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Abstract: Multivariate polynomial system solving and polynomial optimization problems arise
as central problems in many systems theory, identification and control settings. Traditionally,
methods for solving polynomial equations have been developed in the area of algebraic geometry.
Although a large body of literature is available, it is known as one of the most inaccessible fields
of mathematics. In this paper we present a method for solving systems of polynomial equations
employing numerical linear algebra and systems theory tools only, such as realization theory,
SVD/QR, and eigenvalue computations. The task at hand is translated into the realm of linear
algebra by separating coefficients and monomials into a coefficient matrix multiplied with a basis
of monomials. Applying realization theory to the structure in the monomial basis allows to find
all solutions of the system from eigenvalue computations. Solving a polynomial optimization
problem is shown to be equivalent to an extremal eigenvalue problem. Relevant applications
are found in identification and control, such as the global optimization of structured total least
squares problems.

Keywords: Eigenvalues, Eigenvectors, Realization Theory, Systems Theory, Global
Optimization, Linear Algebra, Linearization, Matrix Formulation, Multivariate Polynomials

1. INTRODUCTION

Polynomial system solving and polynomial optimization
problems arise as central tasks in system identification
and control settings. In this paper, we address the poly-
nomial root-finding problem, that is, given a system of
polynomial equations, find all solutions for which the equa-
tions hold. Polynomial systems are classically solved by
local root-finding methods, such as the Newton method,
but they have the disadvantage that they only guarantee
to find a solution in the vicinity of the initial starting
point. Computer algebra methods, such as Gröbner bases
(Buchberger, 1965) are often intractable and numerically
infeasible due to the symbolic nature of the calculations
involved. In this paper we explore a different approach
by looking at the problem from the linear algebra per-
spective, as in the works by Lazard (1981); Emiris and
Mourrain (1999); Stetter (2004), among others. Although
the connections between polynomials and linear algebra
are largely unknown, it can be shown that there are many
interesting links with linear algebra underlying the task at
hand. Translating the problem into the world of numerical
linear algebra makes available a variety of numerically
reliable techniques (Golub and Van Loan, 1996).

Polynomial optimization problems are encountered when
one is interested in finding the best solution to a problem,
and can be addressed in the same way: the Lagrange
multipliers method provides the necessary conditions for
optimality as a system of polynomial equations. An in-
stance of a polynomial optimization problem is the least-
squares approximation of a given full-rank matrix by a

matrix of lower rank. This problem is traditionally solved
by computing the SVD (Van Huffel and Vandewalle, 1991).
When additional structure constraints are imposed on
the matrices involved, the resulting problem is called the
structured total least squares (STLS) problem. The STLS
problem is a central task in systems theory, identification
and control, underlying many modeling problems, such
as errors-in-variables system identification, approximate
realization and model reduction (see Markovsky (2008) for
an elaborate survey on the problem and its applications).
Formally the STLS problem is written as

min
B,v

‖A−B‖2F , s.t. Bv = 0, B structured, vT v = 1,

where A is a given (full-rank) data matrix with a given
structure which is to be retained in the low-rank approx-
imation B. Examples of specific matrix structures which
are often encountered in system identification and control
are Hankel, Toeplitz, Sylvester, known sparsity patterns,
etc.

In Section 2 we will review some well-known connections
between univariate polynomial root-finding, linear algebra
and systems theory. Section 3 discusses the root-finding
method for the generic multivariate problem, and Section 4
discusses the degenerate case. Finally, the method will be
applied to a STLS problem in Section 5 and we will point
out some open problems and future research directions in
Section 6.
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2. UNIVARIATE POLYNOMIALS: LINEAR
ALGEBRA AND REALIZATION THEORY

Let us start with a brief review of the well-known connec-
tions between univariate polynomial root-finding, linear
algebra and systems theory. First, the eigenvalues of an
n × n matrix A correspond to the n roots of its charac-
teristic polynomial, which is defined as p(λ) = det(A −
λIn). Second, the converse is true: with every univariate
polynomial f(x) = xn+an−1x

n−1+ . . .+a0, a matrix can
be associated of which the eigenvalues correspond to the
roots of f(x). The roots of f(x) can be obtained as the
eigenvalues of the companion matrix, as shown in

[

0(n−1)×1 | In−1

−a0 − a1 . . . − an−1

]







x0

...
xn−1






= x







x0

...
xn−1






.

