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BACKGROUND: As women present at earlier gestations to early pregnancy units (EPUs), the number of women
diagnosed with a pregnancy of unknown location (PUL) increases. Some of these women will have an ectopic preg-
nancy (EP), and it is this group in the PUL population that poses the greatest concern. The aim of this study was to
develop Bayesian networks to predict EPs in the PUL population. METHODS: Data were gathered in a single EPU
from all women with a PUL. This data set was divided into a model-building (599 women with 44 EPs) and a valida-
tion (257 women with 22 EPs) data set and consisted of the following variables: vaginal bleeding, fluid in the pouch of
Douglas, midline echo, lower abdominal pain, age, endometrial thickness, gestation days, the ratio of HCG at 48 and
0 h, progesterone levels (0 and 48 h) and the clinical outcome of the PUL. We developed Bayesian networks with
expert information using this data set to predict EPs. RESULTS: The best Bayesian network used the gestational age,
HCG ratio and the progesterone level at 48 h and had an area under the receiver operator characteristic curve (AUC)
of 0.88 for predicting EPs when tested prospectively. CONCLUSIONS: Discrete-valued Bayesian networks are more
complex to build than, for example, logistic regression. Nevertheless, we have demonstrated that such models can be
used to predict EPs in a PUL population. Prospective interventional multicentre studies are needed to validate the use
of such models in clinical practice.
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Introduction

The more liberal use of home pregnancy tests and access to
early pregnancy units (EPUs) have led to an increase in the
number of women undergoing early transvaginal ultrasound
scans (TVS) to locate, date and confirm viability of their preg-
nancy. This approach has resulted in more women being diag-
nosed with a pregnancy of unknown location (PUL) or
inconclusive scan (an empty uterus and no adnexal mass on
TVS). This group of women is defined as having a positive
pregnancy test and no sign of a pregnancy on TVS. Within the
PUL group, there are four clinical outcomes: a failing PUL, an
intrauterine pregnancy (IUP), an ectopic pregnancy (EP) or a
persisting PUL. A persisting PUL is defined as a case where
there is a plateauing in serum HCG levels without visualization
of an IUP or EP. Persisting PULs are rare and have therefore
been excluded from this analysis. The location of the failing

PULs remains unknown and consists of failing IUP and failing
EPs. A major challenge is the detection of EPs within this PUL
group. Most PULs are non-EPs (Condous et al., 2004a), and
therefore the most important diagnostic problem is the correct
classification of the EPs.

The EPs within this PUL population pose the greatest risk—
they are the most important cause of maternal death in early
pregnancies (Lewis and Drive, 2004). Previously, the diagnosis
of EPs was based on the classical triad of amenorrhoea, lower
abdominal pain and vaginal bleeding. This is in contrast to the
current situation where women present earlier with less spe-
cific symptoms. Various thresholds based on serum HCG and
progesterone levels have been proposed resulting in cut-off
models (Kadar et al., 1981; Condous et al., 2002). Other meth-
ods have included a single-visit strategy and also the subjective
interpretation of biochemical data by an expert (Condous et al.,
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2004b, 2005a). These methods were capable of detecting failing
PULs and IUPs, but they produced too many false-positives.
This justified the use of mathematical modelling techniques to
predict EPs.

Recently, logistic regression has been applied to predict the
outcome of PUL (Condous et al., 2004a) with satisfactory
results for predicting EPs. Bayesian networks provide a more
complex framework than logistic regression and allow arbi-
trary relations between all the variables (Pearl, 1988; Neapolitan,
2005). Moreover, a Bayesian network is a white-box model
and allows the incorporation of expert knowledge into the
model at various levels. Using prior information from experts,
we can direct the model-building process and combine this
information with the data.

The aim of this study was to evaluate the use of discrete-
valued Bayesian networks in combination with different forms
of prior information when predicting the outcome of PULs.
Previous work (Condous et al., 2004a; Van Calster et al.,
2005) demonstrated that predicting failing PULs and IUPs is
very accurate, whereas predicting EPs in a PUL population is
challenging. Therefore, we concentrated on the use of discrete-
valued Bayesian networks to discriminate EPs from non-EPs.
The results are compared with logistic regression (Condous
et al., 2004a) for the prediction of EPs.

