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Abstract: Microarrays have revolutionized research in molecular biology especially
in cancer research. They allow to measure the expression of thousands of genes
and can be used to guide clinical management of cancer. However, mathematical
models based on microarray data often ignore the available clinical data, instead
of integrating clinical and microarray data. We present and evaluate three
methods for integrating clinical and microarray data using Bayesian networks: full
integration, partial integration and decision integration, and use them to predict
prognosis in breast cancer. Partial integration performs best on the test set and is
promising for other types of cancer and data.
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1. INTRODUCTION

In the past decade microarrays have changed re-
search in molecular biology. A microarray is a
collection of probes that represent a selection of
genes on a solid surface. When RNA is extracted
from a tumor sample for example and applied
onto this surface, we can measure the expres-
sion of thousands of genes. Among other applica-
tions, microarrays can be used to guide the clini-
cal management of cancer. Mathematical models
built using microarray data can be used to model
the phenotype of a tumour and, can predict the
clinical behaviour. Because of the low signal-to-
noise ratio of microarray data, integration of other
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s of information in the clinical decision pro-
s important. More reliable models can be
when multiple sources of information are
ned. However, the current focus of attention
microarray data. When available it is the
ource of information that is modeled. The
ble clinical data is usually ignored although
tains useful and independent information.
ropose methods that treat the clinical data
equal footing with the microarray data. We
ant to stress that this approach is rarely
d when studying microarray data.

ian networks have been used to achieve the



integration of clinical and microarray data. A
Bayesian network (Pearl, 1988; Neapolitan, 2004)
is a model situated in a probabilistic framework
that can be used for any type of reasoning. The
major difference between Bayesian networks and
‘classical’ system identification is that the model
is non-dynamic but includes a causal interpreta-
tion. Furthermore this model is very flexible for
integrating data sources. It is possible to combine
data sources directly or by combining them at
the decision level. Furthermore, due to the way
Bayesian networks are learned from data, we will
define a third method for integrating data sources.
To the author’s knowledge, the first two methods
have not been previously applied in this context
and the third method has not been previously
defined. We will present these three methods for
incorporating clinical and microarray data and
we will evaluate them using Receiver Operator
Characteristic curves (ROC). The best methods
for integrating the clinical and the microarray
data will be tested on an independent test set.

We will focus as an example on the prediction of
the prognosis in lymph node negative breast can-
cer (without apparent tumor cells in local lymph
nodes at diagnosis). We define the outcome as
a variable that can have two values: poor prog-
nosis or good prognosis. Poor prognosis corre-
sponds to recurrence within 5 years after diag-
nosis and good prognosis corresponds to a disease
free interval of at least 5 years. If we can distin-
guish between these two groups, patients could
be treated accordingly thus eliminating over- or
under-treatment.

2. BAYESIAN NETWORKS

2.1 Model class

A Bayesian network is a probabilistic model
(Pearl, 1988; Neapolitan, 2004) that consists of
two parts: a dependency structure (also called
a Directed Acyclic Graph) and local probability
models. An example with four binary variables
is shown in figure 1. The dependency structure
specifies how the variables are related to each
other by drawing directed edges between the vari-
ables without creating any directed cycles. The
edges define the (in)dependency relations that
exist between the variables. Usually each variable
xi only depends on a few other variables, called
the parents:

p(x1, ..., xn) =

n∏
i=1

p(xi|Pa(xi)) (1)

where Pa(xi) stands for the parents of xi; for
example, the prognosis variable in figure 1 has
two parents: gene 2 and gene 3. This means that
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. A simple Bayesian network with 4 binary
ariables.

