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Abstract
Gliomas are the most common primary brain tumors with
heterogeneous morphology and variable prognosis. Treat-
ment decisions in patients rely mainly on histologic classifica-
tion and clinical parameters. However, differences between
histologic subclasses and grades are subtle, and classifying
gliomas is subject to a large interobserver variability. To im-
prove current classification standards, we have performed
gene expression profiling on a large cohort of glioma samples
of all histologic subtypes and grades. We identified seven
distinct molecular subgroups that correlate with survival.
These include two favorable prognostic subgroups (median
survival, >4.7 years), two with intermediate prognosis (medi-
an survival, 1–4 years), two with poor prognosis (median
survival, <1 year), and one control group. The intrinsic
molecular subtypes of glioma are different from histologic
subgroups and correlate better to patient survival. The prog-
nostic value of molecular subgroups was validated on five
independent sample cohorts (The Cancer Genome Atlas,
Repository for Molecular Brain Neoplasia Data, GSE12907,
GSE4271, and Li and colleagues). The power of intrinsic
subtyping is shown by its ability to identify a subset of prog-
nostically favorable tumors within an external data set that
contains only histologically confirmed glioblastomas (GBM).
Specific genetic changes (epidermal growth factor receptor
amplification, IDH1 mutation, and 1p/19q loss of heterozy-
gosity) segregate in distinct molecular subgroups. We iden-
tified a subgroup with molecular features associated with
secondary GBM, suggesting that different genetic changes
drive gene expression profiles. Finally, we assessed response
to treatment in molecular subgroups. Our data provide
compelling evidence that expression profiling is a more ac-
curate and objective method to classify gliomas than histo-

logic classification. Molecular classification therefore may
aid diagnosis and can guide clinical decision making. [Cancer
Res 2009;69(23):9065–72]

Introduction
Gliomas are the most common type of primary brain tumor in

adults (1, 2). Despite advances in therapy, the prognosis for most
glioma patients remains dismal. Based on their histologic ap-
pearance, gliomas can be divided into two major subtypes ac-
cording to the 2007 WHO classification (1): astrocytic tumors,
including pilocytic astrocytomas (PA), astrocytomas, and glio-
blastomas (GBM), and oligodendroglial (OD) tumors, including
pure OD tumors and mixed oligoastrocytic (MOA) tumors. Tu-
mors are further divided into grades I (PA), II (low grade), III (an-
aplastic), and IV (GBM) depending on the presence of anaplastic
features (1). Patient survival, time to tumor progression, and re-
sponse to therapy are all associated with subtype and grade of
the tumor (1). In glioma patients, the histologic classification
of tumors, often combined with perceived clinical prognostic fea-
tures, guides treatment decisions. However, histologic classifica-
tion of gliomas is troublesome and subject to interobserver
variation (3).
Expression profiling provides an objective method to classify tu-

mors (4, 5). Thus far, previous studies have shown that expression
profiling correlates better with prognosis than histology (6) and
may even be used to predict patients' prognosis (7–11). However,
these studies have used external information (histology or clinical
parameters) to build molecular classifiers. Furthermore, many
studies were performed on a more restricted number of histologic
diagnoses and/or tumor grades, contained incomplete clinical
annotation, or included a relatively small number of patients
(6–9, 12–19). Although these studies show that expression profil-
ing can predict outcome based on supervised analysis, thus far
only one study has identified intrinsic (unsupervised) subtypes
of glioma and correlated them with patients' prognosis (20). How-
ever, no study has compared the prognostic and predictive value
of molecular classification methods with that of histologic sub-
typing in glioma.
In this study, we therefore performed expression profiling on a

large cohort of clinically annotated glioma samples of all histologic
subtypes and grades. We provide strong evidence that the intrinsic
molecular subtypes of gliomas correlate better with survival than
histologic diagnosis. Furthermore, our data indicate that certain
molecular subgroups clearly benefit from treatment. Our results
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were validated on several large independent external data sets. Mo-
lecular classification therefore may aid diagnosis and may be used
to guide clinical decision making.

