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Abstract Many problems encountered in systems theory and systertifidation
require the solution of polynomial optimization problemsiich have a polynomial
objective function and polynomial constraints. Applyirigetmethod of Lagrange
multipliers yields a set of multivariate polynomial equets. Solving a set of multi-
variate polynomialsis an old, yet very relevant problens little known that behind
the scene, linear algebra and realization theory play aalrtale in understanding
this problem. We show that determining the number of rootssentially a linear al-
gebra question, from which we derive the inspiration to digve root-finding algo-
rithm based on realization theory, using eigenvalue prokleMoreover, since one
is only interested in the root that minimizes the objectwedtion, power iterations
can be used to obtain the minimizing root directly. We hightiapplications in sys-
tems theory and system identification, such as analyzingdheergence behaviour
of prediction error methods and solving structured totaktesquares problems.

1 Introduction

Solving a polynomial optimization problem is a core problemmany scientific
and engineering applications. Polynomial optimizatioolpdems are numerical op-
timization problems where both the objective function ameld¢onstraints are multi-
variate polynomials. Applying the method of Lagrange npuliirs yields necessary
conditions for optimality, which, in the case of polynomigdtimization, results in
a set of multivariate polynomial equations.
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Solving a set of multivariate polynomial equations, i.@lcalating its roots, is an
old problem, which has been studied extensively. For a bigbry and a survey of
relevant notions regarding both algebraic geometry anuimigpdtion theory, we re-
fer to the excellent text books [5, 6] and [35], respectivélye technique presented
in this contribution explores formulations based on the/8sier and Macaulay con-
structions [27, 28, 42], which ‘linearize’ a set of polyn@héquations in terms of
linear algebra. The resulting task can then be tackled useigunderstood matrix
computations, such as eigenvalue calculations. We presealgorithm, based on
realization theory, to obtain all solutions of the origiset of equations from a (gen-
eralized) eigenvalue problem. Since in most cases, ondydrgarested in the root
that minimizes the given objective function, the global imizer can be determined
directly as a maximal eigenvalue. This can be achieved usaijunderstood ma-
trix computations such as power iterations [15]. Applicas are ubiquitous, and
include solving and analyzing the convergence behavioyredliction error sys-
tem identification methods [24], and solving structureadltgast squares problems
[7,8,9, 10, 11].

This contribution comprises a collection of ideas and redequestions. We aim
at revealing and exploring vital connections between systtheory and system
identification, optimization theory, and algebraic geameFor convenience, we
assume that the coefficients of the polynomials used argardlwe also assume
that the sets of polynomial equations encountered in oumeles describe zero-
dimensional varieties (the set of polynomial equations d&éisite number of so-
lutions). In order to clarify ideas, we limit the mathematicontent, and illustrate
the presented methods with several simple instructionangtes. The purpose of
this paper is to share some interesting ideas. The realectgh lie in deriving the
proofs, and moreover in the development of efficient al¢pons to overcome nu-
merical and combinatorial issues.

The remainder of this paper is organized as follows: Se&igives the outline of
the proposed technique; We derive a rank test that countsuimder of roots, and
a method to retrieve the solutions. Furthermore, we propdsehnique that allows
to identify the minimizing root of a polynomial cost criteri, and we briefly survey
the most important current methods for solving systems dfivauiate polynomial
equations. In Section 3, a list of relevant applicationsutlioed. Finally, Section 4
provides the conclusions and describes the main reseasblepns and future work.

2 General Theory

2.1 Introduction

In this section, we lay out a path from polynomial optimipatproblems to eigen-
value problems. The main steps are phrasing the task at lssandet of polynomial
equations by applying the method of Lagrange multiplieestiog the problem of
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solving a set of polynomial equations into an eigenvalueélenm, and applying
matrix algebra methods to solve it.

