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Abstract Many problems encountered in systems theory and system identification
require the solution of polynomial optimization problems,which have a polynomial
objective function and polynomial constraints. Applying the method of Lagrange
multipliers yields a set of multivariate polynomial equations. Solving a set of multi-
variate polynomials is an old, yet very relevant problem. Itis little known that behind
the scene, linear algebra and realization theory play a crucial role in understanding
this problem. We show that determining the number of roots isessentially a linear al-
gebra question, from which we derive the inspiration to develop a root-finding algo-
rithm based on realization theory, using eigenvalue problems. Moreover, since one
is only interested in the root that minimizes the objective function, power iterations
can be used to obtain the minimizing root directly. We highlight applications in sys-
tems theory and system identification, such as analyzing theconvergence behaviour
of prediction error methods and solving structured total least squares problems.

1 Introduction

Solving a polynomial optimization problem is a core problemin many scientific
and engineering applications. Polynomial optimization problems are numerical op-
timization problems where both the objective function and the constraints are multi-
variate polynomials. Applying the method of Lagrange multipliers yields necessary
conditions for optimality, which, in the case of polynomialoptimization, results in
a set of multivariate polynomial equations.
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Solving a set of multivariate polynomial equations, i.e., calculating its roots, is an
old problem, which has been studied extensively. For a briefhistory and a survey of
relevant notions regarding both algebraic geometry and optimization theory, we re-
fer to the excellent text books [5, 6] and [35], respectively. The technique presented
in this contribution explores formulations based on the Sylvester and Macaulay con-
structions [27, 28, 42], which ‘linearize’ a set of polynomial equations in terms of
linear algebra. The resulting task can then be tackled usingwell-understood matrix
computations, such as eigenvalue calculations. We presentan algorithm, based on
realization theory, to obtain all solutions of the originalset of equations from a (gen-
eralized) eigenvalue problem. Since in most cases, one is only interested in the root
that minimizes the given objective function, the global minimizer can be determined
directly as a maximal eigenvalue. This can be achieved usingwell-understood ma-
trix computations such as power iterations [15]. Applications are ubiquitous, and
include solving and analyzing the convergence behaviour ofprediction error sys-
tem identification methods [24], and solving structured total least squares problems
[7, 8, 9, 10, 11].

This contribution comprises a collection of ideas and research questions. We aim
at revealing and exploring vital connections between systems theory and system
identification, optimization theory, and algebraic geometry. For convenience, we
assume that the coefficients of the polynomials used are real, and we also assume
that the sets of polynomial equations encountered in our examples describe zero-
dimensional varieties (the set of polynomial equations hasa finite number of so-
lutions). In order to clarify ideas, we limit the mathematical content, and illustrate
the presented methods with several simple instructional examples. The purpose of
this paper is to share some interesting ideas. The real challenges lie in deriving the
proofs, and moreover in the development of efficient algorithms to overcome nu-
merical and combinatorial issues.

The remainder of this paper is organized as follows: Section2 gives the outline of
the proposed technique; We derive a rank test that counts thenumber of roots, and
a method to retrieve the solutions. Furthermore, we proposea technique that allows
to identify the minimizing root of a polynomial cost criterion, and we briefly survey
the most important current methods for solving systems of multivariate polynomial
equations. In Section 3, a list of relevant applications is outlined. Finally, Section 4
provides the conclusions and describes the main research problems and future work.

2 General Theory

2.1 Introduction

In this section, we lay out a path from polynomial optimization problems to eigen-
value problems. The main steps are phrasing the task at hand as a set of polynomial
equations by applying the method of Lagrange multipliers, casting the problem of
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solving a set of polynomial equations into an eigenvalue problem, and applying
matrix algebra methods to solve it.

2.2 Polynomial Optimization is Polynomial System Solving

Consider a polynomial optimization problem

min
x∈Cp

J(x) (1)

s. t. gi(x) = 0, i = 1, . . . ,q,

whereJ : Cp → R is the polynomial objective function, andgi : Cp → R repre-
sentq polynomial equality constraints in the unknownsx = (x1, . . . ,xp)

T ∈ C
p.

