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Abstract 
Background 

Microarray technology has allowed to molecularly characterize many different cancer sites. This 
technology has the potential to individualize therapy and to discover new drug targets. However, due to 
technological differences and issues in standardized sample collection no study has evaluated the 
molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it 
has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of 
destination. 
Methods 

We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised 
hierarchical clustering. The clustering profile was subsequently investigated and correlated with 
clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of 
samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID 
functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival 
analysis and log-rank tests were used to investigate prognostic significance of gene signatures.   
Results 

Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged 
from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated 
thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-
like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We 
also found an expression signature identifying primary tumors of squamous cell histology in multiple 
tissues.  Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with 
endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from 
serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-
pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering 
of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, 
the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases 
from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the 
remaining tumors cluster with the tissue of destination.  
Conclusion 
Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This 
may have a significant impact on the classification of many cancer sites and may guide pathologists, 
both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a 
signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases 
from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. 
More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific 
profile.  



Background 
Microarray technology has allowed to molecularly characterize many different types of cancer [1]. One 
of the first landmark studies using microarray technology to analyze primary tumor samples was done 
by Golub et al. [2]. This study on human acute leukemia demonstrated that it was possible to use 
microarray data to distinguish acute myeloid leukemia from acute lymphoblastic leukemia without any 
previous knowledge. The authors showed for the first time the potential of microarray technology by 
illustrating its use in discovering new classes and by using microarray data to assign tumors to known 
classes. Class prediction gives the clinician an unbiased method to predict the outcome of cancer 
patients in comparison to traditional methods based on histopathology or empirical clinical data, which 
do not always reflect patient outcome. More recently, for some cancer sites these initial discoveries 
have been validated in independent data sets [3-5]. This and other initial applications of microarray 
technology primarily focused on discovering molecular subtypes within each cancer site using only 
samples from the primary tumor site [6-9].  
Other groups focused on tissue specific differences between cancer sites by building supervised models 
that classify samples according to their tissue of origin [10,11] or by comparing cancer from multiple 
tissues with normal tissue [12]. In a landmark study by Ramaswamy et al. the expression profile of 
primary and metastatic adenocarcinoma of diverse origins was compared and they found that a 
signature distinguishing primary and metastatic tumors was also active in many primary tumors [13]. 
This signature proved to be significantly correlated with metastasis and poor clinical outcome in 
independent data sets. In a similar study Glinksy et al. developed an 11-gene signature that was 
predictive of a short interval to disease recurrence, distant metastasis, and death after therapy in cancer 
patients diagnosed with many types of cancer [14]. Also Rhodes et al. have performed a meta-analysis 
by comparing the expression profiles of many types of cancers with normal tissue from many published 
studies. They concluded that a common transcriptional program exists characterizing neoplastic 
transformation [12].  
These studies indicated that the primary site can potentially be predicted for cancer of unknown origin. 
This is an important issue for clinicians since in 3-5% of cancer cases the primary tissue is unknown. 
This is often called cancer of unknown primary (CUP) [15] and many efforts have been done to find 
ways to predict the primary site based on microarray data. Reported performances are in the range of 
70-90% accuracy [16-20]. Overall these studies have shown that many metastatic tumors “remember” 
their tissue of origin.  
These studies demonstrated that microarray technology can molecularly characterize cancer and its 
enormous heterogeneity when discovered in multiple tissues. However, due to technological 
differences and issues in standardized sample collection, no study in a large number of samples and 
tissues has been done to molecularly profile both primary and metastatic epithelial cancer in an 
unbiased way. For primary tumors, previous studies focused on a single cancer site [2-9] or compared a 
limited number of tumors from a limited number of cancer sites  [10,11]. Additionally, an extensive 
investigation whether metastases resemble their tissue of origin or tissue of destination has not been 
performed. The previously mentioned CUP studies have shown that tissue of origin can be predicted 
with reasonable accuracy; however, none of these studies have reported misclassifications of their 
signatures in detail and whether they are tissue specific. 
In this contribution, we studied the expression profiles of a series of 1566 primary tumors and 178 
metastases of different tissues gathered in the framework of the expression project for oncology (expO) 
project by the international genomics consortium. We used unsupervised analysis to identify, in an 
unbiased way, the relationships between primary tumors and their metastases. The clustering profile 
was subsequently investigated and extensively correlated with clinico-pathological data. Our results 
reveal relationships between cancers in different tissues, show the existence of new molecular 
subgroups across tissues and we found a signature predictive of clinical outcome. Moreover, our results 
on the behavior of metastases of epithelial human cancer can have important consequences for the 
treatment of CUP and its associated research.  
 