Materials and methods

Data collection

Data were collected prospectively from consecutive women who pre-
sented with a PUL, at St George’s Hospital, London between June
2001 and October 2004. All women underwent TVS using a 5-MHz
probe (Aloka SSD 900, 2000 or 4000, Keymed, Southend, UK and

Aloka, Tokyo, Japan). Blood was taken to measure the levels of serum
HCG (World Health Organization, Third International Reference 75/
537) and progesterone (Roche Elecsys 2010 Progesterone II test)
using automated electrochemiluminescence immunoassays (ECLIAs).
These levels were measured at 0 and 48 h. The data set contained 10
variables (Table Ia and b) among which were both discrete and contin-
uous variables. The discrete variables were (i) the presence of vaginal
bleeding, (ii) the presence of free fluid in the pouch of Douglas, (iii)
the character of the midline echo (intact or disrupted) and (iv) the
presence of lower abdominal pain. The continuous variables were (i)
age, (ii) the thickness of the endometrium (in mm), (iii) the number of
gestation days, (iv) the HCG ratio defined as the HCG at 48 h (in U/l)
divided by the HCG at 0 h and (v) the progesterone level at 0 and 48 h
(in nmol/l). The continuous variables were discretized according to
discretization intervals specified by an expert in early pregnancy. This
was possible because this expert based the intervals on past experi-
ence and chose thresholds that were empirically known to reflect clin-
ical states. Moreover, these discretization intervals were specified by
balancing two issues, keeping as much information as possible while
limiting the number of intervals to reduce the number of parameters.

The women were followed-up until a final diagnosis could be estab-
lished: a failing PUL, an IUP or an EP. A failing PUL was confirmed
when there were persistent negative sonographic findings in the pres-
ence of falling serum HCG levels, ultimately reaching the detection
level (i.e. lower than 5 U/l). An IUP was confirmed sonographically
during follow-up with the presence of a gestational sac eccentrically
placed within the endometrial cavity. The diagnosis of an EP was based
on the positive visualization of an adnexal mass (Condous, 2005b).

Ultrasonographic diagnosis of an EP was based on the following
grey-scale appearances: (i) an inhomogeneous mass adjacent to the
ovary and moving separate to this—we have called this the blob sign
(Condous et al., 2005b); or (ii) a mass with a hyper-echoic ring around
the gestational sac referred to as the bagel sign (Condous, 2005b) or
(iii) a gestational sac with a fetal pole with or without cardiac activity

Table I. Descriptive statistics of the model-building and prospective data set for the continuous variables (a) and discrete variables (b) separately for ectopic and 
non-ectopic pregnancies

aIn this case, we used medians, because the standard deviation was in some cases larger than the mean.

Variable name Model-building data set Validation data set

Non-ectopic Ectopic Non-ectopic Ectopic

(a) Continuous variables: mean (minimum–maximum)
Age 30 (15–48) 30 (19–38) 30 (15–49) 30 (22–39)
Endometrial thickness (mm) 11 (1.5–35) 11 (2.5–26) 11 (2–31) 11 (3.8–22)
Gestation days (days) 42 (13–100) 44 (23–85) 43 (10–93) 42 (19–93)
HCG ratio [HCG 48 h (U/l)/HCG 0 h (U/l)] 1.3 (0.11–4.8) 1.3 (0.33–3.1) 1.2 (0.08–4.2) 1.3 (0.34–2.4)
Progesterone 0 h (nmol/l)a 20 (1–190) 26 (3–191) 10 (1–191) 3 (4–89)
Progesterone 48 h (nmol/l)a 10 (1–190) 24 (2–178) 6 (1–250) 22 (5–84)

(b) Discrete variables: n (%)
Bleeding

No 260 (47) 14 (32) 100 (43) 9 (41)
Yes without clots 224 (40) 25 (57) 101 (43) 13 (60)
Yes with clots 71 (13) 5 (11) 34 (14) 0 (0)

