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Voorwoord

Als je zes jaar geleden zou gevraagd hebben of ik zou willen doctoreren, dan
zou ik resoluut “nee” gezegd hebben. Ik dacht dat ik min of meer voorbestemd
was een eigen zaak te beginnen. “De goden hebben anders beslist.” Nu ja,
eigenlijk heb ik anders beslist. En dat is één van de twee beste beslissingen
van mijn leven gebleken. Maar misschien zijn het wel goden die een beetje
geholpen hebben bij die beslissing. Twee goden om precies te zijn.

De eerste heb ik al in een eerder voorwoord “de god van het enthousias-
me” genoemd. Toen ik mijn thesis moest kiezen, wou ik in de richting van
de bioinformatica gaan, omdat dat goed aansloot bij mijn curriculum, en om-
dat ik daar wel toekomst in zag. Zo kwam ik al snel bij Stein Aerts terecht,
want zijn enthousiasme werkte heel aanstekelijk. Het is Stein die mijn eerste
interesse in wetenschappelijk onderzoek heeft opgewekt. Het was een heel toffe
samenwerking die uiteindelijk veel langer is blijven lopen dan die ene thesis.

Het volgende jaar moest ik nog een thesis maken, één die iets meer biologisch
gericht was. Dus ik besloot om de methoden die we ontwikkeld hadden te gaan
testen in het labo. Maar ik was niet zo gëınteresseerd in plantjes, bacteriën of
gisten. En zo kwam ik dan terecht op de torenhoge Olympusberg (hét excuus
om niet met de fiets te komen!). En de lezer met veel fantasie glimlacht een
beetje, want hij heeft nu een levendig beeld van de tweede god.

Peter Marynen. Iedereen verwees me naar hem door voor een dergelijk the-
sisonderwerp, en hij was ook meteen enthousiast, ook al was het niet helemaal
bekend terrein voor hem. Het klikte meteen, en ook aam die thesis heb ik hele
goede herinneringen. Peter wist mijn wetenschappelijke interesses helemaal los
te krijgen. Dus ik besloot om te doctoreren. En ik zag dat het goed was.

Mijn doctoraat deed ik opnieuw bij Peter Marynen. “En ik zal u zeggen
waarom.” Peter wist altijd tot de kern van de zaak door te dringen (ook als je
dat soms liever niet had). Ook kon ik Peter’s rechttoe-rechtaan houding heel
erg appreciëren. Het was altijd duidelijk waaraan je nog moest werken en wat
hij goed vond. Verder was Peter de hoofddocent van de sleutelcursus “kritisch
wetenschappelijk denken”, ongetwijfeld het grote hoofdvak in de opleiding tot
wetenschapper. Een heel gepaste term om de promotor-doctoraatsstudent re-
latie te beschrijven is “symbiose”: een samenwerking waar beide organismen
voordeel uit halen. Wat die term niet zegt is dat beide organismen evenveel
voordeel halen. En ik ben ervan overtuigd dat de balans hier naar mijn kant
overhelde. Ik ben Peter ook ontzettend dankbaar voor alle kansen die hij mij
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gaf en om me actief op te leiden als wetenschapper door zijn voorbeeld, zijn
kennis, zijn commentaren en de vele kritische discussies. Tenslotte ben ik Peter
heel dankbaar voor de vrijheid die hij me gaf in mijn onderzoek - een vrijheid
ongezien voor een doctoraatsstudent, die soms toch wel onverwachte wegen
uitging (vergelijk dit boekje maar met het oorspronkelijke doctoraatsproject),
maar waar ik me heel goed in kon vinden.