Methods 

Data 

We used data from the expression project for oncology (expO) gathered by the International Genomics 
Consortium to investigate the molecular differences between primary epithelial tumors and their 
metastases. The expO project started in 2004 and new data is still being added to the repository. We 
used data from the batches 1 to 16 (December 2008) which amounts to 2173 microarrays in 142 
different cancer sites extracted from GEO (GSE2109) [21]. We selected 1566 primary epithelial tumors 
from 18 cancer sites (see Table 1 and Table 2) and 178 metastases of similar primary cancer sites, 
metastasizing to over 40 different tissues or anatomical sites. Non-epithelial cancers were not included 
since their numbers were rather low and their etio-pathogenesis is essentially different from that of 
epithelial cancers. Tissues were not excluded based on a small number of samples.  
Preprocessing 

The tumors were profiled using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Due 
to the size of the complete data set, preprocessing was done using the simpleaffy implementation of the 
MAS5 preprocessing algorithm [22]. We used a custom cdf file developed by Manhong Dai and 
colleagues (version 10 May 2007, Hs133P_Hs_ENTREZG) such that probe sets are up-to-date with the 
genome sequence and correspond to Entrez gene identification [23]. Next, to check whether similar 
genes were called expressed in both primary and metastases tumors, we selected genes that were 
present in 80% of the samples in each set separately before merging both data sets. 
Unsupervised modeling 

To facilitate interpretability of the clustering, the 250 genes with the highest variance were selected 
from the data set. Unsupervised modeling was subsequently performed using hierarchical clustering 
with the Euclidean distance for calculating the similarity between genes and the cosine distance for the 
similarity between samples using average linkage. Matlab version R2009b and the bioinformatics 
toolbox from Matlab version 3.4 were used for hierarchical clustering.  
Statistical analysis  

Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using 
Fisher exact test. All reported p-values are based on Fisher exact test unless otherwise reported. Gene 
set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate 
the molecular pathways, enriched in differentially expressed gene lists between groups of tumors [24-
26]. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance 
of gene signatures using SAS version 9.1. Differential expression analysis was done using the wilcoxon 
rank sum test to rank genes.  



Results 
Preprocessing 

After preprocessing each sample separately using the simpleaffy implementation of MAS5, only probes 
with a present call in 80% of the samples were retained [22]. This was done separately for the set of 
primary and metastatic tumors. Additionally, updated annotation files 
based on reorganizing probes to Entrez gene specific probe sets excluding inaccurate or wrongly 
annotated probes was used to annotate the Affymetrix probes [23]. This resulted in 7732 and 7689 
genes out of 17527 that were called present in the primary and metastatic data set respectively. 7504 
genes overlapped between these two sets, indicating that similar genes have present calls in primary 
and metastatic tumors.  
 

Primary tumors 

Figure 1 shows the clustering of all primary and metastatic tumors using the top 250 genes with the 
largest variance over all samples. Five large groups can be distinguished enriched for primary breast, 
colon, lung, ovary and kidney tissues. In addition three smaller clusters can be distinguished 
corresponding to a prostate cluster, a thyroid-kidney cluster and a cluster with mixed tissues. We have 
named each cluster according to its enriched primary tissue. Figure 2 and Figure 3 show the 
composition of each molecular cluster, separately for primary and metastatic tissues (see also Table 1 
and 2 for the complete composition of the clusters and Additional File 1 for a list of samples in each 
cluster).  
Table 1 and Figure 1 show that the prostate cluster is the most homogeneous cluster compared to all 
other clusters. 98% (80/82) of the samples in this cluster are primary prostate tumors and only 3.6% 
(3/83) of primary prostate samples do not cluster here, indicating that prostate tissue is very different 
from all other tissues. This is further supported by gene set enrichment analysis (GSEA) analysis since 
a set of genes upregulated by androgen in neoplastic prostate epithelium [27] is the most significantly 
expressed gene set in this cluster compared to all other clusters (See Additional File 2).  
The kidney cluster is the second most homogeneous cluster consisting of 89% (248/278) primary 
kidney tumors. Additionally, only 30 primary kidney tumors do not cluster here. This cluster primarily 
expresses pathways related to hypoxia and cytokine receptor interaction when compared to the other 
clusters (See Additional File 2). The kidney cluster also contains a primary liver subcluster; 64% (9/14) 
of primary liver tumors cluster here (See Figure 4). 
Next, the breast cluster contains a significant portion of the primary breast tumors (84% or 331/353). 
However, this cluster is less homogeneous with 83% (331/399) of the tumors in this molecular cluster 
being primary breast samples. A more detailed analysis shows that these breast tumors are subdivided 
according to histology and grade. The left branch is a mixed lobular-ductal cluster containing 87% 
(33/38, P-value < 0.000009) of the lobular carcinoma while the right branch is a mainly ductal cluster 
(89% or 136/152) (Clusters A and B in Figure 5, respectively). It should be mentioned that all lobular 
carcinomas in the expO data set are of the classical, non-pleomorphic type. Overall, the ductal breast 
carcinoma are approximately equally divided over both subclusters (48% in lobular-ductal vs. 52% in 
the pure ductal subcluster). However, the pure ductal cluster is enriched for grade 3 while the mixed 
lobular-ductal cluster contains mostly grade 1 and 2 primary breast tumors (see Additional File 3).  
On the next level in the hierarchical tree, both cluster A and B separate in two distinct clusters (clusters 
1-2, and clusters 3-4, respectively, see Figure 5). Cluster 1 contains the highest concentration of lobular 
tumors. Clusters 3 and 4 are separated according to receptor status. Cluster 4 is enriched with triple 
negative tumors (ER, PR and ERBB2 negative) (71% or 32/45, Pvalue < 4.74e-8), while Cluster 3 has 
similar receptor positivity as the remaining breast tumors in Cluster A.  
The association of the clusters with histology, tumor grade and receptor status indicated a possible 
relationship with breast cancer prognosis. Therefore, we investigated whether differential expression 
between subgroups contains prognostic information. Starting from all genes, we selected the 250 most 
differentially expressed genes between Cluster 1 and Cluster 4 and used this set of genes as a 
prognostic signature (see Figure 5 and Additional File 4). Cluster 1 contains the highest concentration 
of lobular tumors with lowest grade, while Cluster 4 is purely ductal, high grade and contains most 



