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Abstract—In this paper, we showcase the benefit of low-rank
modeling in the context of acoustic room impulse responses
(RIRs). The RIR is modeled as a sum of exponentially decaying
sinusoids, and by leveraging the inherent low-rank structure in
tensorizations of such signals, we are able to achieve a very
compact representation. The contribution of this paper is to
provide a clear motivation for the use of low-rank models for
the RIR, directly following from physical descriptions of room
acoustics. Further, new light is shed on details of the derivation
of the RIR model, in relation to solving the inhomogeneous
Helmholtz equation. We demonstrate the very compact represen-
tations that can be achieved. Finally, the suggested model also
displays good robustness properties with respect to the positions
of the source and the receiver. Simulations performed on real-life
room impulses responses support the theoretical findings.

Index Terms—Low-rank Modeling, Room Impulse Response,
Tensor Decomposition

I. INTRODUCTION

Room impulse responses (RIRs) are essential to algorithms
within a wide variety of acoustic signal processing tasks,
such as speech dereverberation [1], source separation [2],
source localization [3], echo cancellation [4], and artificial
reverberation [5]. There are several different ways of modeling
the RIR, including as an infinite impulse response (IIR) filter
(see e.g. [6]), and as a finite impulse response (FIR) filter (see
e.g. [7]). The advantage of an IIR filter model is that it offers
a compact representation, but with the drawback of possible
difficulties in estimating the filter parameters [8]. The FIR filter
model, on the other hand, is appreciated for its simplicity,
but has the downside that a large number of parameters is
needed to fully represent the characteristics of the room [8];
for a regular office-sized room, such an FIR filter can be
several thousands of taps long [9]. This may be prohibitive
from a computational and memory requirement point of view,
highlighting the need for compact representations of RIRs.

Low-rank models have received a lot of attention in signal
processing literature as of late, and their usefulness has been
demonstrated in areas such as data science [10], blind source
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separation [11], blind system identification [12], and echo
cancellation [13]. In works like [14] and [11] the authors
demonstrate that several kinds of signals can be considered
low-rank, in the sense that if the signal vector is reshaped into
a matrix or tensor, that matrix or tensor will be of low-rank.
These signals include polynomials, sinusoids and what we will
use as model for the RIR, a sum of exponentially decaying
sinusoids [15]. As we will see, by exploiting this inherent
structure, one is able to dramatically reduce the number of
parameters needed to represent the RIR.

The main contribution of this paper is to provide a clear,
physical motivation for the use of low-rank matrix or tensor
models of RIRs. We also shed new light on the approximations
that are made throughout the derivation of the RIR model, all
the way from the solution to the inhomogeneous Helmholtz
equation. The suitability of these low-rank models is demon-
strated with simulations on real-life recorded RIRs.

This paper is organized as follows: in Section II we intro-
duce the signal model, along with the physical justification
of the use of a sum of exponentially decaying sinusoids
as RIR model, as well as the motivation for using a low-
rank approximation. In Section III we present simulations
that support the theoretical findings, and finally, Section IV
summarizes and concludes this work and points out areas for
possible future research.

II. SIGNAL MODEL

As previously indicated, in this work we consider modeling
the RIR as a sum of exponentially decaying sinusoids. Assum-
ing that the RIR is band-limited, and thereby can be sampled,
the discrete time representation h is given by

h(rr, rs, n) =
∑
m∈N

µm(rr, rs)e−βmn cos(ωmn+ φm), (1)

for n = 1, 2, . . . , N . Here, µm denotes the initial amplitude,
rr ∈ R3 the position of the receiver, rs ∈ R3 the position
of the source, βm ∈ R+ the exponential decay constant,
ωm ∈ [0, π] the angular frequency, and φm the phase. For
ease of notation we will from hereon drop the dependence
on rr and rs and simply refer to h(rr, rs, n) as h(n). As
we will see, this model follows directly from simple physical
descriptions of room acoustics, and directly allows for low-
rank approximations.