Naast Zeus wil ik nog een andere godheid nadrukkelijk vernoemen die het
licht in de duisternis heeft gebracht. Chris Peeters. Misschien is Athene hier
wel een goede vergelijking. Ik ben pas redelijk laat in mijn “carrière” als
doctoraatsstudent bij Chris terechtgekomen, maar ik denk dat ik meer tijd
van haar gekregen heb dan de gemiddelde doctoraatsstudent van zijn promotor
krijgt in vier jaar tijd. Chris stond altijd klaar met wijze raad, over wetenschap
of over andere zaken. Ook haar doorzicht in de pathologie en de klinische kant
van de zaak hebben een wezenlijk verschil gemaakt. Chris, ik ben dikwijls met
veel plezier vroeger voor u opgestaan - en sommigen weten dat ik het daar
normaal gezien heel moeilijk mee heb. Ik hoop dat je als emeritus nog vele
jaren met veel plezier kan bezig zijn met je hobby: de tuin. En ik hoop ook
dat je daarbuiten nog precies zoveel als je wil met de kliniek en de wetenschap
mag bezig zijn. En ik moet toegeven: eigenlijk hoop ik stiekem ook een beetje
dat ik nog met je mag samenwerken.

En dan komen we terug bij de oorspronkelijke roots: ESAT en bioinforma-
tica. Geografisch gezien is dit niet op de Olympusberg gelegen, dus laat me
dit dan plaatsen in het oude Griekenland, meer bepaald Ithaka. Hier begin
ik mijn dankwoord bij Agamemnon (Bart De Moor). Hem ben ik zeer dank-
baar voor de kansen die hij me gegeven heeft voor en tijdens mijn doctoraat,
en ook voor de financiering van een aantal reizen ver buiten het Griekse rijk.
Ook Odysseus (Yves Moreau) ben ik heel dankbaar voor de wetenschappelijke
discussies, voor de nauwe en vruchtbare samenwerking en voor vele praktische
zaken. Verder bedank ik ook alle inwoners van Ithaka en het oude Griekenland.
Ik was misschien maar een halfbloed, maar ik heb me bij jullie toch altijd thuis
gevoeld.

Ook heb ik het voorrecht gehad om met vele andere goede wetenschappers
samen te werken, waaruit ik veel heb kunnen leren en waarvoor ik oprecht
dankbaar ben. Ik wil er enkele bij naam noemen. Diether Lambrechts speel-
de een zeer belangrijke rol bij de ontwikkeling en de validatie van Endeavour.
Patrick Matthys zorgde in onze lymfoma-studie voor de uiteindelijke mechanis-
tische interpretatie van de expressieprofielen. In addition, I would like to thank
Iwona Wlodarska, Frans Schuit, Gregor Verhoef, Daan Dierickx, Jan Delabie,
Agnieszka Malecka, Bernard Thienpont, Leo Tranchevent, Bert Coessens, Joos
Vandewalle, Stefan Lehnert and Vera Vanhentenrijk for the pleasant and inte-
resting collaboration within or outside my PhD project. Tenslotte wil ik nog
expliciet Isabelle Vanden Bempt bedanken: onze samenwerking is ook een heel
mooi voorbeeld van symbiose geweest. Bedankt Isabelle, voor de interessante,
leerrijke en geanimeerde discussies over lopende en nog-niet-helemaal-lopende
projecten! En weet ook dat je hulp bij de vele praktische zaken een groot ver-
schil hebben gemaakt. Ik hoop alvast dat we in de toekomst de symbiose nog
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mogen verderzetten!
Als je de Griekse mythologie mag geloven, werd er op de Olympusberg

ook wel eens flink gefeest. Many thanks, CB3, for the nice atmosphere, the
unforgettable lab weekends and many other activities, and for all the friendship!

I would like to thank the members of the jury, professors E. Legius, J.
Vermeesch, H. Ceulemans, V. Timmerman, L. Wessels and E. Barillot, for
providing me with valuable comments and suggestions which improved this
PhD text.

Vrienden, jullie ben ik ontzettend dankbaar voor de toffe sfeer die we altijd
hadden bij onze spelletjesavonden, etentjes, cantussen, weekendjes, . . . Door die
ontspanning kon ik altijd met vernieuwde energie weer aan het werk gaan.

Mijn familie en schoonfamilie wil ik bedanken voor alle hulp en steun. Een
extra woord van dank ook aan onze moe’s en va’s, Cynthia en mijn broer Johan,
om altijd klaar te staan voor mij. En natuurlijk mama en papa: dank je wel
voor alle kansen die jullie me gaven, voor jullie vertrouwen in al wat ik deed,
voor de interesse en voor de steun die jullie me gegeven hebben, niet alleen
tijdens mijn doctoraatsjaren maar in mijn hele leven. Zonder jullie zou ik hier
niet geraakt zijn!

