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Abstract. Weighted and Structured Total Least Squares (W/STLS)
problems are generalizations of Total Least Squares with additional weight-
ing and/or structure constraints. W/STLS are found at the heart of sev-
eral mathematical engineering techniques, such as statistics and systems
theory, and are typically solved by local optimization methods, having
the drawback that one cannot guarantee global optimality of the retrieved
solution. This paper employs the Riemannian SVD formulation to write
the W/STLS problem as a system of polynomial equations. Using a novel
matrix technique for solving systems of polynomial equations, the globally
optimal solution of the W/STLS problem is retrieved.

1 Introduction

In the generic case, the solution of the approximation of a given data matrix by
one of lower rank is well-studied and is computed by the Singular Value Decom-
position [1]. However, several applications require additional constraints, such
as element-wise weighting or imposing matrix structure, leading to so-called
Weighted and/or Structured Total Least Squares problems [2, 3]. W/STLS
problems have numerous applications in mathematical engineering, such as ma-
chine learning [4], systems and control theory [5], information retrieval [6] and
statistics [7] among others.

The Riemannian SVD (RSVD) was proposed in [2, 3] to solve the W/STLS
problem, and is essentially a nonlinear generalization of the well-known Singular
Value Decomposition, constituting a system of polynomial equations. Fueled
by the increase in computing power and the development of Groebner basis
algorithms [8], polynomial system solving has witnessed an increased research
interest in recent years. In this paper a matrix method is employed to solve the
W/STLS problem, translating the problem of finding the solution to a system
of polynomial equations into a linear algebra question, while guaranteeing that
the globally optimal solution is retrieved.
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The paper is organized as follows: In Section 2, the mathematical formulation
of the STLS problem is reviewed, leading to the Riemannnian SVD formulation
which phrases the task as the solution of a system of polynomial equations.
Section 3 reviews a linear algebra method for solving systems of polynomial
equations. In Section 4 this method is applied to a simple 3× 3 STLS problem.

2 STLS as a System of Polynomials

Consider a given data matrix A which is of full rank and is to be approximated
by a low-rank matrix B. Additionally, when A has a specific matrix structure
(e.g., Hankel, Toeplitz, Sylvester), which is to be preserved in its approximation
B, the so-called Structured Total Least Squares problem is be phrased as

min
B,v

‖A − B‖2

F s.t. Bv = 0, B structured, (1)

where the constraint Bv = 0 ensures the rank-deficiency of B and the second
constraint preserves the matrix structure of A in the approximation B. The
Lagrange multipliers method provides the conditions for optimality as the RSVD
equations [2, 3] in the unknowns v and l
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<

:

Av = TvT T
v l,

AT l = TlT
T
l v,

vT v = 1,

(2)

where Tl and Tv are matrices containing the elements of l (the Lagrange mul-
tipliers) and v, respectively, and capture the required matrix structure. Section
4 contains an example of Tl and Tv in the case of 3 × 3 Hankel STLS. For
the element-wise WTLS problem the same derivation can be made, leading to
a similar system of RSVD equations. The low-rank approximation B can be
determined from the solutions of v and l as described in [2, 3].

Although very fast solution methods have been developed to solve (1), most
current methods tackle this from a local optimization point of view. The main
drawback is that one cannot ensure that the globally optimal solution is obtained,
as the recovered solution is typically very dependent on the starting point of the
search algorithm. Observe that the critical points of (1) are obtained from
a system of polynomial equations (2). By solving the RSVD equations as a
system of polynomial equations, one can guarantee to find all solutions. However,
most techniques for solving systems of polynomial equations employ symbolic
computations and are hence known to have severe difficulties with floating-point
arithmetic.

In the following, a novel method for solving systems of polynomial equations
is reviewed, which employs only matrix computations, such as null space com-
putations and eigenvalue decompositions. The advantages of this method are
twofold: it is guaranteed that all solutions of the system of equations are found
— and hence the global optimum in the case of an optimization problem — and
since matrix computations are used, the numerical aspects can be studied in the
well-established numerical linear algebra framework.