Materials and Methods
Patients and tumor samples. Glioma samples were collected from the

Erasmus University Medical Center tumor archive (n = 276) from patients
(1989–2005), including seven repeat samples. Samples were collected im-
mediately after surgical resection, snap frozen, and stored at −80°C. Use
of patient material was approved by the Institutional Review Board. Med-
ical history is stated in Supplementary Table S1. Survival time was defined
as the period from date of surgery to date of death. If unavailable, date of
last follow-up was used. Repeat samples were not included in survival anal-
ysis. All samples were visually inspected at the time of this study on their
extent of tumor (J.M.K.). All histologic diagnoses were made on formalin-
fixed, paraffin-embedded H&E sections and were reviewed (J.M.K.) blinded
to the original diagnosis according to the 2007 WHO classification (1).
GBMs were defined as secondary when symptoms occurred more than
1.5 y before histologic diagnosis or following relapse of a lower-grade glio-
ma. Eight additional control samples (normal adult brain) were obtained
from the Erasmus University Medical Center (n = 4) and the Dutch Brain
Bank (n = 3) or purchased (n = 1; Qiagen).

Nucleic acid isolation, cDNA synthesis, and array hybridization.
Total RNA and genomic DNA were isolated from 20 to 40 cryostat sections
of 40-μm thickness using Trizol (Invitrogen) according to the manufac-
turer's instructions (14) and further purified on RNeasy mini columns
(Qiagen). RNA quality was assessed on a Bioanalyzer (Agilent). One to two
micrograms of high-quality RNA [i.e., RNA integrity number >6.5 (21)] was
used for our experiments. Double-stranded cDNA synthesis and labeled
cRNA synthesis were performed according to the Affymetrix Eukaryotic
One-cycle cDNA synthesis protocol. Affymetrix HU133 Plus 2.0 microarrays
were hybridized overnight with 10 μg of biotin-labeled cRNA. Genechips
with a glyceraldehyde-3-phosphate dehydrogenase 5′/3′ ratio >4, present
calls <30%, unsuccessful RT controls, or a background >200 were excluded.
Robustness of sample processing was assessed using eight biological repli-
cates and three technical replicates. Replicates were not included in any
analysis. Sample labeling and array hybridization on 250K NspI arrays was
performed using high-quality genomic DNA according to the Genechip
Mapping 500K Assay Manual (n = 40). Sample labeling and array hybridi-
zation on single-nucleotide polymorphism (SNP) 6.0 arrays were performed
using Trizol-extracted, Repli-G (Qiagen)–amplified genomic DNA by AROS
Applied Biotechnology AS according to standard Affymetrix protocols
(n = 15).

Genetic aberrations. Loss of heterozygosity (LOH) of 1p19q was deter-
mined by microsatellite analysis or inferred from genotyping arrays. Micro-
satellites were amplified by PCR and analyzed as described (14). Allelic
losses were statistically determined as described (22). Mutations in exon 4
of IDH1 were determined by direct sequencing (Supplementary Table S2).
Apart from experiments on 250K NspI arrays, all experiments used Trizol-
extracted, Repli-G–amplified genomic DNA as starting material. Amplifica-
tion of EFGR was determined by semiquantitative PCR as described (14).

Unsupervised clustering analysis. Expression levels of 17,527 genes
were extracted from Affymetrix HU133 Plus 2.0 arrays using updated array
annotation (23). Next, hierarchical ordered partitioning and collapsing
hybrid (HOPACH) clustering was used to identify molecular subgroups
in gliomas on 5,000 genes with highest variance (24). Nonparametric
bootstrapping was used to estimate the probability that each sample be-
longs to a cluster (i.e., fuzzy clustering) and thus determine cluster sta-
bility. Samples were assigned to a cluster when at least 50% of bootstraps
allocated the sample to that specific cluster.
The Cancer Genome Atlas (TCGA) and GSE4271 data sets used HU133A

microarrays; thus, the actual probes used to define a probe set may differ
between this and our data set. Cluster validation was performed by repre-
senting each of the molecular clusters in our data set by its centroid and
classifying external samples to their nearest centroid. Samples belonging to