Assuming that q =
√
N ∈ N, the RIR vector h =

[h(1), h(2), . . . , h(N)]
T can be reshaped into a square matrix

H ∈ Rq×q ,

H =

h(1) h(q + 1) . . . h(q(q − 1) + 1)
...

...
...

h(q) h(2q) . . . h(N)

 .
(2)

As will be shown, it follows from (1), together with some
physical considerations of room acoustics, that H may be well
approximated by a low-rank matrix Ĥ.

The idea of modeling an RIR as a sum of decaying sinusoids
is well established in the literature. In works such as [16]–[18]
this has been used for lower frequencies. The idea of low-
rank modeling of RIRs is also anchored in previous work.
This is done in e.g. [13], with support from the theoretical
discussions in [11]. In this paper, however, we provide a
previously missing link between said model, the actual physics
of the problem and the use of low-rank tensor-based modeling.
As is demonstrated, this allows for compact representations of
RIRs.

A. Physical Motivation of Signal Model

The sound field in a source-free room is governed by the
wave equation,

∇2p (rr, t) =
1

c2
∂2p

∂t2
, (3)

subject to initial and boundary conditions, where p denotes
sound pressure, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator,
c the speed of sound, and t denotes time. Considering the
frequency domain counterpart, we get the time-independent
form of the wave equation, also known as the Helmholtz
equation, (

∇2 + k2
)
P (rr, ω) = 0, (4)

where the wave number k and the angular frequency ω are
related via k = ω

c . We denote the eigenfunctions to the
Laplace operator as ψm, with the corresponding eigenvalue
k2m. For arbitrary room geometries, there are no analytical
expressions for these eigenfunctions, or room modes, ψm.
However, for simple geometries, such as shoe-box type rooms
with rigid walls, there are closed-form expressions [15]. The
eigenfunctions form a complete and orthogonal set [15] and
any sound field can be expressed in terms of them [19]. This
can be used when we look at a slightly modified version of (4),
where we introduce a point source with volume velocity Q,
at the source position rs, with a driving frequency ω. Further,
denoting the value of the gas density by ρ0, and the imaginary
unit i ,

√
−1, we get [15]

(
∇2 + k2

)
G(rr, rs, ω) = −iωρ0Qδ(rr − rs), (5)

where G(rr, rs, ω) is the so called Green’s function, or room
transfer function. We can express it in terms of the aforemen-
tioned eigenfunctions ψm [15], yielding

G(rr, rs, ω) = iωQρ0
∑
m∈N

ψm(rs)ψm(rr)

Km(k2m − k2)
, (6)

where Km is a normalizing constant. This is also known as
the modal decomposition. In general, the eigenfunctions and
eigenvalues are complex-valued, although for the special case
of perfectly reflecting room boundaries, they are real-valued
[15]. The eigenfunctions and eigenvalues depend only on the
dimensions of the room, and not on the source and receiver
positions [20]. Furthermore, the eigenvalue k2m, corresponding
to mode m, satisfies km = ω̃m

c + iβm

c , where ω̃m is the
resonance frequency of the mth mode, and βm is its decay
constant [15]. Inserting this in (6), along with k = ω

c , and
expanding the denominator yields

G(rr, rs, ω) =
∑
m∈N

Amiω

−ω2 + ω̃2
m + 2iω̃mβm − β2

m

, (7)

where, for the sake of compactness, we collected all the, for
our purposes, less interesting variables in Am , Am(rs, rr) =
Qρ0c

2ψm(rs)ψm(rr)/Km.
Further, we are going to assume that the decay constants

are very small compared to the eigenfrequencies, i.e. βm �
ω̃m [15]. This means that each mode in the sum of (7) is
impactful only when the driving frequency ω is very close
to the resonance frequency ω̃m. This allows us to, for each
term in the sum, replace ω̃m with ω in the third term of the
denominator. With this,