ll joint distribution (the space of all possi-
tients) p(x1, ..., xn) can be decomposed into
endent factors. In this manner a Bayesian
rk is a sparse way of writing down the
robability distribution instead of specifying
ll joint distribution, which requires an in-
ble number of parameters. This is the most
tant idea behind Bayesian networks namely
hey allow a dramatic decrease in the number
rameters that is needed to specify a prob-
ic distribution over a number of variables.
wise for n binary variables 2n − 1 different
bilities would have to be specified; one prob-
for each instantiation of the variables. For

ple, the Bayesian network in figure 1 needs
ameters vs. 15 parameters that are needed
e full joint distribution. The second part of
odel, the local probability models, speci-

ow the variables depend on their parents.
ed discrete-valued Bayesian networks, which
s that these local probability models can be
ented with Conditional Probability Tables
s). Such a table specifies the probability that
iable takes a certain value given the value
parents. In figure 1 these tables are shown
to the nodes. The columns in each table
ent the specific instantiation of the parents
ecific node. Gene 1 has no parents therefore
ode’s table specifies a priori probabilities.

odel estimation

ing discrete-valued Bayesian networks from
roceeds in two steps: structure learning and
eter learning.

Model structure selection First the de-
ncy structure that best explains the data
structed. This is done using a scoring met-
mbined with a search strategy. The scoring
c describes the probability of the structure



S given the data, D. When we have n variables
x1, ..., xi, ..., xn with ri the number of values of
each variable and qi the number of instantia-
tions of the parents of each variable than the
scoring metric is defined as (Cooper and Her-
skovits, 1992; Heckerman et al., 1995):

p(S|D) ∝ p(S)

n∏
i=1

qi∏
j=1

[
Γ(N ′

ij)

Γ(N ′

ij + Nij)

ri∏
k=1

Γ(N ′

ijk + Nijk)

Γ(N ′

ijk)

]
, (2)

with p(S) the prior probability of the structure.
We used an uninformative prior biased towards
edges with the outcome variable for all developed
models. Therefore edges with the outcome vari-
able were more likely a priori than other edges.
Nijk are the number of cases in D having vari-
able i in state k with the j-th instantiation of
its parents in S. A superscript is added when
necessary and refers to the data set the counts
are taken from. Then Nij =

∑ri

k=1
Nijk and

N ′

ij =
∑ri

k=1
N ′

ijk. N ′

ijk are the prior counts and
correspond with a prior for the parameters. When
no knowledge is available they are estimated using
N ′

ijk = N/(riqi) (Heckerman et al., 1995) with N
the equivalent sample size. N corresponds to the
importance of the prior counts.

Equation 2 allows to score structures and now we
have to define a search strategy to find a good
model. An exhaustive search is infeasible since the
number of structures becomes intractably large
when there are much variables. Therefore we used
the greedy search algorithm K2 (Cooper and Her-
skovits, 1992). This algorithm uses a prior or-
dering of the variables to restrict the number of
structures that can be built. This means that xi

can only become a parent of xj if xi precedes xj in
the ordering. Equation 2 also shows that the score
decomposes into independent factors where each
factor represents the addition to the score from
each variable. Therefore K2 iteratively tries to find
to best parents for each variable separately. This
is done by starting with an empty set of parents
for a certain variable and incrementally adding
the parent that increases the score of the current
variable the most, taking the ordering restriction
into account. The algorithm stops when no more
parents can be added that increase the score.
Because the prior ordering of the variables is not
known in advance we repeat the model building
process for a set of random variable orderings. For
each of these orderings, a structure is learned and
the structure with the highest score is kept.

2.2.2. Model parameter identification The sec-
ond step of the model building process consists of
estimating the parameters of the local probability
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ls corresponding with the dependency struc-
In section 2.1 we reported that we are using
to model these local probability models. For
ariable and instantiation of its parents there
a CPT that consists of a set of parame-
ach set of parameters was given a uniform
let prior:

p(θij |S) = Dir(θij |N
′

ij1, ..., N
′

ijri
) (3)

ij a parameter set where i refers to the vari-
nd j to the j-th instantiation of the parents
current structure. θij contains a probability
ery value of the variable xi given the cur-
nstantiation of the parents. Dir corresponds