the original data set that were not assigned to a cluster were similarly as-
signed to the nearest centroid. Robustness of external validation was esti-
mated with the in-group proportion (IGP) cluster quality measure (25). To
validate the groups, the IGP scores are compared with a null distribution of
IGPs. A P value for each IGP was calculated based on permutation tests.
Both HOPACH and IGP were available as R packages.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA)
was done for each cluster versus the remaining samples against the
MSigDB gene ontology gene sets (26, 27). Gene sets that are overexpressed
or underexpressed in at least one cluster with P value of <0.01 and false
discovery rate (FDR) q value of <0.05 were selected. Enrichment scores were
calculated by the negative and positive logarithm (base 10) of the FDR q
values for the overexpressed and underexpressed gene sets, respectively,
such that overexpressed gene sets are scored on a positive scale and under-
expressed gene sets on a negative scale.

Data analysis. Statistical processing of data was performed using Excel,
Access, Stata 10.0, and Prism 5.02 (GraphPad). The significance of prognos-
tic factors was determined with a multivariate analysis using Cox regres-
sion. Differences between Kaplan-Meier survival curves were calculated by
the log-rank (Mantel-Cox) test. Comparisons between mean survivals of
different groups were assessed by unpaired t tests, and comparisons be-
tween frequencies by the Fisher's exact test.

Results

Patient characteristics. A total of 276 glioma samples of fol-
lowing histology were included in this study: 8 astrocytomas
grade 1 (PAs), 13 astrocytomas grade 2 (AII), 16 astrocytomas
grade 3 (AIII), 159 astrocytomas grade 4 (GBM; 106 primary
and 53 secondary), 28 MOAs (3 grade 2 and 25 grade 3), and
52 ODs (8 grade 2 and 44 grade 3). Male-to-female ratio was
2.1:1, median age at diagnosis was 50.2 years (range, 11.7–81.2),
and mean Karnofsky performance score (KPS) was 78.9. Molecular
clustering is an independent prognostic factor (Table 1) and re-
mains independent when the analysis is performed on GBMs only
(Supplementary Table S3). Age at time of diagnosis and KPS are
well-documented prognostic factors in glioma (28–31). However,
age at diagnosis does not remain an independent factor when tak-
ing molecular markers into account, as they mostly occur in tumor
types associated with lower age at onset (IDH1, 1p19q). Due to the
long period of inclusion, patients did not receive uniform treat-
ment. One hundred and seventy-four (63%) patients were treated
with radiotherapy and 24 (8.5%) with combined chemoradiation
therapy, and a “wait and see” policy was applied to 11 (4%) patients
until disease progression. Sixty-eight (24.5%) patients only received
supportive treatment after diagnosis because of poor performance
status, high age at diagnosis, rapid disease progression, or refusal
of any other treatment by the patient. Detailed patient character-
istics are listed in Supplementary Table S1.
Molecular clusters differ from histologic subgroups. Princi-

ple components analysis based on the 5,000 most variable genes in
the data set highlights the relative difference and similarity be-
tween samples (Supplementary Fig. S1). Similar clustering results
were obtained using all genes, half of the genes, or 1,000 genes. We
then identified molecular subgroups in our data set based on
similarities in gene expression levels between samples using
the HOPACH algorithm. Twenty-four distinct molecular clusters
were identified. Nonparametric bootstrapping confirmed that
most samples indeed belong to a defined cluster (fuzzy cluster-
ing). Only 17 samples were assigned to a cluster different from
the original after bootstrapping, indicating the high stability of
the clusters (see Materials and Methods). More specifically, all
of these samples had very sparse cluster memberships, meaning
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that for most of these samples the remaining cluster member-
ship was to one or very few clusters. Clustering of samples and
bootstrapping results are shown in Supplementary Fig. S2 and
Supplementary Table S4.
We then focused our analysis on the five largest clusters con-

taining >10 samples each (clusters 9, 17, 18, 22, and 23) and two
smaller subgroups that are molecularly (Supplementary Fig. S1)
and histologically distinct: a control sample cluster 0 (n = 8; a merge
of clusters 0, 1, and 3) and cluster 16 that contains PAs (n = 6; amerge
of clusters 14, 15, and 16) and 3 recurrences of PAs. All samples were