Note that this expression bears a lot of resemblance to
realization theory. Third, checking whether two univariate
polynomials f1(x) = arx

r + ar−1x
r−1 + . . . + a0 and

f2(x) = bsx
s + bs−1x

s−1 + . . . + b0 have a common
root is equivalent with investigating the determinant of
the Sylvester matrix, a certain structured square matrix
built from the coefficients of the polynomials f1 and
f2. Multiplying f1(x) and f2(x) with powers of x and
setting the results to zero yields a square system of linear
equations, represented as the matrix equation

s rows

{

r rows

{



















a0 a1 . . . ar
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. . .
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a0 a1 . . . ar
b0 b1 . . . bs

. . .
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. . .
b0 b1 . . . bs





























x0

x1

...
xr+s−1











= 0.

The matrix in this expression is called the Sylvester matrix
of f1 and f2 and is of size (r + s)× (r + s), having a zero
determinant when f1(x) and f2(x) have a common root,
which can easily be understood from its construction.

Inspired by these well-known links in the univariate case,
we explore the generalization to the multivariate case and
develop a conceptually simple method for multivariate
root-finding which illustrates that many interesting links
and results can be obtained from a straightforward linear
algebra approach, combined with notions from realization
theory.

3. SOLVING MULTIVARIATE POLYNOMIALS:
LINEAR ALGEBRA VIEWPOINT

Although many interesting results were obtained in the
works of Sylvester (1853) and Macaulay (1902), the impor-
tance for linear algebra was (re)discovered only recently by
Lazard (1981), Stetter (2004), and Emiris and Mourrain
(1999), among others. As opposed to much of the existing
literature in (computational) algebraic geometry, which is
mostly centered on Gröbner basis algorithms (Buchberger,
1965), we strongly think that there is a need for obtaining
insights and developing novel algorithms to bridge the
fields of algebraic geometry, (numerical) linear algebra and
systems theory. Our aim is to develop a framework mak-
ing such methods accessible to applied mathematicians
and systems and control scientists and engineers without

knowledge of algebraic geometry. Although many of the
presented ideas are already known in some form, the main
purpose of this contribution is to provide an accessible
method showing the clear connections between multivari-
ate polynomial system solving, linear algebra and systems
theory (e.g., realization theory), and illustrate their rele-
vance for system identification and control applications.

Consider a system of n polynomial equations fi in n
unknowns x1, . . . , xn,











f1(x1, . . . , xn) = 0,
...

fn(x1, . . . , xn) = 0,

(1)

having degrees d1, . . . , dn, and define the maximal degree
as d◦ = max(d1, . . . , dn). We assume that we are dealing
with a generic (or non-deficient) system, meaning that
(1) has a solution set which is zero-dimensional and the
number of solutions of is given by the Bézout number mB .
An instance for which the genericity assumption holds
is when all possible monomials occur and corresponding
coefficients are chosen at random.

Theorem 1. (Bézout number mB (Cox et al., 2005)).
A generic system (1) defines a zero-dimensional solution
set, consisting of mB single roots, where mB is equal to
the product of the degrees, called the Bézout number

mB =
n
∏

i=1

di. (2)

For now we assume that (1) obeys the genericity assump-
tion. In practical cases, there will often be fewer solutions;
ways to detect and handle the non-generic case are dis-
cussed in Section 4.

The generic version of the root-finding algorithm proceeds
in three steps. First a coefficient matrix is constructed
from the input equations in much the same way as the
Sylvester matrix is constructed in the univariate case.
Second a numerical basis for the nullspace of the coefficient
is computed. Third the specific structure in the monomial
basis is employed to translate the root-finding problem
into an eigenvalue problem.

The polynomial system is written as a system of linear
equations by separating the coefficients and the mono-
mials. This is achieved by constructing a suitably sized
Macaulay-like coefficient matrix, which turns out to con-
tain all the information necessary to find the solutions of
the set of equations.

Proposition 2. (Construction M(d◦)).
Since the maximal degree occurring in the input equations
(1) is d◦, each equation can be represented as a row
vector mT

i of coefficients multiplied with a vector k(d◦)
containing all possible monomials with degrees from 0 up
to d◦, resulting in mT

i k(d◦) = 0 for i = 1, . . . , n. The
elements of k(d◦) are ordered by a user-chosen graded
monomial ordering scheme 1 in compliance with the order
in which the corresponding coefficients occur in mT

i .