Tenslotte mijn - goddelijke - vrouw Tina. Hier weet ik echt niet waar te
beginnen. Bedankt, Tina, voor al je goede zorgen, voor je steun en voor je
begrip als ik weer maar eens wat minder tijd had dan verwacht. En bedankt
ook voor wie je bent. Jij bent de beste beslissing uit mijn leven geweest!

Waar goden zijn, is er ook een schepping.
Hier is ze dan, mijn schepping!
Maar is dat wel de schepping, dit doctoraatsboekje? Is het niet iets dieper,
waar dit boekje symbool voor staat?
Ja, ik weet het:
Hier ben ik dan: een wetenschapper. Jullie schepping! Bedankt.

Peter, mei 2008
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Summary

Systems biology is a relatively novel field of science aiming to study biological
systems in an integrated fashion. Systems biology entails an elaborate spectrum
of methods including in vitro techniques (such as microarray gene expression
profiling) as well as many bioinformatics approaches.

In this work, we aim to develop novel bioinformatics and systems biology
approaches to two important biological problems: the identification of genes
involved in diseases and the annotation of regulatory regions in the human
genome. In a second independent part, we apply bioinformatics, systems bi-
ology and statistics to gain a better understanding of two cancer types: lym-
phoma and breast cancer.

We developed Endeavour, a novel systems biology method to prioritize can-
didate genes for a given disease or biological process, based on similarities to a
set of user-defined “training genes”. Contrary to existing methods, Endeavour
is able to integrate information from multiple heterogeneous data sources. We
validated Endeavour extensively by a large-scale leave-one-out cross-validation,
and by specific case-studies on recently identified disease genes.

We developed ModuleMiner, a computational method to detect similar cis-
regulatory modules (CRMs) in a set of co-regulated genes. In contrast to exist-
ing methods, ModuleMiner is parameterless and performs a whole-genome op-
timization maximizing specificity of the CRMs for the given co-regulated genes,
compared to all other genes in the genome. By direct comparison, we demon-
strated that ModuleMiner outperforms other existing computational methods
to detect CRMs. Additional validation experiments showed that ModuleMiner
is insensitive to noise in the given set of co-regulated genes, provided a critical
mass of genes with similar CRMs is present. We applied ModuleMiner on a
larger scale, showing that CRMs can be detected in microarray clusters con-
taining genes expressed in different adult tissues, as well as in custom-build
gene sets related to embryonic development processes. Comparing both sets
of CRM predictions leads us to hypothesize that CRMs driving expression in
adult tissues are mostly proximal promotors, while CRMs involved in embry-
onic development are more distal enhancers.

We performed an integrated validation, combining CRM detection with
Endeavour gene prioritization. Using CRM detection methods, we predicted
100 genes differentially regulated during HL-60 differentiation (as a proxy for
the final stages of differentiation of hematopoietic stem cells to macrophages),
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and validated this by real-time quantitative RT-PCR for 20 of these genes.
Although our results indicate that a significant signal is picked up, the amount
of differential regulation was limited. We used Endeavour to prioritize the
100 genes predicted to be differentially regulated, and we again validated the
20 highest ranking genes by real-time quantitative RT-PCR. We obtained a
significant difference between the genes after prioritization and the genes before
prioritization. These results indicate that predicting new target genes based on
a model of similar CRMs in a set of co-regulated genes in the human genome
is possible, and that Endeavour can aid in the selection of true target genes.

Using microarray gene expression profiling, we studied the microenviron-
ment in two related lymphoma entities with a markedly different prognosis:
the indolent nodular lymphocyte predominant Hodgkin’s lymphoma (NLPHL)
and the aggressive T cell/histiocyte rich large B cell lymphoma (THRLBCL).
While the expression signature of NLPHL mainly consists of B cell genes, in
line with expectations, the expression signature of THRLBCL is character-
ized up-regulation of CCL8, IFN-γ, IDO, VSIG4 and Toll-like receptors, and
reflects the recruitment and activation of histiocytes/macrophages, a tumour
tolerogenic microenvironment, and innate immune responses. Several of these
characteristics offer potential targets for a directed therapy in THRLBCL.