3 Matrix Method for Solving Systems of Polynomials

In this section a brief overview of the method developed in [9] and [10] is given.
The description of the algorithm is restricted to the generic case in which all
solutions are simple and affine, i.e., there are no solutions at infinity and no
multiplicities. A description of the non-generic case can be found in the afore-
mentioned works, however the full exposition is beyond the scope of this paper.

The algorithm proceeds in three steps. First, the system of polynomial equa-
tions is represented as a matrix-vector multiplication of a coefficient matrix M
with a monomial vector k, leading to the equation Mk = 0. Second, a numerical
basis for the null space of M is computed, which reveals the number of solutions.
The third step formulates a (generalized) eigenvalue problem from the selection
of certain rows in the computed null space of M which returns the numerical
values of the solutions as the eigenvalues.

Consider a system of n polynomial equations in n unknowns

fi(x1, . . . , xn) = 0, i = 1, . . . , n (3)

having total degrees d1, . . . , dn. By denoting k(d◦) as a vector containing all
monomials of degrees 0 up to d◦ = maxi(di), each equation fi = 0 can be
represented as the inner product mT

i
(d◦)k(d◦) = 0 of a coefficient vector mi(d◦)

multiplied with a vector of monomials k(d◦). For example, the equation x2
1 +

3x1x2 − 2x2 + 5 = 0 can be written in this way as

`

5 0 −2 1 3 0
´ `

1 x1 x2 x2

1 x1x2 x2

2

´T
= 0. (4)

Note that when not all equations are of the same degree d◦, some equations
do not entirely fill up the coefficient vectors. Such equations can be ‘shifted’ by
multiplying them with monomials of degrees 0 up to di − d◦ so as to generate
‘new’ equations. Observe that adjoining these ‘new’ equations does not change
the solution set of the input system, as they correspond to σfi = σ0 = 0, where
σ represents a monomial. By stacking all the coefficient vectors mi obtained in
this way, the Macaulay matrix M(d◦) is constructed. The system (3) is hence
represented as the matrix equation M(d◦)k(d◦) = 0. To ensure that all necessary
information regarding the solutions of the polynomial system is contained in
this matrix-vector representation, the degree at which the coefficient matrix and
corresponding monomial vectors are constructed needs to be d⋆ =

∑

i
di −n + 1

as prescribed by [11]. Remark that all possible shifts up to d⋆ of the input
equations (3) are to be included.

After the suitably sized coefficient matrix M = M(d◦) is constructed, it is
easy to see that the dimension of the null space of M corresponds to the number
of solutions mB: by evaluating the (for the time being unknown) numerical val-
ues of the solutions in the monomial vector k = k(d◦), one finds mB independent
vectors k(i), with i = 1, . . . ,mB which (by definition) live in the null space of
M . By stacking all these vectors k(i), with i = 1, . . . ,mB together, a generalized
Vandermonde structured matrix K =

(

k(1) . . . k(mB)
)

is obtained, which
is called the canonical null space of M .



The generalized Vandermonde structure of K defines a shift invariant struc-
ture: multiplication with a monomial maps the low-degree rows onto high-degree
rows. This effect can be captured using row-selection matrices S1 and S2 as
S1KD = S2K (already suggesting an eigenvalue problem), where S1 selects the
low-degree rows in K which are mapped by multiplication with a user-chosen
shift monomial to high-degree rows selected by S2, and D is a diagonal ma-
trix containing the user-chosen shift monomial evaluated at the mB solutions.
Unfortunately, the canonical null space K containing the desired information
of the solutions is unknown, instead a numerical basis for the null space of M
can be computed, denoted Z (e.g., by SVD, rank-revealing QR, or the Motzkin
algorithm described below). One has K = ZV which defines V as a nonsingular
transformation of the canonical null space. The root-finding problem is hence
reduced to the generalized eigenvalue problem

S1Z(V DV −1) = S2Z, (5)

where S1 selects the first mB linearly independent rows of Z and S2 selects
the corresponding shifted rows, and where D contains the eigenvalues which are
the evaluations of the mB solutions in the user-chosen shift monomial. The
eigenvectors in V can be employed to reconstruct the canonical null space as
K = ZV , revealing the mutual matching between the solution components.