Observe that the equations fi for which di < d◦ can be
‘shifted’ internally: by multiplying fi by monomials of
1 A graded monomial ordering scheme means that the monomials

are ordered by increasing degrees.
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degrees 1 up to d◦ − di, new, so-called ‘shifted’ equations
of degree ≤ d◦ are obtained, that are adjoined to the input
system. This leads to a linear algebra representation of the
polynomial system as M(d◦)k(d◦) = 0.

Example 3. Consider a simple system of two polynomial
equations in two unknowns

{

f1(x1, x2) = 2x2
1 − x2 = 0,

f2(x1, x2) = 3x1 − 4x2 + 5 = 0.

Since f1 is of degree 2, and f2 is of degree 1, f2 is shifted
internally. Following the construction of above, we write
the input system as a 4× 6 coefficient matrix multiplying
a monomial basis vector,

M(d◦)k(d◦) = 0 ⇔







0 0 −1 2 0 0
5 3 −4 0 0 0
0 5 0 3 −4 0
0 0 5 0 3 −4





















1
x1

x2

x2
1

x1x2

x2
2















= 0,

where M(d◦) is a coefficient matrix containing in its rows
the coefficients of both the original equations f1 and f2
and the shifted versions of f2.

Observe that each solution of (1) defines a vector with
the specific structure of k(d◦) lying in the nullspace of
the coefficient matrix M(d◦), which is obvious from the
construction of the coefficient matrix and can easily be
verified for Example 3. Conversely, it turns out to be
possible to find the solutions from a numerical basis of the
nullspace of the coefficient matrix. However, in general,
the initial coefficient matrix M(d◦) built from the input
equations (and their internally shifted versions) does not
suffice for finding the solutions of the system. In order to
fully capture the nature of the problem into a linear system
of equations, it turns out to be necessary to extend the
system of equations beyond the ‘internal shifts’.

Proposition 4. (Construction coefficient matrix M(d)).
Starting from the construction of the initial matrix repre-
sentation of the system of polynomials, as obtained above,
the same procedure of multiplying the input equations
with monomials, yields new equations, thereby increasing
the maximal degree of the working set of equations to
d > d◦. All possible equations that can be constructed in
this way are included in the matrix-vector representation
of (1). Adjoining the newly generated equations naturally
leads to the extension of the coefficient matrix M(d◦) to
M(d) and the basis of monomials k(d◦) to k(d). Finally the
system is represented as a matrix equation M(d)k(d) = 0.

The evaluation of the – for the time being – unknown
solutions of the system in the monomial vectors constitutes
a generalized Vandermonde matrix K(d).

Definition 5. (Canonical Nullspace K(d)).
Each solution of the system (1) which is represented as
the matrix equation M(d)k(d) = 0 defines a vector in the
nullspace of the coefficient matrix M(d). These vectors
are obtained by evaluating the monomial vector k(d) at a
certain solution, denoted by k(i)(d), for i = 1, . . . ,mB . The
generalized Vandermonde matrix obtained by evaluating
the mB monomial vectors at the solutions, i.e., K(d) =
[k(1)(d), . . . , k(mB)(d)], is called the canonical nullspace
K(d). (The specific order in which the mB vectors are
placed in K(d) is not important and can be chosen freely).

Before moving on to the root-finding, we will review a
fundamental theorem which prescribes up to which degree
the coefficient matrix M(d) has to be constructed in order
to be able to retrieve the number of roots of the system
(1) from the nullspace of M(d).

Theorem 6. (mB = corank(M(d⋆)) (Macaulay, 1902)).
For a generic system (1), the evaluations of the corank 2 of
M(d) for increasing d = d◦, d◦+1, d◦+2, . . . stabilize at an
integer. An upper bound for the required degree at which
the corank converges was derived by Macaulay (1902) as

d⋆ =
n
∑

i=1

di − n+ 1.

The corank of M(d⋆) corresponds to the number of solu-
tions of (1), that is, corank(M(d⋆)) = mB .

For the purpose of notational convenience, the suitably-
sized matrix M(d⋆), the corresponding monomial basis
vectors k(d⋆) and the canonical nullspaceK(d⋆) are hence-
forth usually denoted M , k and K, respectively.

To retrieve the roots themselves, we need to reconstruct
the monomial structure in K, which is for the time
being unknown. Starting from a computed basis for the
nullspace of M , which can be obtained from a SVD or
QR decomposition, we will make use of the multiplication
structure present in the monomial vectors k.