then reassigned to one of these seven clusters. After reassignment,
clusters 0, 9, 16, 17, 18, 22, and 23 contained 23, 44, 10, 38, 64, 26, and
79 samples, respectively.
All clusters contain a wide variety of histologic diagnosis and

malignancy grades. However, distinct histologic subtypes segregate
into different molecular clusters. For example, clusters 18, 22, and
23 predominantly contain GBMs; cluster 9 contains most of the
ODs (grade 2 and 3); and six of eight PAs cluster in group 16.
Cluster 17 is the most histologically diverse cluster. The histo-
logic composition of all molecular subgroups is shown in Fig. 1A.

Table 1. Multivariate analysis (Cox regression analysis) on all samples

Hazard ratio SE z P > [z] 95% Confidence interval

Molecular cluster 1.43 0.205 2.51 0.012 1.081–1.896
Histologic type 0.72 0.192 −1.24 0.216 0.425–1.213
Histologic grade 0.67 0.439 −0.62 0.537 0.182–2.428
KPS 0.96 0.019 −2.32 0.02 0.920–0.993
Age at diagnosis 1.01 0.019 0.33 0.744 0.970–1.044
Sex 0.35 0.145 −2.53 0.011 0.155–0.789
Extent of surgery 0.67 0.147 −1.84 0.066 0.432–1.028
Chemotherapy 0.90 0.090 −1.03 0.304 0.741–1.098
EGFR amplification 1.22 0.318 0.75 0.451 0.730–2.031
LOH 1p 0.37 0.382 −0.96 0.336 0.050–2.782
LOH 19q 2.29 2.107 0.9 0.368 0.377–13.898
IDH1 mutation 0.55 0.272 −1.21 0.225 0.206–1.451

Figure 1. Molecular subgroups are distinct from histologic subgroups and correlate with survival. A, composition of individual molecular subgroups by their histologic
subtypes. Each molecular subgroup is composed of a variety of different histologic subtypes, although distinct histologic subtypes predominate distinct molecular
subgroups. B, Kaplan-Meier survival analysis of molecular clusters. Intrinsic gene expression profiles identify two molecular clusters with poor prognosis (18 and 23), two
with intermediate prognosis (17 and 22), and two with relatively favorable prognosis (9 and 16).

Intrinsic Gene Expression Profiles of Gliomas
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Because control brain samples are markedly different in gene
expression profile from the large majority of glioma samples
(Supplementary Fig. S1), we were surprised that cluster 0 con-
tained 15 glioma samples in addition to the 8 control brain
samples. We hypothesized that the tumor samples in cluster
0 might contain a large amount of nonneoplastic tissue. Indeed,
histologic reexamination of all samples by a blinded experi-
enced neuropathologist (J.M.K.) confirmed that all 15 samples
that were reassigned to cluster 0, but none of the other sam-
ples, contained a substantial (>50%) amount of nonneoplastic
brain tissue. Because of the high amount of nonneoplastic tis-
sue in the samples in this cluster, we were unable to extract a
clear glioma-derived expression profile and, therefore, did not
involve cluster 0 in the survival analysis.
Molecular clusters correlate with survival. Kaplan-Meier sur-

vival analysis highlighted that the molecular clusters differ sig-
nificantly with respect to their survival (P < 0.0001). As

illustrated in Fig. 1B, molecular clusters are separated in two
favorable prognostic subgroups (9 and 16; median survival of
6.06 and >4.7 years, respectively), two subgroups with intermedi-
ate prognosis (17 and 22; median survival of 1.1 and 3.32 years,
respectively), and two subgroups with poor prognosis (18 and
23; median survival of 0.68 and 0.67 years, respectively). Cluster
16 has a median survival of >4.7 years, as 6 of 10 patients were
still alive at the time of last follow-up. Clinical characteristics of
the molecular subgroups are summarized in Table 2. In repeat
samples, cluster assignment either remained identical or changed
to a molecular subgroup with poorer prognosis (Supplementary
Table S5).
Cox regression analysis showed that molecular clustering is an

independent significant prognostic variable in survival (P < 0.012;
Table 1). Other factors in survival are age at diagnosis, KPS, and sex
(28–31). These results are illustrated by Supplementary Fig. S3 and
show that additional prognostic factors can help estimate prognosis.