We assume that all coefficients inJ(·) andgi(·) are real. The Lagrange multipli-
ers method yields the necessary first-order conditions for optimality: they are found
from the stationary points of the Lagrangian function, for which we introduce a
vectora = (α1, . . . ,αq)

T ∈ Rq, containing the Lagrange multipliersαi :

L (x,a) = J(x)+
p

∑
i=1

αigi(x). (2)

This results in

∂
∂xi

L (x,a) = 0, i = 1, . . . , p, and (3)

∂
∂αi

L (x,a) = 0, i = 1, . . . ,q. (4)

In the case of a polynomial optimization problem, it is easy to see that the result is
a set ofm= p+q polynomial equations inn = p+q unknowns.

Example 1.Consider

min
x

J = x2 (5)

s. t. (x−1)(x−2) = 0. (6)

Since the constraint has only two solutions (x= 1 andx= 2), it is easily verified that
the solution of this problem corresponds tox= 1, for which the value of the objective
function J is 1. In general, this type of problem can be tackled using Lagrange
multipliers. The Lagrangian function is given by

L (x,α) = x2 + α(x−1)(x−2), (7)

whereα denotes a Lagrange multiplier. We find the necessary conditions for opti-
mality from the stationary points of the Lagrangian function as a set of two polyno-
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mial equations in the unknownsx andα:

∂L

∂x
(x,α) = 0 ⇐⇒ 2x+2xα −3α = 0, (8)

∂L

∂α
(x,α) = 0 ⇐⇒ x2−3x+2= 0. (9)

In this example, the stationary points(x,α) are indeed found as(1,2) and(2,−4).
The minimizing solution of the optimization problem is found as(x,α) = (1,2).

The conclusion of this section is that solving polynomial optimization problems
results in finding roots of sets of multivariate polynomial equations.

2.3 Solving a System of Polynomial Equations is Linear Algebra

2.3.1 Motivational Example

It is little known that behind the scenes, the task of solvinga set of polynomial
equations is essentially a linear algebra question. In order to illustrate this, a moti-
vational example is introduced to which we will return throughout the remainder of
this paper.

Example 2.Consider a simple set of two equations inx andy, borrowed from [41]:

p1(x,y) = 3+2y−xy−y2+x2 = 0 (10)

p2(x,y) = 5+4y+3x+xy−2y2+x2 = 0. (11)

This system has four solutions for(x,y); two real solutions and a complex con-
jugated pair:(0.08,2.93), (−4.53,−2.58), and(0.12∓0.70i,−0.87±0.22i). The
system is visualized in Fig. 1.

2.3.2 Preliminary Notions

We start by constructing bases of monomials. Letn denote the number of unknowns.
In accordance with example Eq. (10)–(11), we consider the case ofn= 2 unknowns
x andy.

Letwδ be a basis of monomials of degreeδ in two unknownsx andy, constructed
as

wδ = (xδ ,xδ−1y, . . . ,yδ )T . (12)

Given a maximum degreed, a column vector containing a full basis of monomials
vd is constructed by stacking baseswδ of degreesδ ≤ d:

vd = (w0;w1; . . . ;wd). (13)
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Fig. 1 A simple set of two polynomialsp1(x,y) = 0 andp2(x,y) = 0, see Eq. (10) (dot-dashed line)
and Eq. (11) (solid line), respectively. This system has four (complex) solutions(x,y): (0.08,2.93),
(−4.53,−2.58), and(0.12∓0.70i,−0.87±0.22i). Level sets of a polynomial objective function
J = x2 +y2 are also shown (dotted lines).

Example 3.For the case of two unknownsx andy, andδ ≤ 3, we have

w0 = (1)T , v0 = (1)T ,
w1 = (x,y)T , v1 = (1,x,y)T ,
w2 = (x2,xy,y2)T , v2 = (1,x,y,x2,xy,y2)T ,
w3 = (x3,x2y,xy2,y3)T , v3 = (1,x,y,x2,xy,y2,x3,x2y,xy2,y3)T .

(14)

Observe the ‘shift properties’ inherent in this formulation, which will turn out to
play a fundamental role in our root-counting technique and root-finding algorithm.
By shift properties, we mean that by multiplication with a certain monomial, e.g.,
x or y, monomials of low degree are mapped to monomials of higher degree. For
example:

(1,x,y,x2,xy,y2)Tx = (x,x2,xy,x3,x2y,xy2)T ,
(1,x,y,x2,xy,y2)Ty = (y,xy,y2,x2y,xy2,y3)T .