2.2 Polynomial Optimization is Polynomial System Solving

Consider a polynomial optimization problem

min J(x) 1)

xeCP

s.t. gi(x)=0, i=1,...,q,

whereJ : CP — R is the polynomial objective function, argl : CP — R repre-
sentq polynomial equality constraints in the unknowrs-= (xl,...,xp)T € CP.
We assume that all coefficients &t-) andgi(-) are real. The Lagrange multipli-
ers method yields the necessary first-order conditionsgitinality: they are found
from the stationary points of the Lagrangian function, fdnigh we introduce a
vectora= (a1,..., aq)T € RY, containing the Lagrange multipliecs:

p
Z(x,a) =J(x) + Zaigi (X). 2
=
This results in

0 .
a—xif(x,a) =0, i=1,...,p, and 3)

0 .
a—aif(x,a)_o, i=1...,0 4)

In the case of a polynomial optimization problem, it is easgee that the result is
a set ofm= p+ g polynomial equations in = p+ q unknowns.

Example 1Consider
min J = X2 (5)
s.t. (x—=1)(x—2)=0. (6)

Since the constraint has only two solutiors{1 andx = 2), it is easily verified that
the solution of this problem correspondste 1, for which the value of the objective
function J is 1. In general, this type of problem can be tackled usingraage
multipliers. The Lagrangian function is given by

L(xa) =X +a(x—1)(x—2), (7)

wherea denotes a Lagrange multiplier. We find the necessary camditior opti-
mality from the stationary points of the Lagrangian funotas a set of two polyno-
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mial equations in the unknownsanda:

07

W(x,a)zo — 2x+ 2xa — 3a =0, (8)
%(x,a)zo — X2 —3x+2=0. (9)

In this example, the stationary poirts a) are indeed found adl,2) and (2, —4).
The minimizing solution of the optimization problem is falas(x, a) = (1,2).

The conclusion of this section is that solving polynomiatimization problems
results in finding roots of sets of multivariate polynomiglations.

2.3 Solving a System of Polynomial EquationsisLinear Algebra

2.3.1 Motivational Example

It is little known that behind the scenes, the task of solvanget of polynomial
equations is essentially a linear algebra question. Inrdad@lustrate this, a moti-
vational example is introduced to which we will return thghwout the remainder of
this paper.

Example 2Consider a simple set of two equationsiandy, borrowed from [41]:

pr(X,y) = 3+2y—xy—y?+x2=0 (10)
Po(X,y) = 544y + 3x+Xy— 2y°+ X% = 0. (11)

This system has four solutions fdx,y); two real solutions and a complex con-
jugated pair:(0.08,2.93), (—4.53,—2.58), and(0.12F0.70i,—0.87+ 0.22i). The
system is visualized in Fig. 1.

2.3.2 Preliminary Notions

We start by constructing bases of monomials.idéenote the number of unknowns.
In accordance with example Eq. (10)—(11), we consider tee oén = 2 unknowns
x andy.

Letwg be a basis of monomials of degré@ two unknowns andy, constructed
as

ws = (Cx0ty . yT. (12)

Given a maximum degreg a column vector containing a full basis of monomials
Vg Iis constructed by stacking baseg of degrees < d:

Vg = (Wo; W1;...;Wg). (13)
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— =P y) ——py(xy) - Level Sets of J = x* + )2

*6_ \

Fig. 1 A simple set of two polynomialp; (x,y) = 0 andpz(x,y) = 0, see Eq. (10) (dot-dashed line)
and Eq. (11) (solid line), respectively. This system has foamplex) solutionsx,y): (0.08,2.93),
(—4.53 —2.58), and(0.1250.70i, —0.87+0.22)). Level sets of a polynomial objective function
J = x2+y? are also shown (dotted lines).

Example 3For the case of two unknowxsandy, andd < 3, we have

WO:(l)Tv Voi( )

W1 = (va)Tv V1 = (1Xy) 14

wo = (X, xy,y?)T, Vo = (Lxy%, Xy )T, (14)
wz = (G Y xy2, V)T, vz = (1,x Y2 xy, Y23 X2y, xy? v T

Observe the ‘shift properties’ inherent in this formulatjavhich will turn out to
play a fundamental role in our root-counting technique aat-finding algorithm.
By shift properties, we mean that by multiplication with ateéx monomial, e.g.,
X ory, monomials of low degree are mapped to monomials of highgrede For
example:

(L,x,y, %2, Xy, y2) Tx = (%, %2, Xy, x3, X%y, xy*) T,

(1,%,y. X2, xy.y?) Ty = (y. X%,y X%y, xy?, y°) T 13)
Let us end with some remarks. Firstly, as the number of unksawsed should be
clear in each example, we have dismissed the explicit deppeabivg andws onn
for notational convenience. Secondly, we have used a spewrifnomial order, i.e.,
graded lexicographic order: monomials are first orderedheyr total degree, terms
of equal total degree are then ordered lexicographicatyg fechniques illustrated
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here can be easily generalized to other monomial ordersdihiwe have only
discussed the case = 2 unknowns, however, the general case of 2 unknowns
can be worked out in a similar fashion.