Table 2. Clinical characteristics of the molecular subgroups

Cluster 9 Cluster 16 Cluster 17 Cluster 18 Cluster 22 Cluster 23

Median age at diagnosis (y) 48.50 36.50 38.30 58.00 46.00 54.70
Median survival (y) 6.06 Undefined 3.32 0.68 1.12 0.67
Mean KPS 82.9 70.9 89.2 77.0 79.2 79.7

NOTE: Median age at diagnosis, median survival, and mean KPS per molecular cluster. Median survival of cluster 16 could not be defined because 6 of
10 patients were still alive at time of last follow-up.

Figure 2. Molecular subgroups correlate better with survival than histologic subgroups. Comparison between molecular and histologic classification. A, samples of
the same histologic diagnosis (GBM) were separated by their molecular profile into those present in poorest prognostic molecular subgroups (18, 22, and 23) and
those present in relatively favorable prognostic molecular subgroups (9, 16, and 17). The median survival of all GBMs was 0.73 y, but patients with a GBM in a
poor molecular subgroup perform worse than patients with a GBM in a relatively favorable subgroup (0.70 versus 2.1 y; P < 0.01). B, samples present in poor
molecular subgroups (median survival, 0.82 y) cannot be further separated by their histologic appearance into those of poor (GBMs) and less poor (all other tumors)
prognostic subgroups (median survival, 0.71 and 1.04 y). C, similar to A but using ODIIs and ODIIIs as histologic subgroup (median survival, 6.04 y) further separated
by their poor and relatively favorable molecular subgroup (median survival, 6.87 and 1.78 y; P < 0.023). These results show that molecular clustering has
additional prognostic value to histologic diagnosis, whereas histologic diagnosis does not have additional prognostic value to molecular subgroups.
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Molecular clusters correlate better with patient survival
than histologic subgroups. Because histology also correlates with
patient survival, we compared the accuracy of survival prediction
by the two classification methods. To this end, we separated sam-
ples of the same histologic diagnosis by their molecular profile.
Conversely, samples of the same molecular subgroup were further
separated by their histologic appearance. The median survival of
all GBMs used in our study was 0.73 years (range, 0.02–9.8). How-
ever, GBMs in the three poorest prognostic molecular subgroups
(18, 22, and 23) have a significantly shorter median survival com-
paredwithGBMs in the threemost favorablemolecular clusters (9, 16,
and 17; 0.70 versus 2.05 years; P = 0.0024; Fig. 2A). Conversely, with-
in the poor prognostic subgroups (18, 22, and 23), no significant
difference was observed in median survival between samples with
poorest histologic diagnosis (GBM) versus those with a histologi-
cally more favorable prognosis (all non-GBM; Fig. 2B). Similar to
GBMs, ODs in the favorable molecular cluster 9 have a significantly
better prognosis than the ODs in the poor prognostic subgroups
(P = 0.02; Fig. 2C). Our data show that unsupervised molecular
clustering has additional prognostic value to histologic diagnosis,
whereas histologic diagnosis does not add prognostic value to

molecular subgroups. The intrinsic molecular subtypes of glioma
therefore predict survival more accurately than histology in our
data set.
Molecular analysis. We next evaluated the frequencies of

known molecular markers in gliomas within the subgroups. LOH
of 1p19q was determined in 149 of 276 (54%) samples. Virtually
all samples in cluster 9 have LOH on 1p (85%) or on 19q (85%;
regardless of histology), with 82% of samples showing combined
loss. 1p/19q LOH was observed at significantly lower frequencies
in samples not associated with cluster 9, with 11% showing com-
bined loss (P < 0.0001, Fisher's exact test). Epidermal growth fac-
tor receptor (EGFR) status was determined in 151 (55%) samples
(unbiased toward histologic diagnosis). EGFR amplification was
predominantly observed in clusters 18 and 23 (71%; 27%); no am-
plification was seen in clusters 9, 17, and 22. Sequencing of IDH1
exon 4 was successfully evaluated in 226 (82%) cases. Mutations
in the highly conserved Arg132 were predominantly identified in
clusters 9 (69%) and 17 (70%). Clusters 16, 18, 22, and 23
contained 13%, 16%, 45%, and 22% R132 mutations, respectively.
A complete overview of genetic changes is stated in Fig. 3A and
Supplementary Table S6.