Dirichlet distribution with (N ′

ij1, ..., N
′

ijri
)

rameters of this Dirichlet distribution. Pa-
er learning then consists of updating these
let priors with data. This is straightforward
se the multinomial distribution that is used
del the data, and the Dirichlet distribution
odels the prior, are conjugate distributions.

results in a Dirichlet posterior over the pa-
er set:

ij |D,S) =

Dir(θij |N
′

ij1 + Nij1, ..., N
′

ijri
+ Nijri

) (4)

Nijk defined as before. We summarized this
rior by taking the Maximum A Posteriori
) parameterization of the Dirichlet distri-
and used these values to fill in the corre-

ing CPTs for every variable.

lassification

learning the model, we can use it for clas-
ion. This means that we can use a model
dict the outcome variable given the value of
her variables. In the context of Bayesian net-
this is called inference. We used the Prob-
propagation in tree of cliques algorithm

C) (Huang and Darwiche, 1996) to predict
obability of the outcome on the test set. The
ls were then evaluated using the Area Under
OC curve (AUC) of the predictions for the
me variable.

odel building

valuated the performance of the different
ds (see section 3) for integrating both data
s using the training data. This was done
ndomizing the training data 100 times for
ethod, in a stratified way, into a set of 70%
patients used to build the model (model

ng data set) and a set of 30% to estimate
rea Under the ROC curve (AUC). This
is a measure for the independent data set
mance of a model. Then these 100 AUCs



were averaged and reported. In this manner we
can evaluate the generalizing performance of a
specific method and compare with other methods.
Next, the method that performed best in the
previous step was used to train 100 models using
the complete training set with different initial
orderings of the variables. The model with the
highest AUC on the training data among these
100 models was chosen to predict the outcome
on the test set. The AUC for this test set was
calculated and represents the performance of this
model on unseen data.

3. INTEGRATION OF DATA SOURCES

Bayesian networks allow to combine the clinical
and microarray data in different ways. Apart
from using them separately we will combine both
data sources using three methods: full integration,
decision integration and partial integration. Dc,
Dm and Dcm refer to the clinical data, microarray
data and combined clinical and microarray data
respectively. Analogously for the references to the
structures: Sc, Sm and Scm.

3.1 Full integration

Full integration is equal to putting both data
sources together and treating them as if it is
one dataset, Dcm. This means that both the
clinical variables (e.g. age, diameter, grade, etc. )
and the microarrays variables (mRNA expressions
for each gene) are offered as one data set to
the Bayesian network learning algorithm. The
structure is learned for the combined data set:

p(Scm
K2|D

cm) ∝ p(Dcm|Scm
K2)P (Scm

K2) (5)

using equation 2 to calculate the right hand side.
Next, the parameters are learned by updating the
Dirichlet priors using the data, Dcm:

p(θij |D
cm, Scm

K2) =

Dir(θij |N
′

ij1 + N cm
ij1 , ..., N ′

ijri
+ N cm

ijri
) (6)

In this manner the developed model can contain
any type of relationship between the clinical vari-
ables and the microarray variables.

3.2 Decision integration

The opposite is a weak integration of the two data
sources and is called decision integration. This
method starts with learning a Bayesian network
structure for both data sources using K2 (Sc

k2
and

Sm
k2

). Followed by updating the Dirichlet priors
with the data (Dc and Dm):

p(θ

=

p(θ

where
with
equat
param
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K2
)
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p(Sc
K2|D

c) ∝ p(Dc|Sc
K2)P (Sc

K2) (7a)

p(Sm
K2|D

m) ∝ p(Dm|Sm
K2)P (Sm

K2) (7b)

ij |D
c, Sc

K2)

Dir(θij |N
′

ij1 + N c
ij1, ..., N

′

ijri
+ N c

ijri
) (7c)

ij |D
m, Sm

K2) =

Dir(θij |N
′

ij1 + Nm
ij1, ..., N

′

ijri
+ Nm

ijri
) (7d)

equation 7b and equation 7b correspond
structure learning and are calculated using
ion 4. Equation 7c and 7d correspond to
eter learning for both structures (Sc