Amplification of the gene HER2, located on chromosome 17, is a frequent
event in breast cancer and defines a distinct subgroup associated with a bad
prognosis. The relatively frequent occurrence of polysomy 17 may complicate
the interpretation of tests for HER2 amplification. We investigated the impact
of polysomy 17 on HER2 testing and studied its clinicopathological significance
in relation to HER2 gene amplification. We observed that all cases with an
inconclusive or “equivocal” HER2 result by fluorescence in situ hybridisation
(FISH) are polysomic for chromosome 17. Polysomy 17 without HER2 ampli-
fication was not associated with HER2 overexpression. In addition, in contrast
to HER2 amplification, polysomy 17 was not associated with high tumour
grade, hormone receptor negativity or reduced disease-free survival. These re-
sults indicate that polysomy 17 is clinicopathologically distinct from true HER2
gene amplification, suggesting that HER2-targeted therapies are unlikely to be
successful in tumours with polysomy 17 but no HER2 gene amplification.



Samenvatting

Systeembiologie is een relatief nieuwe tak van de wetenschap die biologische
systemen op een gëıntegreerde wijze bestudeert. Systeembiologie omvat een
breed gamma aan methoden, inclusief in vitro technieken (zoals microrooster
expressieprofilering) en vele bioinformatica methoden.

In dit werk ontwikkelen we nieuwe bioinformatica en systeembiologie me-
thoden voor twee belangrijke biologische problemen: de zoektocht naar genen
betrokken bij erfelijke aandoeningen en de annotatie van regulatorische gebie-
den in het menselijk genoom. In een tweede deel passen we bioinformatica,
systeembiologie en statistiek toe om twee types van kanker beter te begrijpen:
lymfomen en borstkankers.

We ontwikkelden Endeavour, een nieuwe systeembiologie methode om kan-
didaatgenen voor een erfelijke aandoening of een biologisch proces te priori-
tizeren, gebaseerd op gelijkenissen met een verzameling van “trainingsgenen”,
door de gebruiker opgegeven. In tegenstelling tot bestaande methoden kan En-
deavour gegevens integreren van verscheidene heterogene gegevensbronnen. We
voerden een uitgebreide validatie uit van Endeavour, door “leave-one-out cross-
validation”, en we deden een aantal gevallenstudies van recent gëıdentificeerde
ziektegenen.

We ontwikkelden ModuleMiner, een computationele methode om gelijk-
aardige cis-regulatorische modules (CRMs) te detecteren in een verzameling
van co-gereguleerde genen. In tegenstelling tot bestaande methoden is Modu-
leMiner parameterloos en voert het algoritme een optimalisatie uit over het
volledige genoom, waarbij de specificiteit voor de opgegeven verzameling van
co-gereguleerde genen geoptimaliseerd wordt, in vergelijking met alle andere
genen in het genoom. Door directe vergelijking met andere methoden kon-
den we aantonen dat ModuleMiner een hogere performantie heeft. Verdere
validatie-experimenten toonden aan dat ModuleMiner niet gevoelig is aan ruis
in de opgegeven set van co-gereguleerde genen, op voorwaarde dat een kritische
massa van genen met gelijkaardige CRMs aanwezig is. We pasten ModuleMi-
ner toe op grotere schaal, waarbij we aantoonden dat het algoritme CRMs kan
vinden in microrooster clusters die genen bevatten die tot expressie komen in
verschillende volwassen weefsels, alsook in verzamelingen van genen betrokken
bij embryonale ontwikkelingsprocessen. Als we beide groepen van CRM predic-
ties vergeleken, kwamen we tot de hypothese dat CRMs betrokken bij expressie
in volwassen weefsels vooral te vinden waren in proximale promotoren, terwijl
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CRMs betrokken bij embryonale ontwikkeling eerder meer distale enhancers
zijn.