Free fluid
No 450 (81) 36 (82) 198 (84) 20 (91)
Yes 105 (19) 8 (18) 37 (16) 2 (9)

Midline echo
Intact 475 (86) 37 (84) 205 (87) 18 (82)
Disrupted 80 (14) 7 (16) 30 (13) 4 (18)

Pain
No 294 (53) 26 (59) 119 (51) 15 (68)
Yes 261 (47) 18 (41) 116 (49) 7 (32)
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(Condous, 2005b). The diagnosis was subsequently confirmed at
laparoscopy with histological confirmation of chorionic villi in the
Fallopian tube in those women who underwent surgery. If an EP was
not visualized, but there was a high index of suspicion based on symp-
tomatology, clinical findings and suboptimal rises of serial serum
HCG levels, a laparoscopy was performed with or without an evacua-
tion of the uterus.

Before starting the model building, the data set was randomly split
into a set that we called the ‘model-building data set’ and a set that we
called the ‘validation data set’. The splitting was done in a stratified
manner to ensure that the proportion of EPs in both sets was essen-
tially the same.

All hypothesis tests were two-sided, and the level of significance
was 0.05.

Bayesian networks

Bayesian networks were applied to detect the EPs in the PUL popula-
tion. A Bayesian network is a probabilistic model (Pearl, 1988) that
consists of two parts: a dependency structure and local probability
models. The dependency structure specifies how the variables are
related to each other by drawing directed edges between the variables
without creating any directed cycles. Usually, a variable only depends
on a few other variables, called the parents. The second part of this
model, the local probability models, specifies how the variables
depend on their parents. We used discrete-valued Bayesian networks,
which means that these local probability models can be represented
with conditional probability tables (CPTs). Such a table specifies the
probability that a variable takes a certain value, given the value of its
parents. Figure 1 shows an example of a small Bayesian network with
three variables and the corresponding CPTs.

Learning Bayesian networks

Learning discrete-valued Bayesian networks from data proceeds in
two steps. First, the dependency structure that best explains the data is
constructed. This is done using a heuristic search strategy combined
with a scoring metric (Cooper and Herskovits, 1992; Heckerman
et al., 1994). The scoring metric reflects the fit of the structure to the

data, possibly combined with prior knowledge. The best dependency
structure is found by iteratively making all small changes to the cur-
rent dependency structure and adopting the change with the highest
score. Because of the greedy nature of this search strategy, it is likely
to come up with a suboptimal model, and therefore the model-
building process is repeated several times with different initialization
parameters. Then, the model with the highest score is selected. The
second step consists of estimating the parameters of the local proba-
bility models for the selected model. This amounts to filling in a CPT
for every variable and every possible value of its parents using the
data.

Expert prior information

The building of Bayesian networks allows the incorporation of prior
knowledge in combination with the data. In this case, the prior know-
ledge was gathered from an expert in the field of early pregnancy. It
was included in the model building during structure learning in two
ways: at the structure level and at the parameter level. This was done
by specifying both a prior distribution for the structure (the structure
prior) and a prior distribution for the parameters (the parameter prior).
Our expert first specified the structure prior, which yields the proba-
bility that an edge will occur in the dependency structure. In Figure 1,
for example, this means that we have to specify the probability for
each directed edge between all combinations of two variables.
Because there are three variables, there are six possible edges, and
therefore six probabilities have to be specified (between two variables
there are two possible edges, one in each direction). After assessing
these prior probabilities, this results in a table that specifies the proba-
bility that a directed edge occurs from one variable to another. Our
expert assessed these prior probabilities between all the variables in
our data set. Figure 2 shows the result of this process graphically by
increasing the thickness of the edges when the prior probability
increases. Using this information, the structure prior can guide the
structure learning by estimating the prior probability of a structure
based on the knowledge of an expert.