(15)

Let us end with some remarks. Firstly, as the number of unknowns used should be
clear in each example, we have dismissed the explicit dependence ofvd andwδ onn
for notational convenience. Secondly, we have used a specific monomial order, i.e.,
graded lexicographic order: monomials are first ordered by their total degree, terms
of equal total degree are then ordered lexicographically. The techniques illustrated
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here can be easily generalized to other monomial orders. Thirdly, we have only
discussed the case ofn= 2 unknowns, however, the general case ofn> 2 unknowns
can be worked out in a similar fashion.

2.3.3 Constructing Matrices Md

We outline an algorithm to construct so-called Macaulay-like matricesMd, satisfy-
ing Mdvd = 0, wherevd is a column vector containing a full basis of monomials,
as defined above. This construction will allow us to cast the problem at hand into a
linear algebra question.

Given a set ofm polynomial equationspi , i = 1,2, . . . ,m of degreesdi in n un-
knowns. We will assume that the number of multivariate polynomial equationsm
equals the number of unknownsn, as this is the case for all the examples we will
discuss in this paper. Also recall that only cases with few unknowns are encoun-
tered, hence, for notational convenience, unknowns are denoted byx, y, etc. Let
d◦ = max(di) and letd ≥ d◦ denote the degree of the full basis of monomialsvd to
be used.

The construction ofMd proceeds as follows: The columns ofMd index monomi-
als of degreesd or less, i.e., the elements ofvd. The rows ofMd are found from the
forms r · pi , wherer is a monomial for which deg(r · pi) ≤ d. The entries of a row
are hence found by writing the coefficients of the corresponding formsr · pi in the
appropriate columns. In this way, each row ofMd corresponds to one of the input
polynomialspi .

Example 4.This process is illustrated using Eq. (10)–(11). The 2×6 matrixM2 is
found from the original set of equations directly as

M2v2 = 0 or

(

3 0 2 1−1 −1
5 3 4 1 1−2

)

















1
x
y
x2

xy
y2

















= 0. (16)

We now increased to d = 3, and add rows to completeM3, yielding a 6×10 matrix.
By increasing the degreed to 4, we obtain a 12× 15 matrixM4. This process is
shown in Tab. 1.

In general, the matrices generated in this way are very sparse, and typically quasi-
Toeplitz structured [32]. Asd is increased further, the number of monomials in the
corresponding bases of monomialsvd of the matricesMd grows. The number of
monomials of given degreed in n unknowns is given by the relation

N(n,d) =
(d+n−1)!
d! (n−1)!

. (17)



Polynomial Optimization Problems are Eigenvalue Problems 7

Table 1 The construction of matricesMd. Columns ofMd are indexed by monomials of degreesd
and less. Rows ofMd are found from the formsr · pi , wherer is a monomial and deg(r · pi )≤ d; the
entries of each row are found by writing the coefficients of the input polynomials in the appropriate
columns. The construction process is shown ford = 2 (resulting in a 2× 6 matrix), up tod = 4
(resulting in a 12×15 matrix). Empty spaces represent zero elements.

1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4 . . .

d◦ = 2 p1 3 2 1 −1 −1
p2 5 3 4 1 1 −2

d = 3 x· p1 3 2 1 −1 −1
y· p1 3 2 1 −1 −1
x· p2 5 3 4 1 1 −2
y· p2 5 3 4 1 1 −2

d = 4 x2 · p1 3 2 1 −1 −1
xy· p1 3 2 1 −1 −1
y2 · p1 3 2 1 −1 −1
x2 · p2 5 3 4 1 1 −2
xy· p2 5 3 4 1 1 −2
y2 · p2 5 3 4 1 1 −2

...

As d increases, the row-size (number of formsr · pi ) increases too. It can be verified
that the number of rows inMd grows faster than the number of monomials invd,
since each input polynomial is multiplied by a set of monomials, the number of
which increases according to Eq. (17). Therefore, a degreed⋆ exists, for which the
corresponding matrixMd⋆ has more rows than columns. It turns out that the number
of solutions, and, moreover, the solutions themselves, canbe retrieved from the
‘overdetermined’ matrixMd⋆ , as will be illustrated in the following sections.

For the example of Eq. (10)–(11), we findd⋆ = 6, and a corresponding 30×28
matrix M6. Due to the relatively large size, this matrix is not printed, however, its
construction is straightforward, and proceeds as illustrated in Tab. 1.