We voerden een gëıntegreerde validatie uit, waarbij we CRM detectie com-
bineerden met Endeavour genprioritizatie. Gebruik makend van CRM detec-
tiemethoden, voorspelden we 100 genen die differentieel gereguleerd zijn bij de
differentiatie van de hematopoietische cellijn HL-60. Dit valideerden we ver-
volgens met kwantitatieve PCR voor 20 genen. Hoewel onze resultaten erop
wijzen dat we een significant signaal kunnen oppikken, toch was de sterkte van
de differentiële regulatie beperkt. We gebruikten Endeavour om de lijst van 100
voorspelde genen te prioritizeren, en we valideerden de 20 hoogst gerangschikte
genen. We observeerden een significant verschil tussen de genen na prioritiza-
tie en de genen voor prioritizatie. Deze resultaten wijzen erop dat nieuwe
doelgenen, gebaseerd op een model van gelijkaardige CRMs in co-gereguleerde
genen kunnen voorspeld worden, en dat Endeavour de correcte doelgenen kan
selecteren.

Met microrooster expressieprofilering bestudeerden we de micro-omgeving
in twee verwante lymfoom-entiteiten met een sterk verschillende prognose: de
indolente nodulair lymfocyt predominante Hodgkin lymfomen (NLPHL) en de
agressieve T cel/histiocyt rijke grootcellige B cel lymfomen (THRLBCL). In
de expressiesignatuur van NLPHL zagen we voornamelijk B cel genen, in lijn
met onze verwachtingen. De expressiesignatuur van THRLBCL is gekarakteri-
seerd door op-regulatie van CCL8, IFN-γ, IDO, VSIG4 en toll-like receptoren,
en reflecteert de recrutering en activatie van macrofagen en dendritische cel-
len, een tumor tolerogenische micro-omgeving, en reacties van het aangeboren
immuunsysteem. Deze karakteristieken bieden mogelijke doelwitten voor een
gerichte therapie in THRLBCL.

Amplificatie van het gen HER2, gelegen op chromosoom 17, is een fre-
quente genomische aberratie in borstkanker, en definieert een aparte subgroep
met een slechte prognose. Het relatief frequente voorkomen van polysomie 17
zou de interpretatie van testen voor HER2 amplificatie kunnen bemoeilijken.
We onderzochten de impact van polysomie 17 op testen voor HER2 amplifi-
catie en we bestudeerden de clinicopathologische relevantie van polysomie 17
in verhouding tot HER2 genamplificatie. We zagen dat alle gevallen met een
onbeslist of “equivocaal” HER2 resultaat polysomie 17 vertoonden. Polysomie
17 zonder HER2 amplificatie was niet geassocieerd met HER2 overexpressie.
In tegenstelling tot HER2 amplificatie, was polysomie 17 niet geassocieerd met
hoge tumorgraad, negativiteit voor hormoonreceptoren en lagere ziekte-vrije
overleving. Deze resultaten wijzen erop dat polysomie 17 clinicopathologisch
verschillend is van amplificatie van het HER2 gen. Dit lijdt ons tot de hypo-
these dat therapieën gericht tegen HER2 geen effect hebben in borstkankers
met polysomie 17 maar zonder HER2 amplificatie.
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1 Systems biology

Biologists have historically applied a rigorous reductionist approach to their
field of study. In this approach, a complex system is broken down into its in-
dividual components and these components are analyzed as much as possible
in isolation. This approach has been highly successful. However, it is clear
that this reductionist approach alone will not provide a full understanding of
the complex and interwoven biological processes that take place in the cell and
in the organism. Indeed, evolution optimizes the properties of the system as
a whole instead of optimizing all individual parts. Therefore, in addition to
this in depth reductionist approach, a complementary integrated approach is
required. The advent of (near) whole genome sequences (Fleischmann et al.,
1995; C. elegans Sequencing Consortium, 1998; Adams et al., 2000; Lander
et al., 2001; International Human Genome Sequencing Consortium, 2004; Wa-
terston et al., 2002; Gibbs et al., 2004) for the first time provided a really
integrated glimpse of biological systems, and the term “systems biology” was
coined for this integrated approach. The birth of numerous genome-wide tech-
nologies (such as microarray expression profiling and derived techniques) and
the resulting availability of many genome-wide data sets (Birney et al., 2004;
Harris et al., 2004; Bader et al., 2001; Su et al., 2004; Son et al., 2005; Rhodes
et al., 2004) has cultivated very high expectations for this approach in recent
years.