Figure 3. Genetic and pathway differences
between molecular subgroups. A, distinct genetic
changes are associated with distinct molecular
clusters. Amplification of EGFR is predominantly
observed in clusters 18 and 23, whereas mutations
in IDH1 are more prevalent in clusters 9 and 17.
These data strongly suggest that distinct molecular
subtypes have different underlying causal genetic
changes. B, clustering of GSEA scores. A to O
correspond to gene set clusters that are differentially
expressed in at least one subtype. These functional
categories were investigated by extracting
overlapping genes in >10% of all gene sets in a
particular cluster. Functional categories: A, cyclic
AMP binding, neurogenesis, GnRH signaling,
long-term potentiation; B, protein transport and
regulation; C, no significant functional categories;
D, ribosome, metabolic processes, histone and
chromatin modification, RNA transcription; E, fatty
acid metabolism; F, oxidative phosphorylation,
transport; G, no significant functional categories;
H, G-protein coupled receptor, neuropeptide binding;
I, RNA polymerase and transcription; J, amino acid
transport; K, ribosome, mitochondrion; L, cell-cell
signaling, nervous system development, ion channel
activity; M, immune response; N, Janus-activated
kinase–signal transducer and activator of transcription
signaling, response to stress and wounding,
apoptosis, immune response; O, cell cycle,
mitosis, response to DNA damage.

Intrinsic Gene Expression Profiles of Gliomas
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Figure 3B shows the clustering of the GSEA enrichment scores
using average linkage hierarchical clustering using cosine similar-
ity. Our data show that each molecular subgroup has a distinct
pattern of genetic changes.
Cluster validation. Five independent external data sets were

used to validate our clustering results: The Cancer Genome Atlas8

data set (n = 236; ref. 12), the Repository for Molecular Brain Neo-
plasia Data9 data set [REMBRANDT; n = 296; National Cancer Insti-
tute (2005), assessed 2008 December; ref. 32), a data set containing
21 PAs (GSE12907; ref. 33), data set GSE4271 (8), and a data set from
a recent study (20). In all cases, the molecular clustering results cor-
relate with the composition of the data set. For example, the TCGA
data set only consists of GBMs, which is reflected by the predom-
inance of clusters 18, 22, and 23. The REMBRANDT data set has a
more diverse histologic makeup (ODs, MOAs, astrocytomas, and
GBMs), which is reflected by the recurrence of all molecular clus-
ters (Fig. 4A). Finally, GEO data set GSE12907 contains 21 PAs,
which is reflected by 20 of 21 samples being grouped in cluster 16.
When comparing the survival of molecular clusters in both the

TCGA and REMBRANDT data sets, the relative differences between
molecular subgroups are virtually identical to those identified in
our data set (Fig. 4B). For example, clusters 9 and 17 have signif-
icantly longer median survival in the REMBRANDT data set com-
pared with clusters 18, 22, and 23 (P < 0.0001). Eighteen of the GBM
samples in the TCGA data set were assigned to the relatively more
favorable molecular cluster 17. These patients indeed had signifi-

cantly longer survival (799 days) compared with those of clusters
18, 22, and 23 (420 days; P = 0.0002). Only one GBM sample of the
TCGA data set was assigned to cluster 9. This patient had the lon-
gest survival in the entire data set (9.7 years). The identification of
prognostically favorable samples in a data set that contains only
GBMs highlights the prognostic power of intrinsic expression profiles.
Analysis of genetic changes in the TCGA data set showed that