K2
and

separately. Then the probabilities predicted
e outcome variable by both models are

ined using the weight parameter w:

ut|Dc, Dm) =

Out|Sc
K2, θ

c) + (1 − w)p(Out|Sm
K2, θ

m) (8)

Out stands for the outcome variable and
he weight parameter. θc and θm correspond
complete set of parameters of the clinical

l and microarray model respectively. The
t parameter is trained using only the model
ng data set (see section 2.4) of each ran-
ation, in the context of decision integra-
alled an outer randomization. This is done
rforming again 100 inner randomizations of
odel building data set within each outer
mization. For each inner randomization the
t is increased from 0.0 to 1.0 in steps of 0.1.
the weight value with the highest average
over the 100 inner randomizations is chosen
ight for the outer randomization.

artial integration

ian networks also allow a third method,
we call partial integration. This is due to

ct that learning Bayesian networks is a two
rocess (see section 2.2). Therefore we can
m the first step, structure learning, separate
th data sources:

p(Sc
K2|D

c) ∝ p(Sc
K2)p(D|Sc

K2) (9a)

p(Sm
K2|D

m) ∝ p(Sm
K2)p(D|Sm

K2) (9b)

equations 9b and 9b are again calculated
ing to equation 2. This results in a struc-

for the clinical data and a structure for
icroarray data. These structures have only
ariable in common: the outcome variable.
fore we can join both structures using this
le. This combined structure will not contain
ge between a clinical variable on the one
and a microarray variable on the other.
structures are linked only through the out-
variable. Then the second step of learning



Bayesian networks (i.e. parameter learning) starts
as if the structure was learned as a whole:

p(θij |D
m, Sc+m

K2
) =

Dir(θij |N
′

ij1 + N cm
ij1 , ..., N ′

ijri
+ N cm

ijri
) (10)

where Sc+m
K2

is the combined structure. The pa-
rameter learning thus proceeds as normal because
this step is independent of how the structure
was built. Partial integration thus forbids links
between both data sources. The developed model
can now be used for classification.

4. DATA

4.1 Description

We used the data of (van ’t Veer et al., 2002) avail-
able at http://www.rii.com/publications/default.
htm. This data set consists of two groups of pa-
tients. The first group of patients, which we call
the training set, consists of 78 patients of which 34
patients belonged to the poor prognosis group and
44 to the good prognosis group. The second group
of patients, the test set, consists of 19 patients of
which 12 patients belonged to the poor prognosis
group and 7 to the good prognosis group. DNA
microarrays analysis was used to determine the
mRNA expression levels of approximately 25000
genes for each patient. Every tumour sample was
hybridized against a reference pool made by pool-
ing equal amounts of RNA from each patient.
The ratio of the sample and the reference was
used as a measure for the expression of the genes
and they constitute the microarray data set. Each
patient also had the following clinical variables
recorded: age, diameter, tumor grade, oestrogen
and progesterone receptor status, the presence of
angioinvasion and lymphocytic infiltration, which
together form the clinical data.

4.2 Preprocessing

The microarray data consists of approximately
25000 expression values per patient, which was
already background corrected, normalized and
log-transformed. An initial selection was done
(similar to (van ’t Veer et al., 2002)) by removing
the genes that did not meet the following criteria
using only the training data: at least a twofold
increase or decrease and a P-value of less than 0.01
in more than 3 tumors. This resulted in a subset
of approximately 5000 genes. Then we calculated
the correlation between the expression values of
these genes with the binary outcome and selected
the genes with a correlation of ≥ 0.3 or ≤ −0.3.
This resulted in 232 genes that where correlated
with the outcome. Missing values were estimated
using a 15-weighted nearest neighbours algorithm
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anskaya et al., 2001). Then these genes were
tized into three categories: baseline, over-
ssion or under-expression according to two
olds. These thresholds depended on the
ce of the gene such that a gene with high
ce receives a higher threshold than a gene
ow variance. The data set that results from
steps was used as input for the Bayesian
rk software.