G(rr, rs, ω) ≈
∑
m∈N

Amiω

−ω2 + ω̃2
m + 2iωβm − β2

m

=
∑
m∈N

Amiω

−ω2 + β2
m + 2iβmω + ω2

m

=
∑
m∈N

Am
iω + βm

−ω2 + β2
m + 2iβmω + ω2

m

−
∑
m∈N

Amβm
ωm

ωm
−ω2 + β2

m + 2iβmω + ω2
m

=
∑
m∈N

AmF
(
θ(t)e−βmt cos(ωmt)

)
−
∑
m∈N

Amβm
ωm

F
(
θ(t)e−βmt sin(ωmt)

)
(8)

where θ(t) denotes the Heaviside step function, F the Fourier
transform and ωm ,

√
ω̃2
m − 2β2

m > 0 (see also [21] for a
time-domain analog). This manoeuvre is something that has
been done implicitly before [6], [15], but to the best of the
authors’ knowledge, this is the first time the necessity of it is
made explicit. We see that the adjusted resonance frequency
ωm is a slight shift towards zero, compared to the modal



frequency ω̃m. With this, the impulse response h(t) is obtained
by taking the inverse Fourier transform of (8), yielding

h(t) =
∑
m∈N

θ(t)e−βmt

(
Am cos(ωmt)−

Amβm
ωm

sin(ωmt)

)
=
∑
m∈N

θ(t)µme
−βmt cos(ωmt+ φm) (9)

where µm = Am

√
1 +

(
βm

ωm

)2
and φm = arctan

(
βm

ωm

)
. This

is the continuous-time counterpart of (1).

Considering that the number of modes, Nf , below a certain
physical frequency f , satisfies Nf ≈ 4π

3c3 f
3 [19], one would

expect to have to use a very large number of terms in (9) in
order to get a good approximation of the RIR. However, as
pointed out in [22], because of the large number of resonant
frequencies with overlapping modal curves, the number of
distinguishable peaks in the frequency response is in practice
considerably smaller than Nf . That is, (9) may be well
approximated by the truncated sum

h(t) ≈
M∑
m=1

µme
−βmt cos(ωmt+ φm)θ(t), (10)

where M is on the order of 102 [22]. Given the finite number
of terms, the approximated RIR in (10) is band-limited 1 and
can be sampled, yielding the discrete-time representation in
(1), after truncation to N discrete-time samples.

B. Low-Rank Properties

Here we will see how truncation of the modal decompo-
sition (9), at some finite number of terms M , corresponds
to finding a rank-2M approximation of the reshaped signal
vector.

It is well established, see e.g. [11] and references therein,
that when a signal vector consisting of a sum of M causal,
exponentially decaying sinusoids, is reshaped into a matrix,
that matrix will have rank 2M . This becomes clear if we
decompose H in the following fashion. Let H = H1 +
H2 + · · ·+HM , where Hm corresponds to the mth decaying
sinusoid,

1In practice, given that the human hearing is limited to the range of
approximately 20 Hz - 20 kHz [19], the impulse response may, using
appropriate filtering, be considered band-limited to this interval. This also
serves as justification for removing the cavity mode [19], corresponding to
m = 0, with ω̃m = 0.

Hm =

hm(1) hm(q + 1) . . . hm(q(q − 1) + 1)
...

...
...

hm(q) hm(2q) . . . hm(N)



=
µme

iφm

2


zm
z2m
...
zqm

[1 zqm · · · z
(q−1)q
m

]
(11)

+
µme

−iφm

2


z∗m
z∗

2

m
...
z∗

q

m

[1 z∗
q

m · · · z∗
(q−1)q

m

]
.