both EGFR amplification and IDH1 mutation frequencies have vir-
tually identical distribution across the different subgroups (Supple-
mentary Fig. S4; refs. 12, 34). Distributions of other frequently
mutated genes (NF1 and P53) are shown in Supplementary Fig. S5.
Furthermore, the single patient assigned to cluster 9 in the TCGA
data set indeed showed LOH on 1p19q (34), as did one of the samples
from the REMBRANDT data set assigned to cluster 9. SNP chip data
were not available for other samples of the REMBRANDT data set
assigned to cluster 9. In summary, the intrinsic glioma subgroups
identified in our study can be validated in external data sets with
respect to histologic, molecular, and clinical features.
We overlaid our clustering results onto GSE4271 (8), which again

resulted in similar survival between molecular subgroups (Supple-
mentary Fig. S6). The three different signatures identified by
Phillips and colleagues (proneural, proliferative, and mesenchymal;
see also ref. 35) segregated into specific molecular subgroups. For
example, the proneural signature was predominantly found in
clusters 16 and 17, whereas the proliferative and the mesenchymal
signatures were mostly found in clusters 18, 22, and 23 (Supple-
mentary Fig. S7A). Conversely, these results are confirmed when
imposing these signatures onto our data set (Supplementary
Fig. S7B). However, one of our best prognostic groups (cluster 9) is
classified as poor prognostic group (proliferative) by Phillips and

8 http://cancergenome.nih.gov
9 http://rembrandt.nci.nih.gov

Figure 4. Molecular subgroups can be confirmed in external data sets. A, composition of individual molecular subgroups by their histologic subtype. Each molecular
subgroup is composed of a variety of different histologic subtypes in the REMBRANDT data set. Similar to our set, histologic subtypes predominate distinct
molecular subgroups. B, Kaplan-Meier survival analysis of molecular clusters in the REMBRANDT data set (left) and the TCGA data set (right). Both sets
show similar trends in survival compared with our data.

Cancer Research

9070Cancer Res 2009; 69: (23). December 1, 2009 www.aacrjournals.org



colleagues. This shows that, at least for somemolecular subtypes, our
clustering method predicts prognosis more specifically. Li and col-
leagues (20) also identified intrinsic molecular subtypes of gliomas
by expression profiling. These subgroups can be confirmed in our
data set, with similar survival to reported (Supplementary
Fig. S8A). However, samples in the poor prognostic subgroup identi-
fied by Li and colleagues (G-groups) can be further separated based
on our molecular classification into a poor prognostic group
(n = 132) and a more favorable prognostic group (n = 18) with signif-
icantly better survival (P = 0.03; Supplementary Fig. S8B). Similarly,
samples that cluster in good prognostic subgroups of Li and collea-
gues (OA and OB group) can be separated by our profiles into a poor
prognostic group (n = 13) and a favorable prognostic group (n = 67;
P = 0.009; Supplementary Fig. S8C). The reverse analysis is shown in
Supplementary Fig. S9. GSEA shows that some of the pathways iden-
tified by Li and colleagues show differential distribution in our sub-
groups (Supplementary Fig. S10). This indicates that the different
clustering methods show some overlap.
Molecular clusters and treatment response. Finally, we exam-

ined whether there are differences in treatment response between
molecular subgroups. The efficacy of treatment in molecular sub-
groups could be assessed in our sample cohort as patients were trea-
ted heterogeneously. A clear effect of radiotherapy was observed in
clusters 18 and 23 (P < 0.001 and P = 0.01, respectively). In other clus-
ters, the effects were either less pronounced or contained too few
samples to reach statistical significance. However, to eliminate poten-
tial effects of sample bias, we used an external data set (GSE7696;
ref. 16) that consisted of 80 GBM patients from a randomized con-
trolled trial in which patients were treated with radiotherapy versus
combined chemoradiation. We identified the following molecular
clusters in this data set: clusters 0 (n = 4), 16 (n = 3), 17 (n = 10),
18 (n = 52), 22 (n = 4), and 23 (n = 11; Supplementary Fig. S11A).
Results showed that both clusters 18 and 23 seem to benefit from
combined chemoradiation therapy (Supplementary Fig. S11B)
compared with radiotherapy only. Other clusters contain too
few samples to assess effect of treatment.