Next, our expert specified a parameter prior. The parameter prior
consists of a complete model (the dependency structure and the corre-
sponding local probability models) based on past experience. This
amounts to first specifying the structure of a Bayesian network; usu-
ally this is based on assessing causal relations between the variables.
Figure 3 shows the structure that was specified by our expert. The
second step consists of specifying a probability table for each variable
in Figure 3 similar to the probability tables that are shown for the
Bayesian network in Figure 1. This is only feasible when the number
of variables is low and when the relationships between the variables
are sparse. In this case, the number of probability tables and their size
are small. The parameter prior is mathematically equivalent to intro-
ducing extra cases according to the subjective knowledge of an expert.
Both priors influence structure learning via the scoring metric
(Heckerman et al., 1994).

Model-building methodology

Selection of the optimal use of prior information

We evaluated the performance of the different combinations of prior
information (no priors, structure prior, parameter prior and both pri-
ors) on the model-building data set. This was done by randomizing the
model-building data set 100 times for each combination of prior
information, in a stratified way, into a set of 70% of the patients used
to build the model and a set of 30% to estimate the area under the

Figure 1. A small Bayesian network with three variables and the
corresponding conditional probability tables (CPTs). The midline
echo node has no parents; therefore, the CPT is a special case and
contains the prior probability for the different values of this variable.
The other variables, bleeding and free fluid, have midline echo as
their parent and have a separate probability distribution for each value
of their parent. This corresponds to the columns in the CPTs of bleed-
ing and free fluid.
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receiver operator characteristic curve (AUC) for predicting EPs. Then,
these 100 AUCs were averaged, and the combination of priors with
the highest average AUC was selected. The ROC curves and the
AUCs were estimated (Hanley and McNeil, 1982) and compared
(Hanley and McNeil, 1983) using custom scripts written in MATLAB
(Version 6.5 Release 13—also see Epstein et al. (2002) where the
same scripts were applied).

Model training with the optimal combination of priors

This optimal combination of prior information was used to train 100
models on the model-building data set with different initialization

parameters. The model with the highest AUC for predicting EPs on
the model-building data set was selected.

Model validation on the validation data set

The model that was selected in the previous step was used to predict
EPs in the validation data set. The AUC was calculated and represents
the performance for predicting EPs of this model on unseen data.

Logistic regression

We compared the developed models by re-training on the model-
building data set a previously developed multicategorical logistic
regression (Condous et al., 2004a) and using this model on the valida-
tion data set. M1 consists of a single variable, the HCG ratio, and was
built using stepwise logistic regression to predict the probability of
failing PUL, IUP and EP simultaneously.

Results

A total of 1003 consecutive women were classified with a PUL
between June 2001 and October 2004. Fifty-eight were lost to
follow-up, 129 were excluded from the final analysis because of
incomplete data and 18 persisting PULs were also excluded from
the final analysis. The remaining 856 PULs were used in the final
analysis for the model building and testing. The complete data
set composed of 460 (53.7%) failing PULs, 330 (38.6%) IUPs
and 66 (7.7%) EPs. The data set was split up into a model-build-
ing data set and a validation data set as described earlier. The
model-building data set had 599 records, of which 44 (7.3%)
were EPs. The validation data set contained the remaining 257
samples with 22 (8.6%) EPs. Table Ia and b show descriptive
statistics for the model-building and the validation data set.

Table II summarizes the average performance of the four
methods of incorporating prior information using randomizations

Figure 2. Visualization of the structure prior. The lines represent the structure prior where the probability was larger than zero as specified by an
expert. The thickness of the edges is proportional to the probability that the edge will occur according to the subjective knowledge of the expert.

Figure 3. The dependency structure of the parameter prior that was
specified by our expert. This dependency structure reflects the rela-
tions of the variables according to the subjective knowledge of the
expert. The corresponding conditional probability tables specified by
our expert are not shown due to lack of space.
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of the model-building data set. The best combinations of priors
are (i) using only the parameter prior and (ii) using both the priors
(the structure prior and the parameter prior). Their performance
was not significantly different (P-value = 0.47, Wilcoxon rank
sum test), and therefore these two combinations of prior informa-
tion were selected as optimal.

