’s effectiveness.
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2. PROBLEM STATEMENT AND BSI IN WASN

The WASN consists of M nodes indexed by i ∈ M ≜
{1, ...,M} and the directed edges (i, j) ∈ E , i.e., connections
for information exchange. We denote the node neighbor-
hoods defined by these edges as Ni ⊆ M, and Ni = |Ni| is
the size of the neighborhood. We treat this problem under the
following assumptions:

• Network topology G = (M, E) is static

• Network topology is connected (there exists an (indi-
rect) path from each node i ∈ M to each other node
j ∈ M)

• Communication is instantaneous/synchronous

• Communication is error-free apart from losses intro-
duced by the coding scheme

We consider a single-input-multiple-output (SIMO) acoustic
system represented by the stacked vector

h =

[{
hT
i

}
i∈M

]T
, (1)

where hi, i ∈ M, are L×1 impulse responses of the system.
The signal model

xi(k) = His(k) + vi(k), (2)

where Hi is the 2L × 2L diagonal filtering matrix of the ith
channel using the 2L-DFT transform of hi, zero-padded to
2L × 1. The vectors s(k) and vi(k) are the DFT transforms
of the zero-padded source signal and additive white Gaussian
noise at frame k respectively. The distributed cross-relation
minimization problem (cf. [4]) with regularization is

min
{wi,hi}

∑
i∈M

fi(wi) (3a)

s.t. wi|j = zj|j i ∈ M, j ∈ Ni (3b)
∥z∥ = 1 i ∈ M (3c)

where

fi(wi) =
1

2
wH

i Piwi +
λ

2
∥wi∥2 (4)

is the regularized cross-relation cost function. The regular-
ization term ensures small values for wi, which is beneficial
to the algorithm’s stability. The subscript i|j denotes a sub-
vector of a stacked vector. We define this for wi, which is an
NiL× 1 stacked vector of L× 1 subvectors wi|j of the form

wi =

[{
wT

i|j

}
j∈Ni

]T
(5)

where wi|j is a node-local estimate of hj at node i. The vari-
ables zi and zi|j , the neighborhood-consensus estimate of hj

at node i, are defined analogously. The scalar 0 < λ ≪ 1

is the regularisation parameter. The recursively updated ma-
trix Pi is the cross-relation matrix [2, 4], a block matrix con-
sisting of cross-spectral density matrices of pairs of channel
signals (xi(k), xj(k)) to form a system of linear equations.
The general-form consensus constraint (3b) forces the conver-
gence to a global solution for parameters estimated by multi-
ple nodes, while the non-triviality constraint (3c) is necessary
to avoid convergence to the zero vector.

We formulate the augmented Lagrangian for (3) as the
real-valued function of complex variables,

Lρ(w1, ...,wM , z1, ..., zM ,u1, ...,uM ) =∑
i∈M

(
fi(wi) + 2ℜ

(
uH
i (wi − zi)

)
+
ρ

2
∥wi − zi∥2

)
(6)

where ui is defined analogously to (5) with the subvectors
ui|j , the Lagrange multipliers. The scalar ρ > 0 is the
ADMM penalty parameter, and ui is the dual variable - La-
grangian multiplier - of the consensus constraint [5], defined
analogously to (5). The update steps for primal and dual
variables can be readily verified as

w
(k+1)
i = w

(k)
i − µ

(
∆w∗

i
Lρ

)−1

∇w∗
i
Lρ (7a)

y
(k+1)
i|j = ρw

(k+1)
i|j + u

(k)
i|j (7b)

y
(k+1)
j|i = y

(k+1)
i|j (7c)

z
(k+1)
i|i = P∥z∥=1

 1

Ni

∑
j∈Ni

y
(k+1)
i|j

 (7d)

z
(k+1)
j|i = z

(k+1)
i|i (7e)

u
(k+1)
i = u

(k)
i + ρ

(
w

(k+1)
i − z

(k+1)
i

)
(7f)

where ∇w∗
i
Lρ is the gradient, ∆w∗

i
Lρ the Hessian with re-

gards to w∗
i of the augmented Lagrangian (6), P∥z∥=1 is an

operator enforcing (3c) by, e.g., normalization and µ is a step
size. The local combination of estimate and dual variable,
yi is defined analogously to (5), with subvectors yi|j . The
equations (7c) and (7e) denote copying variables along edges
(i, j) ∈ E of the network, which represents a transmission
between nodes in practical terms. In the following, we aim to
find a low-complexity coding scheme that reduces the amount
of data transmitted within the WASN while minimizing the
effect on the performance of the estimation algorithm.