Observe that in Eq. (10)–(11), the given polynomials are both of degree two. If
the input polynomials are not of the same degree, one also hasto shift the input
polynomial(s) of lower degree internally: For example, consider the case of two
(univariate) polynomials

a3x3 +a2x
2 +a1x+a0 = 0 (18)

b2x2 +b1x+b0 = 0, (19)

then, ford = 3, one easily finds





a0 a1 a2 a3

b0 b1 b2 0
0 b0 b1 b2













1
x
x2

x3









= 0, (20)
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where the third row in the matrix is found by multiplying the second polynomial
with x. Increasingd to 4 yields the classical 5×5 Sylvester matrix.

2.4 Determining the Number of Roots

From the construction we just described, it is easy to verifythat the constructed
matricesMd are rank-deficient: by evaluating the basis of monomialsvd at the (for
the moment unknown) roots, a solution forMdvd = 0 is found. By construction, in
the null space of the matricesMd, we find vectorsvd containing the roots of the set
of multivariate polynomial equations. As a matter of fact, every solution generates a
different vectorvd in the null space ofMd. Obviously, whenMd is overdetermined,
it must become rank deficient because of the vectorsvd in the kernel ofMd. Contrary
to what one might think, the co-rank ofMd, i.e., the dimension of the null space,
does not provide the number of solutions directly; It represents an upper bound. The
reason for this is that certain vectors in the null space are ‘spurious’: they do not
contain information on the roots. Based on these notions, wewill now work out a
root-counting technique: we reason that the exact number ofsolutions derives from
the notion of atruncated co-rank, as will be illustrated in this section.

Observe in Tab. 1 that the matricesMd of low degrees are embedded in those of
high degree, e.g.,M2 occurs as the upper-left block in an appropriately partitioned
M3, M3 in M4, etc. For Eq. (10)–(11), one has the following situation:

d w0 w1 w2 w3 w4 w5 w6 w7 sizeMd

2(= d◦) × × × 0 0 0 0 0 2×6
3 0 × × × 0 0 0 0 6×10
4 0 0 × × × 0 0 0 12×15
5 0 0 0 × × × 0 0 20×21
6(= d⋆) 0 0 0 0 × × × 0 30×28
7 0 0 0 0 0 × × × 42×36

(21)

In the left-most column, the degreed is indicated. The right-most column shows
the size of the corresponding matrixMd. The middle part represents the matrixMd.
The columns ofMd are indexed (block-wise) by bases of monomialswδ . Zeros in
Md represent zero-blocks, and blocks of non-zero entries are indicated by×.

For Eq. (10)–(11) we have found that ford⋆ = 6, the matrixMd⋆ becomes overde-
termined. Let us now investigate what happens to the matricesMd when increasing
d. Consider the transition from, say,d = 6 tod = 7. We partitionM6 as follows (cf.
Eq. (21)):

M6 =













× × × 0 0 0 0
0 × × × 0 0 0
0 0 × × × 0 0
0 0 0 × × × 0
0 0 0 0 × × ×













=
(

K6 L6
)

. (22)
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where the number of columns inK6 corresponds to the number of monomials in the
bases of monomialsw0 to w4. SinceM6 is embedded inM7, we can also identify
K6 andL6 in M7. We partitionM7 accordingly:

M7 =

















× × × 0 0 0 0 0
0 × × × 0 0 0 0
0 0 × × × 0 0 0
0 0 0 × × × 0 0
0 0 0 0 × × × 0
0 0 0 0 0× × ×

















=

(

K6 L6 0
0 D7 E7

)

(23)

Let Z6 andZ7 denote (numerically computed) kernels ofM6 andM7, respectively.
The kernelsZ6 andZ7 are now partitioned accordingly, such that:

M6Z6 =
(

K6 L6
)

(

T6

B6

)

, and (24)

M7Z7 =

(

K6 G7

0 H7

)(

T7

B7

)

, (25)

where

G7 =
(

L6 0
)

, and (26)

H7 =
(

D7 E7
)

. (27)

Due to the zero block inM7 belowK6 , we have

rank(T6) = rank(T7), (28)

which we will call thetruncated co-rankof Md⋆ . In other words, ford≥ d⋆, the rank
of the appropriately truncated bases for the null spaces, stabilizes. We call the rank
at which it stabilizes the truncated co-rank ofMd. It turns out that the number of
solutions corresponds to the truncated co-rank ofMd, given that a sufficiently high
degreed is chosen, i.e.,d ≥ d⋆. Correspondingly, we will call the matricesT6 and
T7 thetruncated kernels, from which the solutions can be retrieved, as explained in
the following section.