2.3.3 Constructing Matrices My

We outline an algorithm to construct so-called Macaul&g-tinatricedM 4, satisfy-
ing Mgvq = 0, wherevq is a column vector containing a full basis of monomials,
as defined above. This construction will allow us to cast tiedlem at hand into a
linear algebra question.

Given a set ofm polynomial equationg;, i = 1,2,...,m of degreeg); in n un-
knowns. We will assume that the number of multivariate polyial equationsn
equals the number of unknownsas this is the case for all the examples we will
discuss in this paper. Also recall that only cases with fewnamvns are encoun-
tered, hence, for notational convenience, unknowns aretddrbyx, y, etc. Let
d° = max(d;) and letd > d° denote the degree of the full basis of monomigl$o
be used.

The construction oM 4 proceeds as follows: The columnsMf; index monomi-
als of degreed or less, i.e., the elements af. The rows ofM 4 are found from the
formsr - p;, wherer is a monomial for which deg - pi) < d. The entries of a row
are hence found by writing the coefficients of the corresprognébrmsr - p; in the
appropriate columns. In this way, each rowhdf; corresponds to one of the input
polynomialsp;.

Example 4This process is illustrated using Eq. (10)—(11). The @ matrixM is
found from the original set of equations directly as

1
X
B 3021-1-1\ |y |
Movo =0 or (5341 1_2) X2 =0. (16)
Xy
y2

We now increasd tod = 3, and add rows to complekés, yielding a 6x 10 matrix.
By increasing the degreg to 4, we obtain a 1% 15 matrixM4. This process is
shown in Tab. 1.

In general, the matrices generated in this way are very spansl typically quasi-
Toeplitz structured [32]. Adl is increased further, the number of monomials in the
corresponding bases of monomiails of the matricesMy grows. The number of
monomials of given degregtin n unknowns is given by the relation

(d4+n—-1)!

N(n,d):m.

(17)
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Table 1 The construction of matricéd 4. Columns ofM 4 are indexed by monomials of degres
and less. Rows dfl 4 are found from the forms. p;, wherer is a monomial and dég- p;) < d; the
entries of each row are found by writing the coefficients @fitiput polynomials in the appropriate
columns. The construction process is showndoet 2 (resulting in a 2< 6 matrix), up tod = 4
(resulting in a 12< 15 matrix). Empty spaces represent zero elements.

[[1x ¥|x® xy Y] X%y xy? y¥|x* 53y 58y xy® A

d°=2| pf|3] 2/1-1-1
pf5134 1 1-2
d= X-p1|| |3 2 1-1-1
Y- p1 3 2 1-1-1
X-p2|l |5 |3 4 1 1-2
y-p2 5 3 4 1 1-2
d=4 ¥ p1 3 2 1-1 -1
Xy- p1 3 2 1 -1-1
V2 p1 3 2 1-1-1
X2 P2 5 3 4 1 1 -2
Xy- P2 5 3 4 1 1-2
Vo 5 3 4 1 1-2

Asd increases, the row-size (number of formg;) increases too. It can be verified
that the number of rows iMy grows faster than the number of monomials/ip
since each input polynomial is multiplied by a set of mondmitghe number of
which increases according to Eq. (17). Therefore, a dedfrexists, for which the
corresponding matriM 4« has more rows than columns. It turns out that the number
of solutions, and, moreover, the solutions themselves,bearetrieved from the
‘overdetermined’ matriM 4+, as will be illustrated in the following sections.

For the example of Eq. (10)—(11), we fid = 6, and a corresponding 3028
matrix Mg. Due to the relatively large size, this matrix is not printedwever, its
construction is straightforward, and proceeds as illusttan Tab. 1.