Proposition 7. (Shifting k with monomial or polynomial).
Consider a monomial vector k = k(d) in which all possible
monomials of degrees 0 up to d occur. Such a vector k
obeys a specific shift structure: multiplication of k by a
monomial xγ = xγ1

1 xγ2

2 · · ·xγn

n with degree |γ| =
∑n

i=1 γi
maps the entries of k of degrees 0 up to d− |γ| to entries
in k of degrees |γ| up to d. The multiplication with xγ

can alternatively be expressed by means of row selection
matrices that operate on k as S1kx

γ = S2k, where S1

selects all monomials of degrees 0 up to d − |γ| and S2

selects the rows onto which the monomials S1k are mapped
by multiplication by xγ .

More generally, one can multiply a monomial vector k with
a polynomial equation σ as

S1kσ = S2k,

where now S2 takes linear combinations of rows of k
instead of selecting rows only.

Example 8. Consider a monomial vector k of degree three
in two variables, given by

k = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

T ,

and shift function σ = 3x2
1 + 2x2

2. We have

(1, x1, x2)
T (3x2

1 + 2x2
2) =

(3x2
1 + 2x2

2, 3x
3
1 + 2x1x

2
2, 3x

2
1x2 + 2x3

2)
T

or,
S1kσ = S2k,

where

S1 =

(

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

)

, and

2 We define the corank to be the dimension of the right nullspace of

the matrix M .

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1205



S2 =

(

0 0 0 3 0 2 0 0 0 0
0 0 0 0 0 0 3 0 2 0
0 0 0 0 0 0 0 3 0 2

)

.

Proposition 7 can alternatively be applied to the canonical
nullspace K at once, leading to

S1KDσ = S2K,

where Dσ is a diagonal matrix containing a user-chosen
shift function σ. Due to the diagonal structure of Dσ

containing the mB evaluations of the shift function σ, each
of the mB vectors in K are considered separately.

Remark 9. Typical choices for the shift function σ are
the solution components x1, . . . , xn themselves, or, in the
case of a polynomial optimization problem, the objective
function (cf. Remark 16). The specific choice of the shift
function σ is arbitrary and will in most cases not affect
the remainder of the root-finding method, as long as one
avoids to end up with having so-called multiple solutions,
that is, a shift function taking the same value for several
solutions. An easy way to avoid multiple solutions is by
taking a random linear combination of all unknowns xi.

Theorem 10. (Root-finding as eigenvalue problem).
After constructing M = M(d⋆) with corank(M) = mB ,
the canonical nullspace K is not available directly. Instead
a basis for the nullspace of M is computed as Z with
K = ZV where V is a nonsingular matrix representing
a linear transformation. Combining S1KDσ = S2K from
Proposition 7 with K = ZV yields the generalized eigen-
value problem

S1Z(V DσV
−1) = S2Z.

Corollary 11. (Generic root-finding).
Let B be the mB × mB matrix containing the first mB

linearly independent rows of Z, or B = S1Z, and let
W = ZB−1. The evaluations of the user-chosen shift
function σ at each of the mB solutions of (1) are found
as the eigenvalues of

A = S2W.

Once the eigenvalue decomposition is computed as A =
V DσV

−1, the generalized Vandermonde structure of K
can be reconstructed such that the components xi and
how they match up with one another is revealed.

Corollary 12. (Reconstructing K).
By computing WV , the generalized Vandermonde struc-
ture of the canonical nullspace can be reconstructed. Each
column of WV now lies in the nullspace of M and obeys to
the shift structure in k, however, the columns of WV have
yet to be rescaled such that the first entries equal one, as to
reconstruct K. The entries corresponding to x1, x2, . . . , xn

can now be read off directly from the reconstruction of K.

Example 13. Example 3 is continued. The required degree
is determined as d⋆ = 2 and we construct the coefficient
matrix M = M(2), of size 4 × 6, with corank(M) = 2.
A basis for the nullspace of M is computed using an
SVD, and following the root-finding method of above,
the solutions (x1, x2) are found as (1.00000, 2.00000) and
(−0.62500, 0.78125).

4. NON-GENERIC POLYNOMIAL SYSTEMS

In the previous section, it was assumed that (1) has
mB =

∏

i di solutions. In practice, a system of polynomial

equations often has fewer solutions than predicted by the
Bézout number (2). This deficiency can be due to the
existence of multiple roots, zero coefficients in the system
(1) or algebraic relations among the coefficients, leading to
the existence of ‘spurious’ solutions, which are undesired
in practical cases.