Here, zm = eiωm−βm and ∗ denotes complex conjugation. We
see that each of the M terms composing H can be written
as a sum of two rank-1 matrices, i.e. as a rank-2 matrix. As
long as zm are distinct, the matrix H will have rank 2M [14].
For this type of signal, this low-rank structure persists also
for higher-order tensorization. The rank of a D-dimensional
tensor G ∈ RS1×S2×···×SD , where Sd denotes the size of the
dth dimension, is defined as the smallest number of rank-1
tensors that generate the tensor as their sum. Furthermore, a
D-dimensional tensor is said to be rank-1 if it can be written
as the outer product of D vectors [23]. Consequently, a rank-R
tensor G can be written as

G =

R∑
r=1

h(1)
r ◦ h

(2)
r ◦ · · · ◦ h

(D)
r , (12)

where ◦ denotes outer product, and h(d)
r ∈ RSd . Assuming

2 that D
√
N ∈ N, where N is the length of h, the RIR may

be reshaped into a D-dimensional tensor H ∈ RS×S×···×S .
Throughout this paper we are going to assume that S1 =
S2 = · · · = SD = S = D

√
N and that D

√
N ∈ N. Then

we can reshape the RIR h into a D-dimensional tensor , that
will be of rank 2M as well. The upside of this higher-order
tensorization is the possibility of further decreasing the number
of coefficients needed to represent the RIR, turning what is
commonly called the curse of dimensionality, into a blessing
instead.

A tensor can be decomposed in several different ways. The
purpose of this paper is not to showcase the strength and
weaknesses of different tensor decompositions, for that the
reader is referred to works such as [23] and [24]. The aim
is rather to demonstrate that the low-rank structure obtained
in (2), with D = 2, persists for D > 2, and the possible
compactness of representation that follows. Therefore, we have
chosen to use the polyadic decomposition, where the tensor is
written as a sum of rank-one tensors [24]. For the numerical
computation of these tensor decompositions we use the high-
level function cpd of the Matlab toolbox Tensorlab [25].

2In general, arbitrary tensor dimensions may be utilized, as they all gives
rise to a rank-2M tensor. The square case is considered here, as to simplify
the exposition.
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Fig. 1. Averaged normalized misalignments, and corresponding standard
deviations, initial delay kept (top), and removed (bottom) respectively, as a
function of N .

Finally, it should be noted that the physical motivation given
here serves only as a justification of the low-rank modeling
employed in this paper. The method described is purely data-
driven.

III. NUMERICAL RESULTS

In order to illustrate the usefulness of the considered low-
rank framework, and to demonstrate its applicability to actual
measured RIRs, we apply it to the single- and multichannel
audio recordings database (SMARD) [3]. These recordings
are sampled at 48 kHz, for 12 seconds, yielding impulse
responses of 576 · 103 taps. These are recorded at various
source and receiver positions, and with varying equipment, in
a room of size 7.34 m ×8.09 m ×2.87 m, with a reverberation
time of approximately 0.15 s. In total, the dataset contains
1008 RIRs. It should be noted that in all numerical simulations
performed here, the RIRs are truncated at some discrete-time
index N � 576 · 103.

In order to evaluate the accuracy of the proposed low-
rank model, we consider three different scenarios. Specifically
we consider the accuracy of the model as a function of the
length N of the RIR, tensorization dimension D, and memory
saving. Here, the memory saving C(ĥ) corresponding to an
approximation ĥ is defined as

C(ĥ) = 1− Υ(ĥ)

N
, (13)

where Υ(ĥ) is the number of coefficients of ĥ and C(ĥ) ∈
[0, 1). For C(ĥ) = 0 there is no memory saving, whereas for
C(ĥ) closer to 1, the degree of memory saving is larger. For
the proposed method, Υ(ĥ) = RD D

√
N , where R is the rank

of the approximation.
In the first scenario, where N is varied, C(ĥ) and D are

kept fixed at 0.8 and 3, respectively. In the second scenario, the
tensor dimension D is varied, with N = 7000 and C(ĥ) = 0.8
are being fixed. 3 In the third scenario, C(ĥ) is varied and
N = 8000 and D = 3 are kept fixed. It may here be noted
that in all three scenarios, the tensor rank R varies with N ,
D, and C(ĥ), respectively.