Observe that in Eqg. (10)—(11), the given polynomials arén lmbtdegree two. If

the input polynomials are not of the same degree, one alsaohsisift the input
polynomial(s) of lower degree internally: For example, sioler the case of two
(univariate) polynomials

agx® + apx® + agx+ag = 0 (18)
b2x? + bix+bg = 0, (19)
then, ford = 3, one easily finds
1
Qa1 @ as X
bo by b, O 2 | = 0, (20)

Obobybz ) | 7
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where the third row in the matrix is found by multiplying thecend polynomial
with x. Increasingl to 4 yields the classical 5 5 Sylvester matrix.

2.4 Determining the Number of Roots

From the construction we just described, it is easy to vetift the constructed
matricesM 4 are rank-deficient: by evaluating the basis of monomiglat the (for
the moment unknown) roots, a solution fdigvy = 0 is found. By construction, in
the null space of the matricésy, we find vectors/y containing the roots of the set
of multivariate polynomial equations. As a matter of fagg®y solution generates a
different vectorvg in the null space oM 4. Obviously, wherM 4 is overdetermined,
it must become rank deficient because of the veatgis the kernel oM 4. Contrary
to what one might think, the co-rank &t 4, i.e., the dimension of the null space,
does not provide the number of solutions directly; It représ an upper bound. The
reason for this is that certain vectors in the null space sperious’: they do not
contain information on the roots. Based on these notionsyiveow work out a
root-counting technique: we reason that the exact numbsolafions derives from
the notion of aruncated co-rankas will be illustrated in this section.

Observe in Tab. 1 that the matricklk, of low degrees are embedded in those of
high degree, e.gM» occurs as the upper-left block in an appropriately pariiio
M3z, M3 in My, etc. For Eq. (10)—(11), one has the following situation:

d Wo W1 Wo W3 W4 W5 Wg W7[[SizeMy

2(=d°)|[x x x 0 0O O O Of 2x6

3 0 x x x 0 0 0 0)6x10

4 0 0 x x x 0 0 0}12x15 (22)
5 0 0 0O x x x 0 0]l20x21

6(=d*)JO 0 0 0 x x x 0(30x28

7 0 0 0O 0 0x x x|42x36

In the left-most column, the degrekis indicated. The right-most column shows
the size of the corresponding matiky. The middle part represents the matiiy.
The columns oMy are indexed (block-wise) by bases of monomiajs Zeros in
M represent zero-blocks, and blocks of non-zero entriesnalieated byx.

For Eq. (10)—(11) we have found that bt = 6, the matrixM 4« becomes overde-
termined. Let us now investigate what happens to the matkigewhen increasing
d. Consider the transition from, say,= 6 tod = 7. We partitionM g as follows (cf.
Eqg. (21)):

xxx 0000
0xxx 0|00
0 0x x x[00 [=(Kg|Ls). (22)
000x x|x0
000 0x|x x

Me
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where the number of columns g corresponds to the number of monomials in the
bases of monomialgg to w,4. SinceMg is embedded iM 7, we can also identify
Kg andLg in M7. We partitionM 7 accordingly:

x x 00
x x x 0
0 x x x
0 0x x
00O0x
0000

~ [Kg|Lg| O
-(TpE) @

OO OO o X
XX X O OO
XX OO0 0o
X|O O OoOOoOo

Let Zg andZ7 denote (numerically computed) kernelshf andM -, respectively.
The kernel&Zg andZ; are now partitioned accordingly, such that:

MeZe = (K6|L6) (;—z) , and (24)
= (982) ()
where
Gy = (L6|0), and (26)
H, = (D7|E7). 27)

Due to the zero block iiM 7 belowKg , we have
rank(Tg) = rank(T7), (28)

which we will call thetruncated co-ranlkof M 4«. In other words, fod > d*, the rank

of the appropriately truncated bases for the null spacabijlgtes. We call the rank
at which it stabilizes the truncated co-rankMf. It turns out that the number of
solutions corresponds to the truncated co-rankigf given that a sufficiently high
degredl is chosen, i.e.d > d*. Correspondingly, we will call the matricds and

T thetruncated kernelsfrom which the solutions can be retrieved, as explained in
the following section.