4.1 Multiple Solutions

For multiple roots, the nullspace of M does not only
contain the canonical vectors k evaluated at the solutions,
but also linear combinations of differential forms where the
monomial basis vectors k are differentiated with respect
to the unknowns xi. A full analysis and characterization
is described by Möller and Stetter (1995) and Dayton and
Zeng (2005). Except for the well-known loss of accuracy
in computing multiple eigenvalues, multiple roots pose
no problem for our method, and the algorithm from the
previous section returns all roots correctly.

Remark 14. The part of the generic algorithm which does
not work in the case of multiple roots is the reconstruction
of the canonical nullspace K: once the individual solution
components are computed, they should be matched by
performing an exhaustive search over the n components
of the roots.

4.2 Solutions at Infinity

A classical result in algebraic geometry states that for
a zero-dimensional solution set, the Bézout number mB

corresponds to the number of solutions in projective space
(counted with multiplicity). Only in the generic case, the
number of (affine) solutions corresponds to the Bézout
number. In most practical cases there are also solutions
which are called the solutions at infinity. There are two
ways of dealing with solutions at infinity, namely 1) by
analyzing the problem in projective space, and 2) by
performing an affine root-count.

First, it is possible to analyse the task at hand in projective
space. Projective geometry incorporates the points at
infinity as regular points, after which they can easily be
identified and discarded (Cox et al., 2007, 2005).

The second method for dealing with solutions at infinity is
to perform a root-counting method to obtain the number
of affine solutions after which the roots at infinity can be
separated from the affine roots. Existing algebraic methods
addressing this problem, such as the BKK bound, or the
multihomogeneous Bézout number are described in Cox
et al. (2007, 2005).

It turns out to be possible to perform the affine root-
count via our matrix method as well! Homogenizing the
equations easily shows that the roots at infinity are char-
acterized by the highest degree terms in the equations:
indeed, denoting the homogenization variable as x0, the
roots at infinity have x0 = 0, so all lower degree terms
drop out of the equations. By monitoring the indices of
the linearly independent rows of Z(d) as the degree d in
M(d) increases, one can easily determine which indices
correspond to the affine roots, as they remain fixed; the
indices corresponding with the roots at infinity always
occur in the highest-degree blocks. An alternative way of
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performing the affine root-counting is described in Batse-
lier et al. (2011).

Proposition 15. (Affine root-counting).
Let B be composed of the first corank(M) linearly inde-
pendent rows in Z as B = Z(v, :), where v contains the
row indices of the linearly independent rows of Z. This
can alternatively be written as B = S1Z. By inspecting
the indices of the linearly independent rows of Z(d) as d
increases, one separates the ma affine roots from the roots
at infinity, where the row indices corresponding to the
affine solutions are denoted va, partitioning v = [vTa , v

T
∞
]T ,

where va contains the indices corresponding to the ma

affine roots.

Multiplication of the rows Z(va, :) by a user-chosen shift
function σ determines the row selection matrix S2. Let
W = ZB−1 and construct A = S2W . Now truncate
A = A(:, 1 : ma) such that only the first ma columns are
retained to obtain an ma ×ma eigenvalue matrix A. The
evaluations of the user-chosen shift function σ at each of
the ma affine solutions of (1) are found as the eigenvalues
of A, as in Corollary 11, where now only the affine roots
are retained.

The complete algorithm is summarized as follows:

Algorithm 1. (Affine root-finding).

input: system of n equations fi having

degrees di in n unknowns xi

output: ma affine solutions for a

user-chosen shift function σ

(1) Construct M = M(d⋆) with dimensions p × q with
corank(M) = q − rank(M).

(2) Compute a numerical basis for the nullspace of M ,
denoted Z.

(3) Determine the number of affine roots ma by moni-
toring the indices of the linearly independent rows in
Z.

(4) Select the first ma linearly independent rows in Z by
means of the row-selection matrix S1, i.e., B = S1Z.
Let W = ZB−1.

(5) Express the shift relation from Proposition 7 for a
user-chosen shift σ to obtain A = S2W , and truncate
A = A(:, 1 : ma).

(6) Compute the eigenvalue decomposition of A =
V DσV

−1. The ma eigenvalues in Dσ correspond to
the evaluations of the function σ at the ma affine
solutions.

(7) Reconstructing the canonical nullspace as in Corol-
lary 12 from W (:, 1 : ma)V reveals the mutual match-
ing between the solution components xi.