2.5 Finding the Roots

The results from the previous section allow us to find the number of roots as a rank
test on the matricesMd and their truncated kernels. We will now present a root-
finding algorithm, inspired by realization theory and the shift property Eq. (15),
which reduces to the solution of a generalized eigenvalue problem. We will also
point out other approaches to phrase the task at hand as an eigenvalue problem.
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2.5.1 Realization Theory

We will illustrate the approach using the example Eq. (10)–(11).

Example 5.A matrix Md of sufficiently high degree was constructed in Section 2.3.3:
we foundd⋆ = 6 and constructedM6. One can verify that the truncated co-rank of
M6 is four, hence there are four solutions. Note that one can always construct a
canonical formof the (truncated) kernelVd of Md as follows, e.g., ford = 6 and
four different roots:

V6 =







































1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

x2
1 x2

2 x2
3 x2

4
x1y1 x2y2 x3y3 x4y4

y2
1 y2

2 y2
3 y2

4
x3

1 x3
2 x3

3 x3
4

x2
1y1 x2

2y2 x2
3y3 x2

4y4

x1y2
1 x2y2

2 x3y2
3 x4y2

4
y3

1 y3
2 y3

3 y3
4

...
...

...
...







































, (29)

where(xi ,yi), i = 1, . . . ,4 represent the four roots of Eq. (10)–(11). Note that the
truncated kernels are used to retrieve the roots, this meansthat certain rows are
omitted from the full kernels, in accordance with the specific partitioning discussed
in Section 2.4. Observe that the columns of this generalizedVandermonde matrix
Vd are nothing more than all roots evaluated in the monomials indexing the columns
of Md. Let us recall the shift property Eq. (15): if we multiply theupper part of one
of the columns ofV6 with x, we have:

















1
x
y
x2

xy
y2

















x =

















x
x2

xy
x3

x2y
xy2

















. (30)

Let D = diag(x1,x2,x3,x4) be a diagonal matrix with the (for the moment unknown)
x-roots. In accordance with the shift property Eq. (15), we can write

S1V6D = S2V6, (31)

whereS1 andS2 are so-called row selection matrices:S1V6 selects the first rows of
V6, corresponding to degrees 1 to 5(= 6−1). S2V6 represents rows 2, 4, 5, 7, 8, 9,
etc. ofV6, in order to perform the multiplication withx. In general, the kernelVd is
not available in thecanonical formas in Eq. (29). Instead, a kernelZd is calculated
numerically as
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MdZd = 0, (32)

whereZd = VdT, for a certain non-singular matrixT. Hence,

S1Zd(T−1DT) = S2Zd, (33)

and the root-finding problem is reduced to a generalized eigenvalue problem:

(ZT
d ST

1 S2Zd)u = λ (ZT
d ST

1 S1Zd)u. (34)

We revisit example Eq. (10)–(11). A kernel ofM6, i.e.,Z6, is computed numerically
using a singular value decomposition. The number of solutions was obtained in the
previous sections as four. After constructing appropriateselection matricesS1 and
S2, and solving the resulting generalized eigenvalue problem, the roots(x,y) are
found as in Example 2.

2.5.2 The Stetter-M̈oller Eigenvalue Problem

It is a well-known fact that the roots of a univariate polynomial correspond to the
eigenvalues of the corresponding Frobenius companion matrix (this is how the roots
are computed using theroots command in MATLAB). The notion that a set of
multivariate polynomial equations can also be reduced to aneigenvalue problem was
known to Sylvester and Macaulay already in the late 19th and early 20th century,
but was only recently rediscovered by Stetter and coworkers(cf. [1, 31, 39], similar
approaches are [19, 21, 30]). We will recall the main ideas from this framework, and
illustrate the technique using example Eq. (10)–(11).

In order to phrase the problem of solving a set of multivariate polynomial equa-
tions as an eigenvalue problem, one needs to construct a monomial basis, prove
that it is closedfor multiplication with the unknowns for which one searchesthe
roots. Furthermore, one needs to construct associated multiplication matrices (cf.
[39, 40]). In practice, this can be accomplished easily after applying a normal form
algorithm, such as the Gröbner basis method [3].