Systems biology is a relatively novel field of science that is only broadly
defined. Many avenues have been explored and perhaps even more are at this
moment unexplored. We do not aim to give a full overview of systems biol-
ogy approaches here, but instead we focus on a few key examples of systems
biology methods, including the microarray gene expression profiling technique
and its associated systems biology analysis methods, and network based sys-
tems biology approaches. Furthermore, we briefly describe existing systems
biology methods for the prioritization of candidate genes. Finally, we will give
a detailed overview of the existing computational approaches aiming to iden-
tify cis-regulatory modules, a specific field of bioinformatics that is gradually
entering the realm of systems biology.
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2 Key examples of systems biology approaches

2.1 Microarray gene expression profiling

Microarrays have become an established approach in biological research. Vari-
ants of this technology have been developed for many uses: gene expression
profiling (Schena et al., 1995; Lockhart et al., 1996), DNA copy number detec-
tion (array-CGH), chromatin immunoprecipitation on a chip (ChIP-chip) (Ren
et al., 2000), SNP genotyping, . . . In addition, protein-binding microarrays
(Mukherjee et al., 2004) can measure the affinity of transcription factors to the
DNA. In the further text, we will focus on gene expression microarrays.

Microarray gene expression profiling aims to measure the expression of thou-
sands of genes simultaneously by hybridization of labeled RNA (or cDNA) to
complementary sequences that are “arrayed” on a chip. The intensity of each
arrayed spot can then be linked to the RNA abundance of the corresponding
gene.

Although not all applications of this technique can unquestionably be called
systems biology, we do state that gene expression microarrays have potentiated
a key change in the classically reductionist approach of the biologist. Indeed, in
contrast to more advanced “real” systems biology approaches (we will discuss
examples below), virtually all biologist are familiar with microarrays.

Even though microarrays provide large amounts of data, it has also become
clear that data does not equal knowledge, resulting in the emergence of a
new field of gene expression data analysis aiming to extract this knowledge
from the microarray data (reviewed in Allison et al. (2006)). Most widely
used are methods for making inference from microarray data (e.g. obtaining
differentially expressed genes), and methods for classification (e.g. supervised
or unsupervised clustering).

Microarray expression profiling and its associated analysis methods have
provided some key biological results. Firstly, these techniques have led to a bet-
ter stratification of cancer (Alizadeh et al., 2000; Perou et al., 2000; Sørlie et al.,
2001; Lee et al., 2006; Yeoh et al., 2002; Carrasco et al., 2006). In addition,
microarrays expression profiling has also been useful for outcome prediction
(van ’t Veer et al., 2002; Rosenwald et al., 2002; Shipp et al., 2002; Bullinger
et al., 2004). Finally, these techniques have lead to a better understanding of
cancer and disease (Dave et al., 2004; Lamb et al., 2003; Ramaswamy et al.,
2003), although perhaps in this last regard microarrays may not have entirely
lived up to our expectations.

2.2 Cross-context gene expression profile mapping

Comparing results from different gene expression profiling experiments per-
formed on different platforms or in different labs has proven difficult (Tan
et al., 2003; Fortunel et al., 2003). One advanced method developed to over-
come these difficulties is Gene Set Enrichment Analysis (GSEA) (Subramanian
et al., 2005). The idea behind this approach is to rank the genes in a microarray
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experiment (e.g. by correlation with phenotype) and to evaluate the positions
of a given set of genes (e.g. from another microarray experiment or from litera-
ture) in this ranked gene list. If many of the given genes occur either high or low
in the ranking, this points to similarities between the gene set and the results
of the experiment. Finally, GSEA assigns a probability to this combination of
rankings.