Remark 16. When dealing with a polynomial optimization
problem, the (polynomial) objective criterion itself can be
used as shift function σ. The corresponding eigenvalue
problem then returns as its eigenvalues the evaluations
of the objective criterion in the critical points of the
Lagrangian. The minimal or maximal real eigenvalue cor-
responds in this case to the minimizer or maximizer of
the objective criterion and power iterations (Golub and
Van Loan, 1996) can be employed to solve for the optimal
solution directly.

Remark 17. When both multiple solutions and roots at in-
finity occur, Algorithm 1 still works. Moreover, even when

one is dealing with a positive-dimensional solution set at
infinity, while having a zero-dimensional affine solution set,
monitoring the indices of the linearly independent rows in
Z(d) correctly reveals the number of affine roots.

5. APPLICATION: GLOBAL OPTIMIZATION FOR
STRUCTURED TOTAL LEAST SQUARES

In this example a 3 × 3 Hankel structured total least
squares (STLS) problem is solved as a system of poly-
nomial equations to find the globally optimal low-rank
approximation to a given data matrix. All simulations
were done in MATLAB. The numerical results were con-
firmed by a polynomial homotopy continuation method
and Gröbner Basis computations.

Example 18. Let A be a given 3 × 3 data matrix of full
rank, having Hankel matrix structure. De Moor (1993,
1994) proposes a non-linear generalization of the SVD to
solve the STLS problem, which is called the Riemannian
SVD, which essentially comprises a system of multivariate

polynomial equations. Let v = [ v1 v2 v3 ]
T

and l =

[ l1 l2 l3 ]
T
. The Riemannian SVD equations are







Av = TvT
T
v l,

AT l = TlT
T
l v,

vT v = 1

(3)

where Tv and Tl capture the required Hankel structure
constraint (distinguishing the Riemannian SVD from the
SVD) and are defined as follows

Tv =

[

v1 v2 v3
v1 v2 v3

v1 v2 v3

]

,

and Tl is defined similarly. The best low-rank approxima-
tion of A is reconstructed from the pair of (v, l) vectors
which minimize the objective criterion

J(v) = vTAT (TvT
T
v )−1Av,

as described in De Moor (1993, 1994).

Consider the 3× 3 full-rank Hankel matrix

A =

[

7 −2 5
−2 5 6
5 6 −1

]

,

which is approximated by a Hankel matrix B of rank 2.

Replacing the normalization constraint vT v = 1 in (3)
by v1 = 1 reduces the number of variables by one. The
first equation in Av = TvT

T
v l now does not carry any

information anymore since it stems from a derivation with
respect to v1 = 1, and hence it can be dropped. The
resulting system is composed of five polynomial equations
in five unknowns, where all equations are of degree three.
We apply the method as described in Algorithm 1. For
d⋆ = 11, the matrix M = M(d⋆) has size 6435× 4368 and
is extremely sparse with only 60489 nonzero elements. A
basis for the nullspace of thisM is computed, and the root-
counting technique reveals there are 39 affine solutions.
The STLS optimization problem and the (real) values of
the critical points are represented graphically in Figure 1.
The optimal rank-2 Hankel matrix approximation of A is
ultimately retrieved as B, where
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Fig. 1. Level sets of the minimization problem of the 3 ×
3 Hankel STLS J(v) = vTAT (TvT

T
v )−1Av showing

several local optima together with the roots retrieved
by the presented algorithm. The proposed method is
able to identify all 13 critical points (×), and hence
guarantees to retrieve the globally optimal solution.
The x and y axes depict the spherical coordinates of
v, i.e., x = tan−1 v2/v1 and y = cos−1 v3.

B =

[

7.6582 −0.1908 3.2120
−0.1908 3.2120 1.8342
3.2120 1.8342 2.4897

]

,

which is indeed of rank 2.

6. CONCLUSIONS

Several concepts from algebraic geometry have been trans-
lated into their linear algebra counterparts, and a root-
finding method based on numerical algebra operations,
such as nullspace computations and eigenvalue decom-
positions was presented. Since the encountered matrix
sizes can easily become prohibitively large, ongoing re-
search focuses on devising efficient methods for generating
the nullspace of the specifically structured and extremely
sparse coefficient matrix. We will look also into how one
can solve for the optimizing (real) solution directly in the
case of polynomial optimization problems. In this respect,
relations with sums-of-squares polynomial optimization
(Parrilo, 2000) and the work by Laurent and Rostalski
(2012) are of interest.
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