Discussion
In this study, we have examined whether expression profiling

can serve as a more objective method to classify gliomas than his-
tology. Our data show that expression profiling identifies molecular
subgroups that are distinct from histologic subgroups and that these
molecular subgroups correlate better with patient survival. In addi-
tion, our data indicate that distinct molecular subgroups benefit from
treatment. As a confirmatory step, the molecular subgroups and their
prognostic values were validated on five independent sample cohorts.
Finally, specific genetic changes (EGFR amplification, IDH1muta-
tion, and 1p19q LOH) segregate in distinct molecular subgroups.
At present, the treatment pathway for glioma patients has been

optimized for the different histologic subtypes. However, classifica-
tion based on histologic appearance has a high degree of interob-
server variability (3). The intrinsic subtypes of glioma identified in
our study therefore provide a robust and objective alternative to
histologic classification. The power of intrinsic subtyping was
shown by its ability to identify a subset of prognostically favorable
tumors within an external data set that contains only histologically
confirmed GBMs (TCGA).
Distinct genetic changes segregate into different intrinsic molec-

ular clusters. For example, amplification of EGFR is predominantly
observed in clusters 18 and 23, whereas mutations in IDH1 are sig-

nificantly more prevalent in clusters 9 and 17. All but four samples
in cluster 9 have LOH on 1p19q regardless of histologic subtype.
This observation is confirmed in external data sets.
Interestingly, the molecular changes and clinical features associ-

ated with secondary GBMs (high mutation rate of IDH1, absent
EGFR amplification, and lower age at time of diagnosis) are re-
flected in a distinct molecular subgroup (cluster 22) that indeed
is enriched in the number of secondary GBMs. Differences in ge-
netic changes between molecular subtypes can indicate that novel
targeted agents may only be effective in distinct molecular sub-
types (Supplementary Fig. S12).
Cluster 0 contains all nonneoplastic tissue samples in our study

(n = 8), in the REMBRANDT data set (n = 21), and in GSE7696 (n = 4).
However, cluster 0 also contains several glioma samples in our data
set (n = 15), in the TCGA data set (n = 3), and in the REMBRANDT
data set (n = 20). In our data set, samples that are associated with
cluster 0 have significant amounts of nonneoplastic tissue (>50%).
Similarly, two of three samples of the TCGA data set contained
>90% nonneoplastic tissue (data on other sample not available)
and have virtually no genetic aberrations. The samples of the
REMBRANDT data set that associate with cluster 0 might there-
fore also contain substantial amounts of nontumor tissue.
Our data indicate that both clusters 18 and 23 benefit from chemor-

adiation. This benefit seems to be reflected by an increase in overall
survival between our data set, in which few samples received chemor-
adiation, and the TCGA, in whichmost samples received chemoradia-
tion (0.68 versus 0.89 years and 0.67 versus 1.02 years in clusters 18 and
23, respectively). However, in the TCGA data set, cluster 22 does not
show improved survival (1.1 versus 0.98 years), and it is possible that
current treatment standards do not affect this specificmolecular sub-
group. Unfortunately, too few samples from this chemoradiotherapy
(16) were assigned to cluster 22 to assess treatment efficacy.
Another study also identified intrinsic molecular subtypes of gli-

omas by expression profiling (20). Although these molecular clus-
ters also correlate with patient survival, a comparison with
histologic diagnosis and molecular markers was not attempted.
In addition, several histologic subtypes were not included (control
tissue, MOAs, and PAs) in building molecular glioma classifiers.
Our data show that our molecular clustering has additional prog-
nostic value both to histologic diagnosis (20) and to alternative
clustering methods (8, 20).
There are several limitations using unsupervised hierarchical

clustering for subclassification based on mRNA expression profiles.
For example, tumor types that are not included in present study
(e.g., brain metastasis) and rare tumor types with insufficient
sample size to form a separate molecular cluster will be incor-
rectly classified. Histologic examination to detect such histologies
therefore remains required. To some extent, molecular cluster
definition also depends on the algorithms used (both for cluster-
ing and data extraction) so that individual samples may switch
between molecular subgroups.
In conclusion, our data indicate that the intrinsic subtypes iden-

tified improve on histologic classification of gliomas and are an
accurate predictor of prognosis. Molecular classification can con-
tribute to diagnosis and may form a rationale for clinical decision
making and novel targeted therapies.
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