Next, these optimal combinations of priors (the parameter
prior and both the priors) were used to train models on the
complete model-building data set. The best model for each
combination of priors had the following performance on the
complete model-building data set: the parameter prior 0.92
AUC and both priors 0.92 AUC. These models are now
referred to as parameter prior model (PPM) and structure and
parameter prior model (SPPM), respectively.

Subsequently, PPM and SPPM were tested on the validation
data set. Figure 4 shows their ROC curves on this data set.
PPM had an AUC of 0.88 and SPPM had an AUC of 0.86.
Both ROC curves were not significantly different (Hanley and
McNeil, 1983). Figure 5 shows the dependency structures of

these two models. We chose the operating point on the ROC
curves (resulting from the model-building data set) where the
sum of the sensitivity and the specificity was maximal (De
Smet et al., 2004). The operating point for PPM corresponded
to a threshold of 0.13. The probability predicted by PPM is
considered an EP above this threshold and a non-EP below this
threshold. On the validation set, this gave a sensitivity of 77%
and a specificity of 83% for PPM. Next, the likelihood ratios
for a positive test result and a negative test result for PPM cor-
responded to 4.5 (LR+) and 0.28 (LR–), respectively. For
SPPM, the operating point was located at a probability of 0.06.
A probability predicted by SPPM is considered an EP above
this threshold and a non-EP below this threshold. This corre-
sponds to a sensitivity of 77% and a specificity of 80%, and the
likelihood ratios for a positive test result and a negative test
results correspond to 3.9 (LR+) and 0.29 (LR–), respectively.
PPM had a higher AUC and a better specificity than SPPM,
and therefore we believe PPM has the potential to be utilized in
a clinical setting.

In-depth analysis of the dependency structure of PPM shows
that the outcome is separated from the other variables by the
HCG ratio, the level of progesterone at 48 h and the number of
gestation days (see the theory of d-separation; Pearl, 1988).
This means that if the values of these variables are known, then
the other variables have no influence on the outcome. This sug-
gests that the HCG ratio, the level of progesterone at 48 h and
the number of gestation days are sufficient to predict the pres-
ence of an EP. Table IIIa and b summarize the probability of
having an EP for the first two states of the gestation day varia-
ble (the tables corresponding to the other states of the gestation
day variable can be found on the supplementary website http://
homes.esat.kuleuven.be/∼bioiuser/PUL or this website can be
used to select a value for the three important variables and
immediately assess the probability of an EP). They visualize
and summarize the behaviour of PPM when predicting the
probability that a new case is an EP. These tables summarize
the probability that a case is an EP for two specific values of
the gestation day variable while varying the value of the HCG
ratio and the value of progesterone at 48 h. We now highlight
two important conclusions that can be drawn from these tables.

First, when the HCG ratio is fixed, there is a similar trend in
the tables. When the HCG ratio is below 0.8, then the proba-
bility of an EP rises together with rising levels of progesterone
at 48 h. When the HCG ratio is equal to or above 1.66, then
the opposite trend is seen, the probability drops with rising
levels of progesterone at 48 h. Finally, when the HCG ratio is
equal to or above 0.8 and lower than 1.66, there is a more
complex relationship. The probability reaches a local max-
imum in the region where the level of progesterone at 48 h is
between 10 and 40 nmol/l, but there is a higher probability of
diagnosing an EP when the level of progesterone at 48 h is
above 80 nmol/l.

Second, the number of gestation days also has a large influ-
ence. When this variable is below 35, then the probability of
an EP is much higher when the HCG ratio is below 0.8, and
the progesterone levels at 48 h are high (Table IIIa), compared
to the case when the number of gestation days is above 35
(Table IIIb).

Table II. The average performance of the four methods of incorporating 
expert prior information using the model-building data set

This was done by randomizing the model-building data set 100 times for each 
combination of prior information, in a stratified way, into a set of 70% of the 
patients used to build the model and a set of 30% to estimate the area under the 
receiver operator characteristic curve (AUC) for predicting ectopic pregnan-
cies. Then, these 100 AUCs were averaged.