triple negative tumors. We used three external data sets to investigate the ability of this signature to 
distinguish between prognostic groups by clustering patients with the signature genes and using the first 
split in the hierarchical tree as prognostic groups (See Table 3). In all three data sets comprising 539 
patients in total, the signature was significantly predictive for disease specific survival with p-values of 
0.0271, 0.0001 and 0.0230 for the Chin, Miller and Pittman data sets, respectively (log-rank test, see 
Figure 6). 
The following cluster, the colon cluster, contains 91% (254/279) of colon samples which defines 67% 
(254/380) of this cluster. In addition, this cluster is enriched for all other primary tumors of 
gastrointestinal origin since it contains 97% (30/31) of all primary rectosigmoid tumors, 83% (30/36) of 
the primary rectum tumors, 72% (8/11) of the stomach tumors and 43% (3/7) of the primary small 
intestine tumors. Taken together 325/364 tumors (89%, Pvalue <5.58e-255) of gastrointestinal origin 
are in this molecular cluster. When investigating the subclustering within this colon cluster in more 
detail, a small and a large colon subcluster, which we will refer to as Colon A and Colon B (See Figure 
7), appear from the data. When focusing solely on the primary colon samples in these cluster, Colon A 
is enriched for high grade tumors (Grade >=3, Pvalue 9.71e-05) and positive lymph nodes (N >0, 
Pvalue 0.012) when compared to Colon B. There was no significant relationship for tumor stage and 
histology between both groups.   
Next, the lung cluster contains 88% (107/121) of primary lung tumors but is the least homogeneous 
cluster containing 44% (85/192) other primary tumors. This includes 90% (9/10) of primary vulva 
tumors and a significant portion of primary cervix tumors (58% or 18/31). This is most likely due to the 
enrichment of the squamous cell carcinoma histology in this cluster. The cervix tumors in this cluster 
are enriched for squamous cell carcinoma (16/18 are squamous cell carcinoma), compared to the cervix 
tumors in the colon cluster containing no squamous cell carcinoma (0/8). Similarly, all vulva samples 
in this cluster are of the squamous type (9/9). Taken together, the lung cluster is highly enriched for the 
squamous cell carcinoma histology since 38% (66/176) of tumor samples are of this type and of 
different tissues (i.e. bladder, cervix, lung and vulva) but more importantly 83% (66/80, Pvalue <  
3.66e-54) of all squamous tumors cluster here.   
The ovary cluster consists of 84% (147/175) of the primary ovarian tumor samples which make up 47% 
(147/312) of this cluster. In addition, 83% (52/63) of the endometrium tumors cluster here. More 
specifically, the ovarian cluster is divided into two subclusters: an endometrioid-enriched cluster and a 
serous-enriched cluster. The former contains all endometrium tumors and 88% (22/25, P-value < 
0.00015) of pure endometrioid ovarian tumors.  
The 28 bladder tumors are spread over three different clusters: breast, lung and ovary. 39% (11/28) 
cluster in the endometrioid subcluster of the ovary cluster. Most bladder tumors in the expO data set are 
transitional cell carcinoma (TCC). TCC of the ovary also exist [28,29] and occurred twice in our data 
set, both clustered in the same endometrioid subcluster possibly explaining why a significant part of 
bladder tumors clusters together with the endometrioid ovaries. 
Finally, the thyroid/kidney cluster contains a significant amount of thyroid (41% or 22/54) and kidney 
samples (37% or 20/54). The subgroup of kidney tumors that clusters with thyroid tumors rather than in 
the kidney cluster is enriched for the chromophobe histology (P-value <6.3e-8). In addition, when 
ignoring the kidney tumors from the granular cell carcinoma histology since this is a nonspecific, 
outdated descriptor [30], the enrichment is even more significant with 9/13 of the remaining kidney 
tumors being chromophobe (P-value < 2.5e-9). In addition, the thyroid tumors in this cluster are more 
frequently follicularly differentiated (9/22) compared to the thyroid tumors in other clusters (3/11); 
however, not significantly due to the low number of thyroid tumors of follicular differentiation. In 
addition, all non-papillary follicular thyroid tumors cluster here. GSEA analysis on the thyroid-looking 
kidney samples vs. the kidney samples in the kidney cluster reveals that gene sets related to oxidative 
phosphorylation and mitochondrion are upregulated in this subset of thyroid-looking kidney tumors 
(see Additional File 5).  
 