2.5 Finding the Roots

The results from the previous section allow us to find the nemab roots as a rank
test on the matricedy and their truncated kernels. We will now present a root-
finding algorithm, inspired by realization theory and theftsproperty Eq. (15),
which reduces to the solution of a generalized eigenvaloblpm. We will also
point out other approaches to phrase the task at hand asevalge problem.
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2.5.1 Realization Theory

We will illustrate the approach using the example Eq. (1D)}(

Example 5A matrix M 4 of sufficiently high degree was constructed in Section 2.3.3
we foundd* = 6 and constructelflg. One can verify that the truncated co-rank of
Mg is four, hence there are four solutions. Note that one camyaveonstruct a
canonical formof the (truncated) kernelfy of My as follows, e.g., fod = 6 and
four different roots:

111111
X1 | X2 | X3 | X4
Yi | Y2 | Y3 | VY4
AR

Ve=| Y1 | Y2 | Y3 |Va (29)

where(x;,yi), i = 1,...,4 represent the four roots of Eq. (10)—(11). Note that the
truncated kernels are used to retrieve the roots, this mésiscertain rows are
omitted from the full kernels, in accordance with the spegfartitioning discussed

in Section 2.4. Observe that the columns of this generazdlermonde matrix
V4 are nothing more than all roots evaluated in the monomialexing the columns

of My. Let us recall the shift property Eq. (15): if we multiply tbpper part of one

of the columns oW with x, we have:

i X
X X2
y Xy
Z x=1 3 | (30)
Xy X2y
y? xy?

Let D = diag(x1, %2, X3,X4) be a diagonal matrix with the (for the moment unknown)
x-roots. In accordance with the shift property Eq. (15), we waite

S1VeD = S;Ve, (31)

whereS; andS, are so-called row selection matric&sVg selects the first rows of
Vg, corresponding to degrees 1 t0-56 — 1). S,V represents rows 2, 4,5, 7, 8, 9,
etc. of Vg, in order to perform the multiplication witk. In general, the kernél is
not available in theanonical formas in Eq. (29). Instead, a kerngj is calculated
numerically as
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MgZq = O, (32)

whereZyq = V4T, for a certain non-singular matrik. Hence,
$1Z4(T~'DT) = $:Za, (33)
and the root-finding problem is reduced to a generalizedwagjeae problem:
(Z3SIS2Za)u = A (Z{S[S1Za)u. (34)

We revisit example Eq. (10)—(11). A kernelldfs, i.e.,Zg, is computed numerically
using a singular value decomposition. The number of salstisas obtained in the
previous sections as four. After constructing approprigtiection matrice§; and
S,, and solving the resulting generalized eigenvalue problkbe roots(x,y) are
found as in Example 2.

2.5.2 The Stetter-Moller Eigenvalue Problem

It is a well-known fact that the roots of a univariate polyriahtorrespond to the
eigenvalues of the corresponding Frobenius companioribagtiis is how the roots
are computed using theoot s command in MATLAB). The notion that a set of
multivariate polynomial equations can also be reduced wgenvalue problem was
known to Sylvester and Macaulay already in the late 19th amty 0th century,
but was only recently rediscovered by Stetter and coworfagr$l, 31, 39], similar
approaches are [19, 21, 30]). We will recall the main ideasnfthis framework, and
illustrate the technique using example Eq. (10)—(11).

In order to phrase the problem of solving a set of multivarjaolynomial equa-
tions as an eigenvalue problem, one needs to construct amahbasis, prove
that it is closedfor multiplication with the unknowns for which one searchs
roots. Furthermore, one needs to construct associatedpfiustion matrices (cf.
[39, 40]). In practice, this can be accomplished easilyrafplying a normal form
algorithm, such as the Grobner basis method [3].

Example 6 Consider the example Eq. (10)—(11). It can be verified that,y, xy)"
is closed for multiplication with botk andy, meaning that the monomiaig, y?,
x%y, andxy? can be written as linear functions ¢f,x,y,xy)": From Eq. (10), we
find y? = x? — xy+ 2y + 3. After substitution of/? in Eq. (11), we find

X% = —1+ 3x+ 3xy. (35)
Multiplication of Eq. (35) withy yields
X2y — 3xy? = —y+ 3xy. (36)

From Eq. (11), we find? = 2y? — xy — 3x — 4y — 5. After substitution ofx? in
Eq. (10), we find
y2 = 2+ 2y+ 2xy+ 3x. (37)
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Multiplication of Eq. (37) withx yields
X2y — 3xy? = —y+ 3xy. (38)