Example 6.Consider the example Eq. (10)–(11). It can be verified that(1,x,y,xy)T

is closed for multiplication with bothx andy, meaning that the monomialsx2, y2,
x2y, andxy2 can be written as linear functions of(1,x,y,xy)T : From Eq. (10), we
find y2 = x2−xy+2y+3. After substitution ofy2 in Eq. (11), we find

x2 = −1+3x+3xy. (35)

Multiplication of Eq. (35) withy yields

x2y−3xy2 = −y+3xy. (36)

From Eq. (11), we findx2 = 2y2 − xy− 3x− 4y− 5. After substitution ofx2 in
Eq. (10), we find

y2 = 2+2y+2xy+3x. (37)
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Multiplication of Eq. (37) withx yields

x2y−3xy2 = −y+3xy. (38)

We can therefore write Eq. (35)–(38) as









1 0 0 0
0 1 0 0

−3 0−2 1
0 0 1−3

















x2

y2

x2y
xy2









=









−1 3 0 3
2 3 2 2
0 2 0 2
0 0 −1 3

















1
x
y
xy









, (39)

in which the 4× 4 matrix in the left-hand side of the equation is invertible.This
implies









x2

y2

x2y
xy2









=









−1 3 0 3
2 3 2 2

1.8 −6.6 0.2 −7.2
0.6 −2.2 0.4 −3.4

















1
x
y
xy









, (40)

from which we easily find the equivalent eigenvalue problems

Ax u = x u, and Ay u = y u, (41)

or








0 1 0 0
0 0 0 1

−1 3 0 3
1.8 −6.6 .2 −7.2

















1
x
y
xy









=









1
x
y
xy









x, and (42)









0 0 1 0
2 3 2 2
0 0 0 1
.6 −2.2 .4 −3.4

















1
x
y
xy









=









1
x
y
xy









y, (43)

from which the solutions(x,y) follow, either from the eigenvalues or the eigen-
vectors. There are several other interesting properties wecan deduce from this ex-
ample. For example, sinceAx andAy share the same eigenvectors, they commute:
AxAy = AyAx, and therefore also, any polynomial function ofAx andAy will have
the same eigenvectors.

2.6 Finding the Minimizing Root as a Maximal Eigenvalue

In many practical cases, and certainly in the polynomial optimization problem we
started from in Section 2.2, we are interested in only one specific solution of the set
of multivariate polynomials, namely the one that minimizesthe polynomial objec-
tive function. As the problem is transformed into a (generalized) eigenvalue prob-
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lem, we can now show that the minimal value of the given polynomial cost criterion
corresponds to the maximal eigenvalue of the generalized eigenvalue problem.

Example 7.We illustrate this idea using a very simple optimization problem, shown
in Fig. 2:

min
x,y

J = x2 +y2 (44)

s. t. y = (x−1)2, (45)

the solution of which is found at(x,y) = (0.41,0.35) with a corresponding cost
J = 0.86. The Lagrangian function is given by

Fig. 2 A simple optimization problem, see Eq. (45). The constrainty = (x−1)2 (solid line) and
level sets ofJ = x2 +y2 (dotted lines) are shown. The solution is found at(x,y) = (0.41,0.35), for
whichJ = 0.86.

L (x,y,α) = x2 +y2 + α
(

y− (x−1)2) . (46)

The Lagrange multipliers method results in a system of polynomial equations inx,
y, andα:
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∂L

∂x
(x,y,α) = 0 ⇐⇒ 2x−2xα +2α = 0, (47)

∂L

∂y
(x,y,α) = 0 ⇐⇒ 2y+ α = 0, (48)

∂L

∂α
(x,y,α) = 0 ⇐⇒ y−x2+2x−1= 0. (49)

Construct a matrixMd⋆ as described above. In this example,d⋆ = 4, for which the
dimension ofM4 is 40×35. The truncated co-rank ofMd⋆ indicates there are three
solutions. The corresponding ‘canonical form’ of the (truncated) kernelV4 is given
by

V4 =















































































1 1 1
x1 x2 x3

y1 y2 y3

α1 α2 α3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3
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, (50)

where(xi ,yi ,αi) represent the roots (fori = 1, . . . ,3). The objective function is given
asJ = x2+y2. In accordance with the technique described in Section 2.5.1, we now
define a diagonal matrixD = diag(x2

1 + y2
1, x2

2 + y2
2, x2

3 + y2
3) containing the values

of the objective functionJ evaluated at the roots. We have

S1V4D = S2V4, or S1V4 = S2V4D−1 (if J 6= 0), (51)