 

Metastases 



To investigate whether metastases cluster with tissue of origin or destination, we assigned each tissue to 
a cluster where it was most significantly enriched with its corresponding primary tumors. Then we 
investigated if a metastatic tumor clusters with its tissue of origin or tissue of destination. When a tissue 
was enriched in multiple clusters we did not investigate metastases of this tissue, which was the case 
for the cervix and bladder tissues.  
Metastases originating from breast (P-value<0.003), lung (P-value <0.002), cervix (P-value < 0.034), 
endometrium (P-value < 0.004), stomach (P-value < 0.010) and ovarian (P-value < 2.8e-36) are 
significantly enriched in their tissue of origin cluster. The latter, the metastases of ovarian origin, are 
more specifically enriched in the serous ovarian sub cluster (P-value < 1.72e-13). In addition, one 
vulva-to-liver metastasis clusters with the primary vulva tumors and all fallopian tube and peritoneum 
metastatic tumors; although both tissues are not represented with primary tumors, cluster in the most 
likely related ovarian molecular cluster. Together, this indicates that metastases from these tissues 
“remember” their tissue of origin and reflect the original tissue in their molecular profile.  
Exceptions to this rule are metastatic tumors arising from gastrointestinal origin such as colon, rectum 
and rectosigmoid, where a bimodal distribution is seen. A significant part of these tumors cluster with 
the tissue of origin while another part clusters with the tissue of destination. For example, for the 
metastases from colon, 49% (18/37) cluster in the colon molecular cluster while metastasizing to 
different sites (i.e liver, omentum, ovary, bladder and lung). However, 14% (5/37) cluster in the ovary 
cluster enriched for colon to ovary metastases (P-value <0.02) and 27% (10/37) cluster in the 
kidney/liver cluster enriched for colon to liver metastases (P-value <0.01). A similar result for a much 
smaller group and thus not significant, is seen for three colon-to-lung metastases of which two tumors 
cluster in the colon cluster and one in the lung cluster.  
Moreover, similar results are seen for smaller groups of tumors in the rectosigmoid and rectum site. 
Two rectum-to-liver metastases cluster in the colon cluster while the remaining rectum-to-liver 
metastases clusters in the kidney/liver cluster. One of the rectosigmoid metastases clusters in the colon 
cluster while the other two, a rectosigmoid to ovary and a rectosigmoid to liver metastasis cluster in the 
ovary and kidney/liver cluster, respectively.  
Because the colon-to-liver metastases are the largest group of tumors within this class, we focused on 
this subset for a more detailed analysis. We used GSEA to investigate the molecular differences 
between the colon-to-liver metastases that cluster in the colon cluster (9/20) vs. the colon-to-liver 
metastases that cluster in the kidney/liver cluster (9/20). Additional File 6 shows the significantly 
upregulated pathways in the colon and liver subgroups. Interestingly, a set of liver specific genes is 
upregulated in the liver subgroup indicating that these colon-to-liver metastases indeed adapt to the 
liver tissue. Additionally, a set of genes upregulated in hepatocellular carcinoma (HCC) of good 
survival is also upregulated in the liver subgroup while the gene set corresponding to poor survival in 
HCC is upregulated in the colon subgroup. In addition, gene sets related to well known metabolic 
processes in the liver are significantly upregulated in the colon-to-liver metastases clustering with the 
primary liver tumors.  
 

Discussion 

Our results show interesting correlations between tissues and clinicopathological variables such as 
stage, grade or histology. Now, we will discuss the most compelling results for each cluster. 
 
Prostate cluster 

This cluster is clearly the most homogeneous one. Since only 16% of tumors in this cluster were low-
grade (i.e. Gleason score <7), this homogeneity can not be explained by the assumption that most of 
these tumors are well differentiated and form a very distinct cluster based on the high expression of 
prostate-specific genes as such. In contrast with most other epithelial tumors, prostate cancer is 
characterized by little or no desmoplastic reactive stroma [31]. Thus, the homogeneity can be explained 
by the fact that in a sample of prostate cancer the expression of tissue-specific genes by epithelial tumor 



cells is less ‘contaminated’ by the stroma compared to samples of epithelial tumors of other organs. As 
further discussed in the breast cluster, this underscores that the role of tumor stroma has to be taken into 
account when evaluating molecular data from non-microdissected samples.  
 

Kidney cluster 

The kidney cluster mainly expressed hypoxia related genes. This corresponds to a large body of 
research that has shown that loss of the VHL gene activates HIF resulting in uncontrolled angiogenesis 
in the kidney [32]. Moreover, it has been shown that loss of VHL is connected to CXCR4 up-regulation 
implicating the cytokine receptor pathway [33]. Our results confirm this since both hypoxia related 
pathways and the cytokine receptor pathway are over-expressed in the kidney cluster. In addition the 
kidney cluster is enriched for clear-cell renal carcinoma (P-value < 0.002) which has been shown to be 
caused by loss of VHL.  
The similarity between liver and kidney tumors is striking (See Figure 4) and seems to be caused by 
similar genes defining the liver and kidney tissues. This can be explained due to a significant overlap 
between liver and kidney specific genes based on tissue expression profiles from the TIGER database 
compared to other tissue comparisons (see Additional File 7) [34]. More specifically, 38 genes overlap 
between liver and kidney specific genes. In addition, all liver tumors in this cluster are hepatocellular 
carcinoma (HCC) of grade 2 and low stage (i.e., <=2), possibly indicating that their tissue specific 
profile has not been significantly scrambled by oncogenic processes. On the other hand, the remaining 
HCC are of high stage and grade (i.e., >=3) and appear to cluster randomly, possibly indicating a loss 
of primary tissue profile associated with grade (see Table 1).  
 