We can therefore write Eq. (35)—(38) as

10 0 0 X2 -13 03 1
01 0 O v 23 22 X
-30-2 1 Xy | 02 02 y |’ (39)
00 1-3 Xy? 00-13/ \xy

in which the 4x 4 matrix in the left-hand side of the equation is invertibléis
implies

X2 -1 3 0 3 1
2
yo | 2 3 2 2 X
2y |~ | 18-6602-72||y | (40)
Xy? 0.6 -2204-34) \xy
from which we easily find the equivalent eigenvalue problems
Axu=xu, and Ayu=yu, (42)
or
0 10 O 1 1
0 00 1 X X
_1 30 3 vI1=1y x, and (42)
18-66.2-72 Xy Xy
0O 01 O 1 1
2 32 2 X X
6—-22.4-34 Xy Xy

from which the solutiongx,y) follow, either from the eigenvalues or the eigen-
vectors. There are several other interesting propertiesamededuce from this ex-
ample. For example, sind& andAy share the same eigenvectors, they commute:
AxAy = AyAy, and therefore also, any polynomial functionff andAy will have

the same eigenvectors.

2.6 Finding the Minimizing Root as a Maximal Eigenvalue

In many practical cases, and certainly in the polynomiairojziation problem we
started from in Section 2.2, we are interested in only oneifipesolution of the set
of multivariate polynomials, namely the one that minimities polynomial objec-
tive function. As the problem is transformed into a (geneeal) eigenvalue prob-
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lem, we can now show that the minimal value of the given pofgiabcost criterion
corresponds to the maximal eigenvalue of the generalizgzhealue problem.

Example 7We illustrate this idea using a very simple optimizationlgemn, shown
in Fig. 2:

ryiyn J=X2+y? (44)
s.t.y=(x—1)? (45)

the solution of which is found afx,y) = (0.41,0.35) with a corresponding cost
J =0.86. The Lagrangian function is given by

|—y:(x—1)2 """ LevelSe‘[sof]=x2+y2

-0.5-
Fig. 2 A simple optimization problem, see Eq. (45). The constrgiat (x— 1) (solid line) and

level sets of) = x? +y? (dotted lines) are shown. The solution is foundxay) = (0.41,0.35), for
whichJ = 0.86.

ZLxy,a) =X +y?+a(y—(x—1)%). (46)

The Lagrange multipliers method results in a system of pmiyial equations irx,
y, anda:
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aa;'f(x,yﬂ) =0 — 2X—2xa+2a =0, 47
%(x,yﬂ):o — 2y+a =0, (48)
%(x,y,a):o — y—x>4+2x—1=0. (49)

Construct a matridM ¢« as described above. In this example = 4, for which the
dimension oM 4 is 40x 35. The truncated co-rank M 4 indicates there are three
solutions. The corresponding ‘canonical form’ of the (irated) kerneV/ 4 is given

by

1 1 1
X1 X2 X3
Y1 Y2 Y3
ax az as

2 2 2
X1 ) X3

Va=| X | B | X (50)

X1Yy101|X2Y202(X3y303

X102 | X202 | X302
Y1 CX% Y2 a% Y303
Y101 | Y205 | Y303

3 3 3
ay a3 a3

where(x;, Vi, ai) represent the roots (foe= 1,.. ., 3). The objective function is given
asJ = x>+ y2. In accordance with the technique described in Sectior 2lfe now
define a diagonal matri® = diag(x +y2, X3 +y3, X§+Y3) containing the values
of the objective functiold evaluated at the roots. We have

SIVaD=SVs, or SV4=SVuD ' (if J#£0), (51)

Again,S; andS,; are row-selection matrices. In particul&\V 4 selects the top rows
of V4, whereass,V 4 will make a linear combination of the suitable rows\of cor-
responding to the monomials of higher degrees in order tioparthe multiplica-
tion with the objective functiod. Again, the kernel oM is not directly available
in the ‘canonical form’, instead, a kernel is computed as
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MgZg =0, (52)
whereZq = V4T, for a certain non-singular matrik. Hence,
S1Z4 = SZ4(T D), (53)
and the minimal norm is the inverse of the maximal eigenvafue
(S2Z4)'(S1Za) (=T D7), (54)

whereX T denotes the Moore-Penrose pseudoinversé.afhis leads to the gener-
alized eigenvalue problem

(Z5SES1Za)u = A (Z{S)S:Zq)u, (55)
where
1
A=3 (56)

By applying toZq4 the right similarity transformation (and a diagonal scgjinve
also findVy.