Again,S1 andS2 are row-selection matrices. In particular,S1V4 selects the top rows
of V4, whereasS2V4 will make a linear combination of the suitable rows ofV4 cor-
responding to the monomials of higher degrees in order to perform the multiplica-
tion with the objective functionJ. Again, the kernel ofMd is not directly available
in the ‘canonical form’, instead, a kernel is computed as
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MdZd = 0, (52)

whereZd = VdT, for a certain non-singular matrixT. Hence,

S1Zd = S2Zd(T
−1D−1T), (53)

and the minimal norm is the inverse of the maximal eigenvalueof

(S2Zd)†(S1Zd) (= T−1D−1T), (54)

whereX† denotes the Moore-Penrose pseudoinverse ofX. This leads to the gener-
alized eigenvalue problem

(ZT
d ST

2 S1Zd)u = λ (ZT
d ST

2 S2Zd)u, (55)

where

λ =
1
J
. (56)

By applying toZd the right similarity transformation (and a diagonal scaling), we
also findVd.

We prefer to work with the power method for computing the maximum eigen-
value, instead of working with the inverse power method for the minimum eigen-
value, since in the inverse power method, a matrix inversionis required in each
iteration step.

Example 8.We now apply this technique to example Eq. (10)–(11). We wantto
solve the following optimization problem (also see Fig. 1):

min
x,y

J = x2 +y2 (57)

s. t. 3+2y−xy−y2+x2 = 0 (58)

5+4y+3x+xy−2y2+x2 = 0. (59)

The method of Lagrange multipliers now results in a set of four polynomial equa-
tions in four unknowns. The minimal degreed⋆ = 5 and corresponding matrixM5

of size 140×126 are found as described above. The cost criterion polynomial J is
of degree two, which means thatS1V selects the parts of the basis of monomials
corresponding to degrees 0 to 3(= 5−2). S2 is constructed so that the shift with
(x2 +y2)−1 is performed. The largest real eigenvalue from Eq. (55) yields the mini-
mal cost as 1/0.1157= 8.64, which is attained at(x,y) = (0.08,2.93). This can be
verified in Fig. 1, where the level sets of the cost functionJ = x2 +y2 are shown.
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2.7 Algorithms

We have presented a technique to count the roots of systems ofpolynomial equa-
tions. Moreover, the roots can be determined from an eigenvalue problem. Since we
search for the maximal eigenvalue of a certain matrix, a possible candidate algo-
rithm is the power method [15].

Current methods for solving sets of polynomial equations can be categorized into
symbolic, numerical, and hybrid types.

• One can classify symbolic techniques into Gröbner basis methods and resultant-
based methods. The work on Gröbner bases [3] has dominated the field of algo-
rithmic algebraic geometry for decades. In this approach, the original problem
is transformed into an ‘easier’ equivalent, using symbolictechniques, such as
Buchberger’s algorithm [3]. However, Gröbner basis methods have fundamen-
tal disadvantages: they are restricted to small-scale problems, and moreover, the
computations suffer from numerical instabilities, for example, two problems with
seemingly small differences in coefficients can give rise tovery differently look-
ing Gröbner bases. Some efforts to bypass the costly generation of a Gröbner
basis, by working towards a more direct formulation of a corresponding eigen-
value problem have been made, as in the use of border bases [33, 34]. On the
other hand, resultant-based techniques are used to eliminate unknowns from a
set of polynomial equations. Resultant-based methods are again gaining inter-
est, as some of the disadvantages of Gröbner basis methods are solved, and the
computations involved can be carried out using well-understood matrix compu-
tations.

• A wide variety of numerical solution techniques based on Newton’s method have
been developed. In general, methods based on Newton iterations fail to guar-
antee globally optimal solutions, but they can be used to findor refine a local
solution, starting from an initial guess. Recently, in [20,36, 38], relaxation meth-
ods for the global minimization of a polynomial, involving sums of squares and
semidefinite programming have been presented. Many classical methods are of-
ten outperformed using this technique. However, in general, only a lower bound
of the minimum of the objective function is found.

• Hybrid methods combine results from both the symbolic and the numerical per-
spectives to find all roots. Homotopy continuation methods [23, 43] track all so-
lution paths, starting from an ‘easy’ problem through to the‘difficult’ problem in
question, hereby iterating prediction-correction steps based on Newton methods.