Breast cluster 

The breast cluster is subdivided according to histology in a mixed lobular-ductal cluster with mainly 
low and intermediate grade tumors and a ductal-enriched cluster with mainly high grade tumors. This 
confirms the hypothesis that non-pleomorphic lobular breast carcinoma can be considered as a low-
grade subtype of ductal breast tumors; only the status of CDH1 expression is strongly different between 
the two types, which causes strong morphological differences [35-37]. When comparing the lobular and 
ductal tumors in the lobular-ductal cluster (Cluster A), CDH1 is the most significantly differential gene 
and upregulated in the lobular tumors (see Additional File 8).  
Moreover, the clear association with tumor grade potentially indicates that the molecular differences 
between the two subtypes have prognostic implications. We therefore investigated the prognostic 
significance of a gene signature differentially expressed between the hypothesized good and poor 
prognosis groups. The positive external validation of the signature confirms that classical, non-
pleomorphic lobular are related to good prognosis while ductal tumors appear in both prognostic groups 
but can be separated according to grade. In addition, the triple negative receptor status in Cluster 4 is 
confirmed as having a negative prognostic impact [38,39]. Our signature is robust since it could be 
validated in breast cancer data sets that were heterogeneous regarding grade, stage and ER-status. 
The association of grade with clinical outcome has already been confirmed by others [40,41].  
More specifically, the group of Sotiriou has shown that the performance of prognostic signatures is due 
to the presence of proliferation-related genes [42]. Our signature shows an overlap of 23 genes with the 
Genomic Grade Index (GGI) of Sotiriou [40]. As it has previously been shown that most signatures 
studying the same disease and outcome share few genes but more pathways [43], a pathway analysis 
was performed. These results show significant overlap with the GGI, highlighting proliferation 
pathways such as mitosis, cell cycle and cell division which are highly expressed in Cluster 4 (see 
Additional File 9). However, when focusing on the genes over-expressed in the lobular enriched cluster 
(Cluster 1), other pathways seem to characterize the good prognosis samples. These include genes 
related to or located in the extracellular matrix, secreted genes and genes containing the EGF domain 
(see Additional File 9). The latter are present in a large number of membrane-bound and extracellular 
proteins.  
We also compared our clustering with the intrinsic breast cancer subgroups initially described by Perou 
et al. [6] and later validated in many independent data sets [4,9,44]. This analysis showed that Cluster 



1, 2 and 3 largely correspond with the luminal subgroup while cluster 4 expresses both the basal and 
the ERBB2 (also called HER-2/neu) genes (See Figure 8). This corresponds with previous research 
implicating the classical, non-pleomorphic lobular and low grade ductal tumors in the luminal subgroup 
[37] whereas the basal tumors are associated with high grade ductal tumors [39]. The reason why we 
did not find a separate ERBB2-cluster might be related to the fact that the intrinsic gene list is based 
solely on breast tumors, while our clustering is based on genes that show variance between all types of 
epithelial tumors, or in other words our gene list is both intrinsic and extrinsic. In addition, also in the 
original clustering both the ERBB2 and basal cluster are related to each other [6,44]. 
In addition, a few of the most differentially expressed genes such as CAV1 and CAV2 have recently 
been shown to have prognostic predictive power [45,46]. More specifically, high expression of CAV1 
and CAV2 in stromal cells of breast tumors is associated with a more favorable prognosis [47], which 
is in line with their high expression in our good prognosis cluster. Moreover, there is evidence that 
CAV1 expression is inversely correlated with progression of ductal carcinoma in situ (DCIS) to 
invasive breast cancer [48] and several recent studies highlighted the important role of the stroma 
surrounding DCIS in the progression to invasion [49,50]. Unfortunately, validation of our signature to 
the pre-invasive stage was not possible, since there are no public available gene expression data sets 
consisting of non-microdissected DCIS samples with follow-up data. 
Also, reduced expression of proteoglycans has been associated with poor outcome and also in our 
signature the leucin rich small proteoglycans decorin (DCN) and fibromodulin (FMOD) are 
overexpressed in the good prognosis cluster [51]. This further underscores the prognostic significance 
of stromal gene expression in breast tumors, which is a concept that has only recently emerged [52-54].  
 
Lung cluster 

The lung cluster is highly enriched for squamous cell carcinoma of different tissues, while such a 
phenomenon is not observed for adenocarcinoma. As shown in the result section adenocarcinomas 
cluster mainly according to their tissue of origin. It is indeed well known among pathologists that there 
are currently no immunohistochemical markers for the determination of the likely site of origin of 
squamous carcinoma, while this is in most cases possible for adenocarcinomas [55]. Our results 
indicate that this problem is not related to the lack of appropriate antibodies for immunohistochemical 
staining, but due to the absence of a molecular signature in these tumors reflecting their tissue of origin. 
Further attempts to identify such antibodies therefore seem useless. 
 

Thyroid/Kidney cluster 

It has been known for quite some time that cortical tubuli in end-stage kidney diseases frequently show 
a morphology resembling thyroid follicles [56]. More recently, some cases of thyroid follicular 
carcinoma-like tumors of the kidney have been reported. This type of tumor is morphologically 
indistinguishable from follicular thyroid carcinoma and does not represent a kidney metastasis of a 
thyroid tumor. [57,58]. The strong molecular connections between thyroid tumors with follicular 
differentiation and chromophobe renal cell carcinomas in our study indicate that thyroid follicular 
carcinoma-like tumors indeed exist and probably represent a special variant of chromophobe renal cell 
carcinoma. Although confirmation is needed, this implies that this rare type of tumor should be 
clinically considered and treated as a chromophobe renal cell carcinoma. 
 