3. PROPOSED METHOD

The total bitrate within the network for uncompressed trans-
missions of the variables y

(k+1)
i|j and z

(k+1)
i|j is constant at

R(k) =
∑

i∈M 2NiLB, where B is the number of bits used
for the representation of the vector elements, e.g., 128 for
complex values on standard architectures. For large vectors
and networks, this can become significantly power-intensive,



therefore the goal is its reduction.
For brevity and readability, and since the method is analo-

gous for either y(k)
j|i and z

(k)
j|i , let us use a placeholder variable

d(k) - for data. As in [12], instead of transmitting a sequence
of variables {d(k)}Kk=1, we transmit a sequence of residuals
{r(k)}Kk=1, i.e., the difference vectors

r(k) = d(k) − d̃
(k−1)

, (8)

where d̃
(k−1)

is the reconstructed data after encoding, trans-
mission and decoding. This reconstruction is defined as

d̃
(k)

= r̃(k) + d̃
(k−1)

(9)

and combines the preceding iteration’s reconstruction d̃
(k−1)

and the current iteration’s encoded-decoded difference vector
r̃(k). Note that the reconstructed quantities r̃(k) and d̃

(k)
have

to be computed at both transmitting and receiving nodes, and
the latter stored to be available for residual computation at the
next iteration (8). We define encoder ϕ and decoder ψ for a
residual sequence {r(k)}Kk=1 such that

{r̃(k)}Kk=1 = ψ
(
ϕ
(
Q
(
{r(k)}Kk=1

)))
. (10)

The operator Q is the element-wise projection of the residual
sequences {r(k)}Kk=1 real and imaginary parts onto the set of
values represented by the codebook RK . We define (element-
wise) encoder and decoder as the mappings

ϕ : RK → {1, ..., N} (11a)

ψ : {1, ..., N} → RK , (11b)

where the integers {1, . . . , N} are symbols sent as informa-
tion.

We employ entropy coding to reduce the number of bits
per transmission. For the encoder and decoder, we make
use of the assumption that the residual values are approx-
imately normal-distributed, which is supported by numeri-
cal tests with an input signal drawn from a normal distri-
bution, see Fig. 1 (left). To generate entropy codebooks, a
specified number of symbols in RK is used with their cor-
responding probability values according to a normal distribu-
tion. Fig. 1 (right) illustrates two examples of possible sets
RK with N = |RK | = 5 and N = 13 and their probabili-
ties. We impose the constraint that there has to be a symbol
for residual value 0. These sets of value-probability pairs are
used to generate Huffman codebooks [13], which yield bi-
nary representations of symbols (11), where more probable
symbols are generally represented using fewer bits than less
probable ones. Additionally, reducing the number of symbols
limits the maximum number of bits; therefore we want to use
as few as possible while avoiding impact on algorithm perfor-
mance.

To generate such a codebook, the variance of the resid-
ual’s normal distribution has to be known. However, this
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Fig. 1: Example distribution of residual values and overlayed
normal distribution.

is highly dependent on scenario and algorithm parameters,
such as acoustic SNR and especially the convergence state
of the estimation algorithm. Therefore, an adaptive solution
is preferable. The approach in [15], a pre-defined geometric
contraction of the quantisation interval with 1-bit quantisa-
tion is not applicable as it requires fine-tuning of parameters
according to the problem’s convergence speed and requires a
static fixed point, i.e., a static optimal solution. Neither can
be said in this case, however.

One approach would be to train many codebooks on a set
of expected variances σ2 ∈

[
σ2

min, σ
2
max

]
and switch the code-

book used by the encoder and decoder, ψ(k), ϕ(k), accord-
ingly at each or at certain frames (k). However, since we
assume that the residuals are normal-distributed, regardless
of variance, we can simplify this approach by using a single-
codebook scheme ϕ0 , ψ0, with gain factor δ(k) such that

1

δ(k)
ψ0

(
ϕ0

(
δ(k)x(k)

))
≈ ψ(k)

(
ϕ(k)

(
x(k)

))
, (12)

in which the approximation is due to nonlinearities in the en-
coder and decoder. The codebook RK

0 is generated with N
symbols and probabilities according to

p(r) =
1√
2πσ2

0

exp

(
−1

2

r2

σ2
0

)
. (13)

This yields a simple gain-shape approach [14] that scales the
data to fit the encoder rather than vice-versa. For the appro-
priate choice of δ(k), we introduce a simple method.