We prefer to work with the power method for computing the maxim eigen-
value, instead of working with the inverse power method f@ minimum eigen-
value, since in the inverse power method, a matrix inverssorequired in each
iteration step.

Example 8We now apply this technique to example Eq. (10)—(11). We viant
solve the following optimization problem (also see Fig. 1):

r)r(1iyn J=xX2+y° (57)
S.t. 3+2y—xy—y?+x°=0 (58)
5+ 4y + 3x+ Xy — 2y°+ X% = 0. (59)

The method of Lagrange multipliers now results in a set of fmlynomial equa-
tions in four unknowns. The minimal degrdé = 5 and corresponding matriMs

of size 140x 126 are found as described above. The cost criterion poljalahis

of degree two, which means th&{V selects the parts of the basis of monomials
corresponding to degrees 0 t¢-35—2). S; is constructed so that the shift with
(x> +y?)~Lis performed. The largest real eigenvalue from Eq. (55)gi¢he mini-
mal cost as 10.1157= 8.64, which is attained gi,y) = (0.08,2.93). This can be
verified in Fig. 1, where the level sets of the cost functica x2 + y? are shown.
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2.7 Algorithms

We have presented a technique to count the roots of systep@yafomial equa-
tions. Moreover, the roots can be determined from an eigaayaoblem. Since we
search for the maximal eigenvalue of a certain matrix, aipesssandidate algo-
rithm is the power method [15].

Current methods for solving sets of polynomial equatiomslmcategorized into
symbolic, numerical, and hybrid types.

e One can classify symbolic techniques into Grobner basthous and resultant-
based methods. The work on Grobner bases [3] has domirtedibtd of algo-
rithmic algebraic geometry for decades. In this approdoh,driginal problem
is transformed into an ‘easier’ equivalent, using symbtdichniques, such as
Buchberger’s algorithm [3]. However, Grobner basis mdthbave fundamen-
tal disadvantages: they are restricted to small-scalel@nudy and moreover, the
computations suffer from numerical instabilities, for exale, two problems with
seemingly small differences in coefficients can give riseexy differently look-
ing Grobner bases. Some efforts to bypass the costly gémer@f a Grobner
basis, by working towards a more direct formulation of a esponding eigen-
value problem have been made, as in the use of border base34[B®n the
other hand, resultant-based techniques are used to etenim&knowns from a
set of polynomial equations. Resultant-based methodsgai gaining inter-
est, as some of the disadvantages of Grobner basis mett®dslaed, and the
computations involved can be carried out using well-unided matrix compu-
tations.

e A wide variety of numerical solution techniques based on téevg method have
been developed. In general, methods based on Newton atesafail to guar-
antee globally optimal solutions, but they can be used to dinckfine a local
solution, starting from an initial guess. Recently, in [36, 38], relaxation meth-
ods for the global minimization of a polynomial, involvingras of squares and
semidefinite programming have been presented. Many ctdssiethods are of-
ten outperformed using this technique. However, in generdy a lower bound
of the minimum of the objective function is found.

e Hybrid methods combine results from both the symbolic amdrtimerical per-
spectives to find all roots. Homotopy continuation meth@&$s #43] track all so-
lution paths, starting from an ‘easy’ problem through to‘ttificult’ problem in
question, hereby iterating prediction-correction stegsdal on Newton methods.