Ovary-endometrium cluster 

The ovarian cluster segregates into two subclusters, one enriched for the endometrioids also containing 
the primary endometrium tumors and a cluster enriched with the serous tumors also enriched with the 
ovarian metastases. This clustering confirms the well-known link between ovarian endometrioid tumors 
and endometrioids originating from the endometrium [59] because these tumors are thought to arise 
from benign endometrium epithelial tissue either through endometriosis or metaplasia [60]. Serous 
tumors on the other hand are thought to arise form surface epithelium and usually present in more 
advanced stage, which explains the rather high proportion of metastasizing serous tumors in this 



subcluster. Our findings in this cluster clearly show that our approach is able to recover previous 
research findings, which indirectly increases the validity of our new findings in this study.  
 
Colon cluster 

Besides the enrichment of primary colon tumors, this cluster was also enriched with other 
gastrointestinal tumors such as rectum, rectosigmoid, stomach and small intestine tumors. In addition, 
two subclusters emerged from the data related to clinico-pathological characteristics. The Colon A 
cluster clearly looks much more aggressive than Colon B. In addition no differences were found for 
tumor stage and histology, although mucinous histology in colon cancer has been reported as a 
prognostically unfavorable feature in several studies. However, a more recent analysis of a large 
population-based data set indicated that there is no difference in stage-specific survival between 
mucinous adenocarcinoma and classical adenocarcinoma [61]. The fact that mucinous carcinoma did 
not show a preference for either of the two clusters supports the findings of this study. 
 

Metastases 

The bimodal nature of the tissue specificity of some metastatic tumors may offer an explanation why it 
is not possible for a specific subgroup of tumors to predict the tissue of origin. Breast, lung, cervix, 
endometrium, stomach and ovarian metastases cluster significantly in their respective primary tissue 
clusters while gastrointestinal metastases such as colon, rectum and rectosigmoid cluster with their 
tissue of destination. 
Ovarian metastases occur mostly in the peritoneal cavity, most likely after losing cell adhesion 
processes [59,62]. This process is rather different compared to processes underlying distant metastasis 
via blood and lymphatic vessels and can (most likely) account for the conservation of ovarian specific 
expression signatures in these metastases. Breast metastases on the other hand do metastasize to distant 
organs, but cluster together with their primary tissue. This has also been shown in other studies, more 
specifically the 70 gene prognosis profile for predicting breast cancer prognosis has been shown to be 
conserved in breast cancer metastases [3]. 
Metastases of gastrointestinal origin surprisingly showed a bimodal distribution. Approximately 50% 
clusters together with its tissue of origin while the remaining tumors cluster in the tissue of the 
metastatic site. Due to the size of the colon-to-liver subset, we focused on these tumors to investigate 
this phenomenon in more detail and showed that these findings were supported by GSEA. Moreover, 
when focusing on the genes differentially expressed between the colon and liver looking metastases the 
A2M gene is one of the most differentially expressed genes. A2M is an acute phase reactant produced 
by hepatocytes, but it has been shown in a rat model that this gene is also strongly expressed in liver 
metastases of colon cancer [63]. Furthermore, this gene has been shown to be a marker of pre-
neoplastic and neoplastic primary liver lesions [64]. In addition, others have shown that colon-to-liver 
metastases express liver specific RNAs and that this is due to the interaction of metastatic cells with the 
liver microenvironment [65]. These findings together with our data indicate that a proportion of colon 
adenocarcinomas that metastasize to the liver adopt hepatic features, which suggest that they represent 
an aggressive form of metastasis since they respond to signals from the hepatic micro-environment.  
We validated this bimodal behaviour in three external data sets containing colon-to-liver metastases 
[66-68] by clustering the samples in each external data sets with the genes differentially expressed 
between both colon-to-liver subgroups. In all three data sets, the first split of the hierarchical tree was 
significantly enriched according to the up/down regulation in the original signature (Fisher exact test p-
values < 2.2e-16). 
For metastases originating from other gastrointestinal tissues the number of samples is too small to 
make any conclusions. However, our results support large and more detailed studies of these primary 
and metastatic tumors to investigate if this bimodal behavior can be generalized to all gastrointestinal 
tissues.  
 