3In order for D
√
N ∈ N, N must be adjusted as D is changed
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Fig. 2. Averaged normalized misalignments, and corresponding standard
deviations, initial delay kept (top), and removed (bottom) respectively, as a
function tensorization dimension D.
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Fig. 3. Averaged normalized misalignments, and corresponding standard
deviations, initial delay kept (top), and removed (bottom) respectively, as a
function of space saving C(ĥ).

In all three scenarios, accuracy is measured by the normal-
ized misalignment, defined as

M
(
ĥ
)

=
‖ĥ− h‖2
‖h‖2

, (14)

where h is the RIR we are aiming to approximate. Further-
more, we consider two different starting points for the RIR;
the first one being when the impulse is emitted from the source
(i.e. the RIR contains an initial delay), the second one when
the direct component arrives at the microphone (i.e. the RIR
does not contain an initial delay). The results presented here
are averaged over all the 1008 RIRs of the dataset.

For comparison, we consider two alternative approaches
to RIR approximation. In the first alternative approach, we
consider simply truncating the RIR some finite discrete-time
index K, setting the last N − K values to 0. In the second
alternative approach, h is approximated by keeping only its
K largest entries (in absolute value), and setting the rest to
0. We refer to these approximations as Truncation and KMax
respectively. As to be comparable to the proposed method, K
is set equal to the number of coefficients used by the proposed
low-rank model, varying with the different scenarios, i.e., all
these methods under comparison yields the same value for the
memory saving C(ĥ).

Figure 1 shows the average normalized misalignment and
standard deviation for the discussed approximations, as N is



varied. As may be noted, the proposed method outperforms
both comparison methods in terms of normalized misalign-
ment when the initial delay is removed, and on par with
KMax when the initial delay is kept. Furthermore, the standard
deviation is lower, indicating a robustness to factors such as
distance to walls, and distance between source and receiver.

Figure 2 displays the accuracy of the proposed model as a
function of the dimension of the tensorization. The clear drop
in normalized misalignment from D = 2 to D = 3 displays
the clear benefit of performing a higher-order tensorization,
as opposed to only a matricization. The low standard devi-
ation once again points to robustness to source and receiver
placement.

Figure 3 depicts the the proposed method as a function
of memory saving. Below a certain compression rate the
suggested method outperforms KMax and, yet again, the
standard deviation is consistently lower.

The systematically lower standard deviation is an encour-
aging discovery. In light of the derivation of the time-domain
signal model from the modal decomposition in the frequency
domain, this is to be expected, since the eigenfunctions do not
depend on source and receiver position.

It can also be observed that the suggested model performs
better when the initial delay of the RIR is removed, particularly
in comparison to the performance of KMax. This is also
reasonable; the delay is ignored by KMax, whereas it has to be
explicitly handled by the proposed model, preventing it from
more accurately modeling the more information-dense parts
of the RIR.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have given a glimpse of the potential
of low-rank modeling of room impulse responses, as well
as provided a physical justification for the use of low-rank
approximations. We have also clarified the importance of
certain approximations made throughout the derivation of the
RIR model, which in previous works have been vague. We
notice that the low-rank modeling clearly outperforms simple
truncation and performs on par with using the largest entries
in the RIR, in terms of normalized misalignment. The standard
deviation, however, is consistently lower, suggesting that the
proposed method is robust to the placement of source and
receiver throughout the room.

In this paper many design choices had to be made, for
the sake of the brevity of the presentation. Future research
will focus on how the choice of these parameters, as well as
properties of the room, impacts the success of the low-rank
model described here. We also intend to further investigate
the error introduced by the suggested approximation. If this
approximation distorts the output of a convolution in a system-
atic way, with respect to more perceptually oriented evaluation,
that could be an indication of what applications this method
would be particularly useful in.
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