5. RESULTS

l building was done as described in section
r the three integration methods (full, par-
nd decision integration) and for the clinical
icroarray data separately for comparison.
1 shows the average AUCs for the developed
ls. Partial integration is significantly differ-
om both data sources separately and full
ation (P-value < 0.001, Wilcoxon rank sum
and not significantly different from decision
ation (P-value=0.0686, Wilcoxon rank sum

able 1. Average AUC performance and
tandard deviation of the three methods
or integrating clinical and microarray
ata and each data source separately
ith 100 randomizations on the training

data.

od AUC Std

cal data 0.751 0.086
oarray data 0.750 0.073
ion integration 0.773 0.071
al integration 0.793 0.068
integration 0.747 0.099

both decision integration and partial inte-
n were chosen and 100 models were built
the complete training data. Then the best
ming model for each method was used to
t the outcome on the test data. In case
ision integration, the weight parameter was
d on the training data, similar to the inner
mizations as described in section 3.2. This
ed in a weight of 0.6 for the probability of
tcome predicted by the clinical model and
weight of 0.4 for the probability of the out-

predicted by the microarray model, slightly
ring the clinical model. Table 2 shows the
of these two models on the test set and the
er of patients assigned a poor prognosis in:
st set, the set of true poor prognosis patients
he set of true good prognosis patients.

6. CONCLUSION

ve developed Bayesian networks to integrate
l and microarray data. As an example we



Table 2. The AUC and the number of
patients assigned a poor prognosis for
the complete test set and for the true
poor and good prognosis patients using

the test set.

AUC Total test Relap- Disea-
(std) set se se free

n=19 n=12 n=7

Partial 0.845 13/19 11/12 2/7
integration† (0.132)

Decision 0.810 11/19 9/12 2/7

integration† (0.118)

† The operating point is determined by maximizing the
sum of the sensitivity and specificity on the training set.

used the data of (van ’t Veer et al., 2002) and
investigated if an improvement was made for the
prediction of recurrence in breast cancer. We in-
vestigated three methods for integrating the clin-
ical and microarray data with Bayesian networks:
full integration, partial integration and decision
integration. Table 1 showed that partial integra-
tion and decision integration perform significantly
better than full integration and each data source
separately. We believe that this is due to the
different nature of the data sources. Clinical data
has a low noise level, in most cases there are fewer
variables than observations and there are both
discrete and continuous-valued variables. Microar-
ray data on the other hand has a much higher
noise level. There are much more variables than
observations and all the variables are continuous.
Therefore, it could be better to treat them sepa-
rately in some way when the amount of data is
limited. Partial integration uses separate struc-
ture learning while decision integration builds sep-
arate models but fuses the outcome probabilities.
Full integration does not make a distinction be-
tween these two heterogeneous data sources. Both
data sources are combined into one data set and
used for Bayesian network learning. Because there
are much more microarray variables than clinical
variables (232 vs. 8), the chance that a clinical
variable is added as a parent is small. The clinical
variables are submerged by the microarray vari-
ables and mostly have few connections. Therefore
full integration behaves similar to using only the
microarray data (see table 1).
Table 2 showed that partial integration performed
better than decision integration on the test set.
We believe this is due to the fact that partial in-
tegration uses combined parameter learning. This
integrates the clinical and microarray variables at
the parameter level instead of at the decision level.

We have shown that both data sources are com-
plementary and that an integrated approach can
improve the prediction of the prognosis of breast
cancer. Therefore this approach is promising for
the use of Bayesian networks to integrate data
sources for other types of cancer and data. When
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data become available, the developed models
e prospectively validated. Finally, moving to-
integrating several independently gathered
ources is necessary to increase the reliability
dels based on microarray data.
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