Under the assumption of a zero-mean distribution, we es-
timate the variance of the decoded residual r̃(k) by the recur-
sion [16]

(σ̂2
r̃)

(k) = α(σ̂2
r̃)

(k−1) + (1− α)
1

L
∥r̃(k)∥2 (14)

where (σ̂2
r̃)

(k) is the estimate at time index k, ∥r̃(k)∥ is the
Euclidian norm of the reconstructed residual vector (9) and
0 < α < 1 is an exponential smoothing factor. This yields a
scalar variance estimate for the vector r̃(k), preceded by the
assumption that all vector elements have approximately sim-
ilar distributions. Note that this quantity can be estimated at
the encoder and decoder independently and - assuming error-
free transmission - the estimates are equivalent. Here, the
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Fig. 2: (Top) NPM is plotted over frames to show conver-
gence behaviour. (Middle) The gain factor δ(k) over frames.
(Bottom) Rate R(k) over frames. The legend denotes the
parameter combinations (SNR, N) for adaptive approach or
(SNR, ”base”) for the baseline. For all, medians of 100
Monte Carlo realisations are shown.

gain factor δ(k) follows trivially from estimated and training
variances as

δ(k) =

[
σ2
0

(σ̂2
r̃)

(k−1)

]p
(15)

where p = 0.5. In practice, it was observed that using a
p > 0.5 improves the results for certain scenarios, as it likely
compensates for overestimating the variance.

4. NUMERICAL SIMULATION

We conducted a numerical simulation study to show the
proposed method’s effectiveness compared to a baseline ap-
proach. This baseline uses a 128-bit complex floating-point
representation for each element of the residuals which are
assumed to be transmitted as such. We consider the following
measures for evaluation: The normalized projection misalign-
ment [17] between the true system impulse responses h and
the consensus estimate z(k),

NPM(k) = 20 log10

(∥∥∥∥∥h− hTz(k)

hTh
z(k)

∥∥∥∥∥ / ∥∥∥z(k)∥∥∥
)
.

The rate R(k) within the WASN is the total number of bits
exchanged between all nodes per frame.

For the evaluation, we simulated a sensor network with
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SNR as listed in Table 1.

M = 3 nodes and directed edges E = {(1, 2), (2, 3), (3, 1)}
under the following scenarios, of which the parameter val-
ues are listed in Table 1: The input signal is white, and i.i.d
normal-distributed and Nsignal samples long. The impulse re-
sponses of length L are drawn from a normal distribution as
well. Further, the signal-to-noise ratio (SNR), where additive
white noise is uncorrelated with the input signal and indepen-
dent across channels, and the number of symbolsN are varied
over a set of values. The codebook RK

0 is generated with vari-
ance σ2

0 . All M impulse responses are changed at 1
2Nsignal to

test the algorithm’s ability to adapt to a time-varying system.
The parameters ρ, µ, λ of the ADMM-BSI algorithm as well
as coding parameters α, p are kept constant over all combi-
nations of SNR and N and all 100 Monte-Carlo simulation
runs.

Fig. 2 shows examples of convergence behaviour at two
values of SNR and the number of symbols N ∈ {3, 21}
compared to the baseline approach. It shows that the coding
scheme manages to avoid a big impact on estimation perfor-
mance. The steady-state estimation error measured by NPM
after convergence is not affected; however, some impact on
convergence speed is observable at low N and high SNR.
This can be observed in Fig. 3 as well, where at low N and
high SNR the algorithm has not converged at the selected time
frames.

It further demonstrates adaptivity by reconverging after
abruptly changing the impulse responses. Most importantly,
the number of bits used per iteration, the rate R(k), is signif-
icantly reduced, see Fig. 2 (bottom) and for its time-averages
Fig. 4.



P Eq V P Eq V

MC – 100 λ (7b) 0.01
SNR – {10, 30, 50, 70} ρ (7b) (7f) 1.0
Nsignal – 3× 105 α (14) 0.6
L (14) 16 p (15) 2.0
N (11) {3, 7, 21, 51} σ2

0 (13) (15) 10−4

µ (7a) 0.8

Table 1: Simulation parameters. P = Parameter, Eq = Equa-
tion, V = Value. MC = Monte-Carlo realisations.

5. CONCLUSION

In this paper, we introduce an adaptive coding scheme to our
previous work on distributed blind system identification, i.e.,
impulse response estimation, in wireless acoustic sensor net-
works. We use entropy coding, specifically Huffman code-
books, to reduce the number of bits per transmission. We de-
scribe the method to compute a gain factor, which is used to
fit the residual data to be transmitted to the encoder-decoder’s
useable value range. This is based on a recursively estimated
variance of the decoded residuals. We demonstrate the effi-
cacy of the coding scheme in numerical simulations. An ex-
tension to this could be the investigation of the influence of
the structure of impulse responses on the behaviour of resid-
uals and vector encoding.
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