3 Applications in Systems Theory and Identification

The tasks of solving polynomial optimization problems antVing sets of poly-
nomial equations are ubiquitous in science and engineeaimgj a wide variety of
applications exists (e.g., computer vision [37], robaticwerse kinematics [29],



Polynomial Optimization Problems are Eigenvalue Problems 17

computational biology: conformation of molecules [13fg sciences: [2], etc.). The
relation between systems theory and system identificatmmtyol theory, optimiza-
tion theory, and algebraic geometry has only come to atiamécently [4, 16, 18].
This perspective provides an ambitious and powerful fraorkvto tackle many
problems in the fields mentioned above. We highlight someoitamt applications.

e The well-known prediction error methods (PEM) [24] can begded as op-
timization problems with a quadratic objective functiondgmolynomial con-
straints representing the relations between the measatadatid the model pa-
rameters. This means that they fit into the framework we hampgsed above (cf.
Section 2.2). The techniques presented here are quiteiaogyiais they aim at
finding global solutions to polynomial optimization prolyie. However, at this
moment, the inherent complexity prohibits the applicatiortarge-scale prob-
lems.

e Least squares approximation of a matrix by a low-rank masian important
task in systems theory and identification, which can be sbiws&ng a singular
value decomposition [12]. When additional constraintsiameosed, e.g., linear
matrix structure such as Hankel, or element-wise weighting so-called Rie-
mannian singular value decomposition was proposed in [9, 80, 11] to solve
the structured total least squares problem. The RiemarBhén is essentially
a system of polynomial equations, and can therefore beddakding the meth-
ods described in this contribution. Moreover, the RiemanrVD provides a
unifying framework [22] for a multitude of existing and newssem identifica-
tion methods, e.g., prediction error methods: AR(X), ARMM\(dynamical total
least squares, errors-in-variables system identificagtm

e In[17] some strong connections between polynomial systawirsy and multidi-
mensional systems theory were revealed, especially betjdé¢and realization
theory for multidimensional systems. In [16], many otheenasting connections
between constructive algebra and systems theory are isstadbhl

e In [26] it was shown that the question of assessing globaititiability for ar-
bitrary (non-linear) model parametrizations is equivaterthe possibility of ex-
pressing the model structure as a linear regression: in [2%]jung states:

[The] result shows that the complex, non-convex form of tkelihood function with
many local minima is not inherent in the model structure.

From the perspective of rearranging the identifiability sfien as a linear re-
gression, the term ‘algebraic convexification of systemntiieation methods’
was coined. Ljung and Glad use Ritt's algorithm, based ofedihtial algebra,
similar to the Grobner basis algorithm [3]. Also this apgceh is related to solv-
ing systems of polynomial equations, and can be tackledjusia techniques
described in this paper.
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4 Conclusions and Future Work

We have explored several fundamental links between systeemy and system
identification, optimization theory, and algebraic geameiVe have generalized a
technique based on Sylvester and Macaulay resultantdtingsin a method for
root-counting as a rank test on the kernel of a Macaulayrtikgrix. Also, the solu-
tions can be determined: either as an eigenvalue probleby, applying realization
theory to the kernel of this matrix. In the case of a polyndmjdimization problem,
this technique can be applied to find the minimizing solutdarctly, by finding the
maximal eigenvalue of a corresponding (generalized) ejee problem.

The nature of this contribution is meant to be highly didactind presenting
main ideas in a pedagogical way. We have omitted proofs asthteal details, but
yet, many practical challenges remain to be tackled befeream arrive at feasible
numerical algorithms:

e How to go exactly from the rank deficiency bfy to a (generalized) eigenvalue
problem, needs to be investigated further. Moreover, ireotd apply the power
method, we need to prove that the largest eigenvalue, teapisosed to be equal
to the inverse of the minimum of the objective function, isuadly real; Said
in other words, that there are no complex conjugated roatsithmodulus are
larger.

e Currently, many techniques similar to those describedimhper, suffer from a
restrictive exponential complexity due to the rapidly gmogvnumber of mono-
mials to be taken into account. This exponential complgxibhibits application
to large problems. It remains to be investigated how thergrtecomplexity can
be circumvented by exploiting the (quasi-Toeplitz) stanetand sparsity.

e The relations between the technique presented here andhthiganal symbolic
methods will be investigated. The link with the work [14] edevant in this re-
spect.

e How results regarding rank tests, as observed in this artare encountered in
cases where the input polynomials describe a positive difoaal variety is also
of interest.

e Itis not completely clear how some properties observedérRliemannian SVD
framework can be exploited to devise efficient algorithn. iRstance, all ma-
trices encountered in this formulation are typically higktructured; It remains
to be investigated how these properties might be exploheaugh the use of
FFT-like techniques.
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