Priors Average AUC (SD)

No priors 0.82 (0.06)
Structure prior 0.81 (0.06)
Parameter prior 0.87 (0.05)
Structure and parameter prior 0.87 (0.05)

Figure 4. Comparison of logistic regression and Bayesian networks
on the prospective data set: the receiver operating characteristic
(ROC) curve of the multicategorical logistic regression model (M1)
when predicting ectopic pregnancies (EPs) and the ROC curve of
parameter prior model (PPM) and structure and parameter prior
model (SPPM). The area under the receiver operator characteristic
curve (AUC) for these models is given in the figure.

http://homes.esat.kuleuven.be/%E2%88%BCbioiuser/PUL
http://homes.esat.kuleuven.be/%E2%88%BCbioiuser/PUL
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Next, the performance of the logistic regression model M1
when predicting EPs (AUC of 0.82) was compared with PPM
and SPPM; however, this difference was not statistically signi-
ficant (Hanley and McNeil, 1983). Figure 4 shows the ROC
curve of M1 when predicting EPs and the ROC curves of PPM
and SPPM for comparison.

Discussion

This study demonstrates that Bayesian networks can be used to
predict EPs in a PUL population. The model building resulted in
two models (PPM and SPPM) that were tested on the validation
data set. Figure 4 shows that PPM had the best AUC performance
for predicting EPs. The ROC curves of PPM and SPPM also
showed that although PPM had a higher AUC, the sensitivity of
SPPM remained higher for high specificity compared to PPM.
Therefore, SPPM has an advantage. SPPM has higher sensitivity
(>40%) at high specificity (>98%) than PPM at this point. This
means that it finds more true-positives for fewer false-positives.

The performance of PPM and SPPM (Figure 4) was better
than the performance of the logistic regression model M1 when
tested on the validation data set; however, this improvement
was not significant (Hanley and McNeil, 1983). Assuming that
a real difference exists between the true AUC of PPM and M1,
the number of patients in the validation set, however, was not
sufficient to reach statistical significance. If the AUCs of these
models represent the true AUC (i.e. those that would be
achieved by infinite populations), one would need a sample
size of approximately 350 to detect—with 80% power—the
difference between these AUCs as statistically significant. A
larger prospective study is thus needed to confirm the differ-
ence between these models.

Despite the lack of a significant difference between PPM
and M1, the main advantages of Bayesian networks compared
to logistic regression are the effect of prior knowledge and the
possibility of interpreting the model.

The effect of prior knowledge

The effect of the two expert priors was investigated as a func-
tion of the data set size (data not shown). When there are few
data, the structure prior helps to learn the model faster. This
prior makes it possible to use Bayesian network techniques
even when the amount of data is limited. When combined with
the parameter prior, the AUC performance for predicting EPs
is improved. The parameter prior raises the AUC in the large
sample range. Finally, when both priors are used, we have a
combined effect: when there are few data, the model benefits
from the structure prior and when more data are used, the
model benefits from the parameter prior. This shows that sub-
jective prior information from an expert can improve the per-
formance of a model in a profound way both when the size of
the data set is small and when the size of the data set is large.

Interpretability of Bayesian networks

The dependency structure of PPM and SPPM is shown in
Figure 5. PPM had the highest AUC when tested on the
validation data set, and we focus on this model. There is a
large difference between the dependency structure of PPM

Figure 5. The dependency structure of parameter prior model (PPM) and structure and parameter prior model (SPPM) which where built using
the model-building data set. The outcome node represents the outcome variable which can be either ectopic or non-ectopic.

Table III. The probability of diagnosing an ectopic, predicted by PPM, given 
the number of gestation days is (a) below 35 and (b) equal or above 35 and 
below 42 while varying the HCG ratio and the progesterone level at 48 h

Progesterone 48 h = Y (nmol/l) HCG ratio = X

X < 0.8 0.8 ≤ X < 1.66 X ≥ 1.66

(a) Number of gestation days 
below 35
Y < 10 0.05 0.18 0.30
10 ≤ Y < 20 0.43 0.39 0.17
20 ≤ Y < 40 0.56 0.36 0.08
40 ≤ Y < 60 0.82 0.20 0.02
60 ≤ Y < 80 0.82 0.13 0.02
Y ≥ 80 0.82 0.60 0.02