Null space construction exploiting the sparsity of M is highly desirable since
the matrix size can become very large. An algorithm inspired by Motzkin elim-
ination [12] is presented here which constructs the null space of M by iterating
over its rows. Let bT

∈ R
1×n denote a row of M ∈ R

m×n for which the null
space W ∈ R

n×(n−1) is sought. The left-most non-zero element in bT is used as
a pivot to generate pair-wise eliminations which define columns in W lying in
the null space of bT . Zero elements in bT give rise to unit column vectors in W .

The operation of the algorithm on a single row of M ∈ R
m×n is illustrated

by means of a small example. Consider the row vector bT =
(

0 3 0 1 2
)

.
By inspection of the zero pattern and making pair-wise combinations of the pivot
3 with the remaining non-zero elements, the null space of bT is easily found as

bT W =
`

0 3 0 1 2
´

0

B

B

B

B

@

1 0 0 0
0 −1/3 0 −2/3
0 0 1 0
0 1 0 0
0 0 0 1

1

C

C

C

C

A

. (6)

The null space of a matrix M ∈ R
m×n is now constructed as a product of

sparse matrices as follows. In the first step, one constructs the null space of the
first row of M , i.e., aT

1 , as W1. In the next step, the second row of M , i.e., aT
2 ,

is considered and multiplied by W1 to obtain bT
2 = aT

2 W1. The row-algorithm is
then repeated for bT

2 , leading to W2. The remaining rows aT

k
for k = 3, . . . ,m of

M are processed in the same way: the Motzkin row-algorithm is performed on
bT

k
= aT

k
W1W2 · · ·Wk−1, and the null space of M is ultimately found as

Z =
m

Y

i=1

Wi. (7)



4 Numerical Experiment: 3 × 3 STLS Problem

In this section a 3× 3 Hankel STLS problem is solved as a system of polynomial
equations as described in Section 3 and correctly retrieves the globally optimal
low-rank approximation. All simulations are performed in MATLAB. Numerical
results are confirmed by the polynomial homotopy continuation method PHC-
pack [13] and Gröbner Basis computations performed in Maple.

Consider the 3 × 3 full-rank Hankel matrix

A =

2

4

7 −2 5
−2 5 6

5 6 −1

3

5 , (8)

which is to be approximated by a Hankel matrix B of rank 2. Let v =
[

v1 v2 v3

]T
and l =

[

l1 l2 l3
]T

. In the RSVD equations (2), the
matrices Tv and Tl imposing the Hankel structure constraint are defined as

Tv =

2

4

v1 v2 v3

v1 v2 v3

v1 v2 v3

3

5 and Tl =

2

4

l1 l2 l3
l1 l2 l3

l1 l2 l3

3

5 . (9)

The best low-rank approximation of A is reconstructed from the pair of (v, l)
vectors which minimize the objective criterion J(v) = vT AT (TvTT

v
)−1Av, from

which equation the dependence of J on l has been eliminated.
The coefficient matrix M is constructed for (2) and a basis for the null

space of M is computed. The root-counting technique reveals there are 39 affine
solutions. In Figure 1 the STLS cost function J(v) and the 13 (real) critical
points are represented. The optimal rank-2 Hankel matrix approximation of A
is retrieved as prescribed in [2, 3] as

B =

2

4

7.6582 −0.1908 3.2120
−0.1908 3.2120 1.8342

3.2120 1.8342 2.4897

3

5 . (10)

5 Conclusions

The W/STLS problem has been solved using the Riemannian SVD by means
of a linear algebra method, while guaranteeing global optimality. Although the
encountered matrix sizes are prohibiting the application to large-scale problems,
the presented framework allows applied mathematicians and engineers to study
polynomial equations without requiring advanced algebraic geometry knowledge.

Ongoing work is focusing on how structure and sparsity of the coefficient
matrix can be exploited in order to develop effective and efficient algorithms,
e.g., as indicated in the Motzkin algorithm presented in Section 3.
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