Conclusion 

The expO data set provides a unique opportunity to compare the expression profiles of many different 
tissues of both primary and metastatic tumor samples. In addition, extensive clinicopathological data is 
available, making it possible to link subgroups of tumors with clinicopathological characteristics such 
as histology, stage and grade. Many previous attempts in meta-analysis were limited due to different 
technological platforms, experimental set-up (e.g. one channel vs. two channel) or normalization 
methods [69]. In addition, there is still a lack of accurate and complete reporting of microarray data of 
cancer tissue samples. In many cases preprocessed data are reported instead of raw data making it in 
many cases prohibitive to use these data for meta-analysis. Moreover, phenotypic characterization of 
tumor samples is in many cases incomplete or even lacking while phenotypic information is crucial in 
the reporting of any omics data [70,71]. In the expO data set these problems are not present such that 
we can assume that our results are not confounded with the above mentioned issues.  
An important caveat of our analysis is that due to the clinical setup of the expO study significant biases 
in sample selection are present. For example colorectal metastases resection is often performed in 
patients demonstrating metastases confined to the liver while patients with diffuse metastases are in 
most cases treated palliatively and are most likely not represented in the expO study. These issues 
however are not unique to the expO study and are also present in many of the abovementioned studies.  
Our results show that distinct clusters exist corresponding to the main tissues of epithelial human 
cancers. In addition, similar tissues cluster together, such as tumors arising from gastrointestinal and 
gynecological origin. Next, breast tumors subclustered according to their main histological groups and 
grade. Moreover, we were able to validate a prognostic signature relevant for disease specific survival 
based on an unsupervised analysis in 539 patients. This prognostic signature had significant overlap 
with the GGI but we also found that genes related to stromal expression signatures were an important 
part of this prognostic signature. 
Next, we also found compelling evidence that chromofobe renal cell carcinomas have overlapping gene 
expression features with follicularly differentiated thyroid carcinomas. Therefore, the recent 
morphologically defined entity of thyroid follicular carcinoma-like kidney tumors should probably be 
considered and treated as chromophobe carcinoma. 
In addition, we also found that, in contrast with adenocarcinoma, the majority of squamous cell 
carcinoma cluster together irrespective of their primary tissue, supporting the immunohistochemical 
observation that squamous cell carcinoma do not reflect their primary tissue expression profile.  
Finally, we investigated the relationship of metastatic tumors with their tissue of origin and metastatic 
site. Most metastases cluster with their tissue of origin. This was the case for metastases arising from 
breast, lung, cervix, endometrium, stomach and ovary. In the case of ovarian metastases this can be 
expected since ovarian metastases are thought to arise by loss of cell-cell adhesion whereas the main 
tissue expression profile remains the same. Lung and breast metastases on the other hand prefer more 
distant sites for metastasis but still cluster with their tissue of origin.  
Another group of metastases, originating from gastrointestinal tissue showed a bimodal distribution, 
either resembling tissue of origin or tissue of destination. More specifically, colon-to-liver metastases, 
the largest group, showed this interesting pattern, also confirmed with GSEA analysis.   
Whether colon-to-liver metastasis that respond to the liver micro-environment by expressing liver-
specific genes are also more responsive to adjuvant chemotherapy is an important question. This issue 
appears worthwhile to be evaluated in a translational arm of a clinical study by assessing the expression 
of liver-specific genes by PCR of immunohistochemistry, followed by correlation with tumor 
regression on imaging performed during adjuvant treatment given before resection. 
We believe that our taxonomy of epithelial cancers has implications on many fronts. We have shown 
relationships with clinical outcome, discovered new subgroups, identified a squamous expression 
profile over multiple tissues and studied the relationship between primary and metastatic tumors. These 
findings will provide important information for pathologists interpreting histological slides, researchers 
investigating CUP and the development of prognostic signatures for breast cancer. 
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Figure legends 

 
Figure 1: Hierarchical clustering of 1566 primary epithelial human cancer tumors and 178 metastatic 
tumors of epithelial origin 
Figure 2: Cluster composition for the primary tumor samples. The total number of primary samples in 
each cluster is indicated. 
Figure 3: Cluster composition for the metastatic tumor samples according to their primary site. The 
total number of metastases samples in each cluster is indicated. 
Figure 4: Kidney subclustering 
Figure 5: Breast subclustering 
Figure 6: Investigation of the prognostic relationship of the breast clustering signature in three external 
data sets with 1=good prognosis group and 2 = poor prognosis group 
Figure 7: Colon subclustering 
Figure 8: Clustering with intrinsic genes 
 



Tables 

 
Table 1: number of primary tumor samples in each cluster 

Primary tumors 

Primary 
tumors 

Breast 
cluster 

Colon 
cluster 

Lung 
cluster 

Ovary 
cluster 

Kidney 
cluster 

Prostate 
cluster 

Thyroid 
Kidney 
cluster 

Mix 
cluster Total 

bladder 6 1 10 11 0 0 0 0 28 

breast 331 3 4 3 4 0 2 6 353 

cervix 3 8 18 0 1 0 0 1 31 

colon 14 254 6 2 1 0 1 1 279 

endometrium 1 2 1 52 0 0 1 6 63 

fallopian tube 0 0 0 0 0 0 0 0 0 

kidney 7 0 0 0 248 0 20 3 278 

liver 0 1 2 0 9 1 0 1 14 

lung 4 0 107 5 0 0 4 1 121 

ovary 2 9 7 147 0 0 1 9 175 

pancreas 0 0 0 0 0 0 0 0 0 

peritoneum 0 0 0 0 0 0 0 0 0 

prostate 1 0 2 0 0 80 0 0 83 

rectosigmoid 1 30 0 0 0 0 0 0 31 

rectum 5 30 1 0 0 0 0 0 36 

renal pelvis 2 0 2 3 0 0 1 0 8 
small 
intestine 1 3 1 0 0 0 1 1 7 

stomach 0 8 1 0 0 0 0 2 11 

testis 0 0 0 0 0 0 0 0 0 

thyroid 1 2 5 0 1 0 22 2 33 

uterus 1 0 0 2 0 0 0 2 5 

vulva 1 0 9 0 0 0 0 0 10 

Total 381 351 176 225 264 81 53 35 1566 

 