(b) Number of gestation days equal
or above 35 and below 42
Y < 10 0.01 0.14 0.50
10 ≤ Y < 20 0.07 0.31 0.33
20 ≤ Y < 40 0.12 0.29 0.16
40 ≤ Y < 60 0.33 0.15 0.04
60 ≤ Y < 80 0.33 0.10 0.04
Y ≥ 80 0.33 0.52 0.04
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and the dependency structure specified by our expert as part
of the parameter prior (Figure 3). Our expert characterized
most of the variables as caused by the outcome variable,
whereas in the final model, the influence of most of the var-
iables (excluding the progesterone levels) is mediated by
the HCG ratio. This suggests a central role of the HCG vari-
able when predicting EPs.

Furthermore, the absence of the age and the pain variable in
PPM suggests that they are not related to any of the other vari-
ables. The pain variable could be of low relevance because this
is a rather subjective variable. The absence of the age variable
was no surprise because this variable was also judged absent
by the expert in the structure prior (Figure 2) and in the
dependency structure of the parameter prior (Figure 3).

PPM was discussed in detail in the Results section. Table IIIa
and b together with the tables corresponding to the other states
of the gestational age variable (see supplementary website)
show the behaviour of PPM. Because only the number of ges-
tation days, the HCG ratio and the progesterone level at 48 h
have a direct influence on the outcome (Figure 5), we can eval-
uate the model at every instantiation of these three variables.
This can be done using the tables as charts or using, for
example, Microsoft Excel and assess the probability of having
an EP, given the number of gestation days, the HCG ratio and
the progesterone level at 48 h. These tables can be downloaded
from the supplementary website or this website can be used to
select a value for the three important variables and immedi-
ately assess the probability of an EP. Therefore, these tables
are a complete summary of PPM and show the relationship
between the outcome and the three important variables: the
number of gestation days, the HCG ratio and the progesterone
level at 48 h.

The complete PPM model is still interesting because it
allows predicting the probability of an EP when there are miss-
ing values among the HCG ratio, the level of progesterone at
48 h or the number of gestation days. More generally, PPM
allows for the estimation of any missing value in future cases.
The full model also shows the relations between the variables
and can be updated with future data.

The disadvantage of this methodology is that continuous
variables have to be discretized. It is inevitable that some
information is lost in the process of discretization. This prob-
lem cannot easily be solved because there are often both con-
tinuous and discrete variables present when facing clinical
decision-support problems. Because mixed Bayesian networks
(with both continuous and discrete variables) are mathemati-
cally more complex and need approximate methods for classi-
fication, we need to discretize the continuous variables or
transform the discrete variables to a continuous domain. We
chose to do the former because the latter is less intuitive in the
case of nominal data (i.e. discrete variables where the data
have been classified in qualitative unordered categories, such
as the bleeding variable). Moreover, collecting prior informa-
tion for continuous-valued or mixed Bayesian networks is less
straightforward.

Next, when one of the important variables is unknown, the
Bayesian networks described in this study need more informa-
tion. Then, depending on which variable is missing, clinical

information (presence of vaginal bleeding and lower abdomi-
nal pain), ultrasound information (endometrial thickness and
character of the midline echo) or more biochemical informa-
tion (progesterone levels at 0 h) will be required. Therefore,
when one of the important variables is missing, the Bayesian
networks might be more costly and time consuming to use in
clinical practice, and because, in this case, they partly rely on
subjective variables (e.g. pain) and the sonographer’s skills,
they might be more prone to variation in performance between
different centres. However, it is important to stress that, in the
presence of missing data for one or more of the three important
variables, PPM can still be used to predict the probability of an
EP at the cost of having to measure more variables.

We conclude that discrete-valued Bayesian networks can be
used to predict the presence of an EP. Furthermore, PPM has
extra advantages because it is based on ‘more’ data through the
use of prior information and it incorporates nonlinear relation-
ships between the variables. PPM is highly interpretable and
could easily be used. However, prospective interventional mul-
ticentre studies are needed to test and compare their perform-
ance and cost in different clinical settings.
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