3 Applications in Systems Theory and Identification

The tasks of solving polynomial optimization problems and solving sets of poly-
nomial equations are ubiquitous in science and engineering, and a wide variety of
applications exists (e.g., computer vision [37], robotics: inverse kinematics [29],
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computational biology: conformation of molecules [13], life sciences: [2], etc.). The
relation between systems theory and system identification,control theory, optimiza-
tion theory, and algebraic geometry has only come to attention recently [4, 16, 18].
This perspective provides an ambitious and powerful framework to tackle many
problems in the fields mentioned above. We highlight some important applications.

• The well-known prediction error methods (PEM) [24] can be phrased as op-
timization problems with a quadratic objective function and polynomial con-
straints representing the relations between the measured data and the model pa-
rameters. This means that they fit into the framework we have proposed above (cf.
Section 2.2). The techniques presented here are quite ambitious, as they aim at
finding global solutions to polynomial optimization problems. However, at this
moment, the inherent complexity prohibits the applicationto large-scale prob-
lems.

• Least squares approximation of a matrix by a low-rank matrixis an important
task in systems theory and identification, which can be solved using a singular
value decomposition [12]. When additional constraints areimposed, e.g., linear
matrix structure such as Hankel, or element-wise weighting, the so-called Rie-
mannian singular value decomposition was proposed in [7, 8,9, 10, 11] to solve
the structured total least squares problem. The RiemannianSVD is essentially
a system of polynomial equations, and can therefore be tackled using the meth-
ods described in this contribution. Moreover, the Riemannian SVD provides a
unifying framework [22] for a multitude of existing and new system identifica-
tion methods, e.g., prediction error methods: AR(X), ARMA(X), dynamical total
least squares, errors-in-variables system identification, etc.

• In [17] some strong connections between polynomial system solving and multidi-
mensional systems theory were revealed, especially between [40] and realization
theory for multidimensional systems. In [16], many other interesting connections
between constructive algebra and systems theory are established.

• In [26] it was shown that the question of assessing global identifiability for ar-
bitrary (non-linear) model parametrizations is equivalent to the possibility of ex-
pressing the model structure as a linear regression: in [25], L. Ljung states:

[The] result shows that the complex, non-convex form of the likelihood function with
many local minima is not inherent in the model structure.

From the perspective of rearranging the identifiability question as a linear re-
gression, the term ‘algebraic convexification of system identification methods’
was coined. Ljung and Glad use Ritt’s algorithm, based on differential algebra,
similar to the Gröbner basis algorithm [3]. Also this approach is related to solv-
ing systems of polynomial equations, and can be tackled using the techniques
described in this paper.
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4 Conclusions and Future Work

We have explored several fundamental links between systemstheory and system
identification, optimization theory, and algebraic geometry. We have generalized a
technique based on Sylvester and Macaulay resultants, resulting in a method for
root-counting as a rank test on the kernel of a Macaulay-likematrix. Also, the solu-
tions can be determined: either as an eigenvalue problem, orby applying realization
theory to the kernel of this matrix. In the case of a polynomial optimization problem,
this technique can be applied to find the minimizing solutiondirectly, by finding the
maximal eigenvalue of a corresponding (generalized) eigenvalue problem.

The nature of this contribution is meant to be highly didactic, and presenting
main ideas in a pedagogical way. We have omitted proofs and technical details, but
yet, many practical challenges remain to be tackled before we can arrive at feasible
numerical algorithms:

• How to go exactly from the rank deficiency ofMd to a (generalized) eigenvalue
problem, needs to be investigated further. Moreover, in order to apply the power
method, we need to prove that the largest eigenvalue, that issupposed to be equal
to the inverse of the minimum of the objective function, is actually real; Said
in other words, that there are no complex conjugated roots that in modulus are
larger.

• Currently, many techniques similar to those described in this paper, suffer from a
restrictive exponential complexity due to the rapidly growing number of mono-
mials to be taken into account. This exponential complexityprohibits application
to large problems. It remains to be investigated how the inherent complexity can
be circumvented by exploiting the (quasi-Toeplitz) structure and sparsity.

• The relations between the technique presented here and the traditional symbolic
methods will be investigated. The link with the work [14] is relevant in this re-
spect.

• How results regarding rank tests, as observed in this article, are encountered in
cases where the input polynomials describe a positive dimensional variety is also
of interest.

• It is not completely clear how some properties observed in the Riemannian SVD
framework can be exploited to devise efficient algorithms. For instance, all ma-
trices encountered in this formulation are typically highly structured; It remains
to be investigated how these properties might be exploited through the use of
FFT-like techniques.
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