 
Table 2: number of metastatic tumor samples in each cluster, with the metastases represented according 

to their primary tissue 

Metastatic tumors 

Primary 
tissues 

Breast 
cluster 

Colon 
cluster 

Lung 
cluster 

Ovary 
cluster 

Kidney 
cluster 

Prostate 
cluster 

Thyroid 
Kidney 
cluster 

Mix 
cluster Total 

bladder 0 0 1 0 0 0 0 0 1 

breast 5 1 0 0 0 0 0 0 6 

cervix 0 0 2 1 0 0 0 0 3 

colon 1 18 2 5 10 0 1 0 37 

endometrium 4 2 1 9 0 0 0 4 20 

fallopian tube 0 0 0 5 0 0 0 0 5 

kidney 0 0 1 0 1 0 0 0 2 

liver 0 0 0 0 0 0 0 0 0 

lung 0 1 4 1 0 0 0 0 6 

ovary 6 0 1 63 1 1 0 5 77 

pancreas 1 1 1 0 0 0 0 0 3 

peritoneum 0 0 0 2 0 0 0 0 2 

prostate 0 0 0 0 0 0 0 0 0 

rectosigmoid 0 1 0 1 1 0 0 0 3 

rectum 0 2 0 0 1 0 0 0 3 

renal pelvis 0 0 0 0 0 0 0 0 0 
small 
intestine 0 0 1 0 0 0 0 1 2 

stomach 0 3 0 0 0 0 0 0 3 

testis 1 0 0 0 0 0 0 0 1 

thyroid 0 0 0 0 0 0 0 0 0 

uterus 0 0 1 0 0 0 0 2 3 

vulva 0 0 1 0 0 0 0 0 1 

Total 18 29 16 87 14 1 1 12 178 

 
 
 



Table 3: data sets used for investigating the prognostic relationship of the breast cluster signature  

Data set name Number of 
patients 

Microarray type Outcome 

Chin [72] 130 Affymetrix GeneChip 
Human Genome 
U133A Array Set 

Disease specific survival (Event 
= death from breast cancer) 

Miller [73] 251 Affymetrix GeneChip 
Human Genome U133 
Array Set 

Disease specific survival (Event 
= death from breast cancer) 

Pittman [74] 158 Affymetrix GeneChip 
Human Genome 
U95av2 Array Set 

Overall survival (Even t= death 
from breast cancer) 

 



Additional Files 

 
Additional File 1:   
Title:   Sample list 
Description:  List of all samples in each of the molecular clusters.  
 
Additional File 2:   
Title:   GSEA analysis all clusters 
Description: Upregulated gene sets in each cluster vs. the remaining samples 

according to GSEA analysis.  
 
Additional File 3:    
Title:   Breast cancer clinico-pathological data 
Description: Grade, histological distribution and receptor status for the breast 

subclusters.  
 
Additional File 4:  
Title:   Breast signature 
Description: Breast signature based on differentially expressed genes between 

Cluster 1 and Cluster 4 in the breast cluster.  
 
Additional File 5:  
Title:   GSEA kidney samples 
Description: Upregulated gene sets in the primary kidney samples in the Thyroid-

Kidney cluster vs. the primary kidney samples in the Kidney cluster 
according to GSEA analysis.  

 
Additional File 6:   
Title:   GSEA colon-to-liver metastases 
Description: Pathways from the colon-to-liver metastases upregulated either in the 

colon or in the liver cluster according to GSEA analysis. 
 
Additional File 7:   
Title:   Tissue specific genes 
Description: Comparison of the kidney and liver expression signatures from the 

TIGER database. 
 
Additional File 8:   
Title:   Differentially expressed genes in breast cluster 
Description: Differentially expressed genes between the lobular primary breast 

samples and the ductal primary breast samples in the mixed lobular-
ductal cluster (Cluster A). 

 
Additional File 9:     
Title:   DAVID results 
Description: DAVID functional enrichment analysis of the Breast signature 

separately for the genes expressed in Cluster 1, Cluster 4 and the GGI 
signature. 
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Additional file 1: Sup File 1.xls, 113K
http://www.biomedcentral.com/imedia/1960149657324847/supp1.xls
Additional file 2: Sup File 2.xls, 1474K
http://www.biomedcentral.com/imedia/1512837790324847/supp2.xls
Additional file 3: Sup File 3.xls, 30K
http://www.biomedcentral.com/imedia/1748731810324847/supp3.xls
Additional file 4: Sup File 4.xls, 55K
http://www.biomedcentral.com/imedia/5993711432484738/supp4.xls
Additional file 5: Sup File 5.xls, 147K
http://www.biomedcentral.com/imedia/2025467753248474/supp5.xls
Additional file 6: Sup File 6.xls, 505K
http://www.biomedcentral.com/imedia/2138800940324847/supp6.xls
Additional file 7: Sup File 7.xls, 21K
http://www.biomedcentral.com/imedia/3468985563248474/supp7.xls
Additional file 8: Sup File 8.xls, 32K
http://www.biomedcentral.com/imedia/9248855773248474/supp8.xls
Additional file 9: Sup File 9.xls, 386K
http://www.biomedcentral.com/imedia/1594696916324847/supp9.xls
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