Pushing this idea one step further, gene expression data of experiments in a
totally different context can also be correlated, opening up new avenues. In one
study, Lamb et al. (2006) created a reference microarray data set of cultured
human cells treated with a library of bioactive small molecules. They reasoned
that if the genes found upregulated in a disease state versus a normal control
are downregulated in a cell line treated with a certain compound, this suggests
that that compound might counteract the effect of that disease. They used an
approach similar to GSEA to link the “expression profiles” of bioactive chem-
ical compounds to the expression profile of the disease state. In the resulting
framework, termed the “Connectivity Map”, small molecule compounds are
ranked, given a second focussed microarray experiment.

2.3 Network based systems biology methods

A network is an interconnected group of entities. Because a natural way to
represent biological data is under the form of interconnected proteins or genes,
networks are ubiquitous in biology. Much information can be obtained from
these biological network: e.g. the closer two genes/proteins are within the
network, the more tightly they are related. As many properties of networks may
not be apparent when studying the individual components of the network, many
system biology methods have been developed that focus on networks. The most
well known of these is STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) (von Mering et al., 2007). STRING builds a protein-protein
interaction network by integrating known and predicted interactions from many
different data sources (including text mining) and many different organisms.
Figure 1 shows the network STRING constructs around the gene IDO/INDO.

Yıldırım et al. (2007) constructed a bipartite graph of proteins and drugs,
linked by drug-target associations. They found that drugs of similar types
clustered tightly together, and that etiological drugs show a closer relationship
with disease-gene products than palliative drugs. In addition, they identified
properties of drug design, such as an overabundance of “follow-on” drugs (drug
that target already targeted proteins) and increased focus in recent drug de-
velopment.

In another study of the same group (Pujana et al., 2007), a network was
constructed around 4 known breast cancer genes, combining gene expression
profiling and integration of functional genomic and proteomic data. This net-
work allowed them to predict that the gene HMMR is associated with higher
breast cancer susceptibility, which they subsequently validated (Pujana et al.,
2007). In two other recent studies (Franke et al., 2006; Lage et al., 2007) (dis-
cussed in detail below), this principle of using networks to identify disease genes
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Figure 1: The STRING network around the human gene indoleamine 2, 3-dioxygenase
(IDO/INDO).
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is applied in a more general setting.

3 Gene prioritization

The identification of disease genes is a key goal of biomedicine. Through cyto-
genetics, linkage mapping, association studies, or high-throughput techniques
(e.g. expression microarrays, array-CGH), a set of candidate genes for that dis-
ease can often be defined. The next step, a careful analysis of these candidate
genes in order to select a few interesting candidates or rank the candidates for
further validation studies, is often not straightforward. The availability of mul-
tiple types of full-genome data (e.g. gene expression data, sequence informa-
tion, Gene Ontology annotations, protein domain databases and the published
literature) has made this into an interesting domain for automated approaches
able to integrate large amounts of data. Multiple computational methods have
been developed to tackle this “gene prioritization” problem. Most early ap-
proaches use data from one or two of these data sources (Freudenberg and
Propping, 2002; Perez-Iratxeta et al., 2002; Turner et al., 2003; Tiffin et al.,
2005; Adie et al., 2005; Lopez-Bigas and Ouzounis, 2004; Kent et al., 2005),
providing proof-of-principle that from each data source information useful for
prioritizing candidate genes can be extracted. Recently, a few systems biology
methods have been developed that tackle the gene prioritization problem by
integrating data from multiple different data sources in a systematic way. Two
of those are network-based methods (Franke et al., 2006; Lage et al., 2007),
and are discussed below. A third method, Endeavour (discussed in study 1
in this work), uses each data source separately to prioritize candidate genes,
and in a second step integrates these different prioritizations into one overall
prioritization.

Franke et al. (2006) constructed a network based on data from Gene Ontol-
ogy, microarray gene expression data (from 4 different datasets) and protein-
protein interactions (predicted interactions (e.g. by yeast-two-hybrid), as well
as confirmed interactions from existing databases such as Reactome and the
Biomolecular Interaction Network Database (BIND)). They next hypothesize
(and confirm) that genes involved in a similar inheritable disease are closer
to each other in this network than randomly selected genes. Based on this
principle and the constructed network, they develop a gene prioritization tool,
Prioritizer. In a large-scale validation of this tool, they select 96 inheritable
diseases from the Online Mendelian Inheritance in Man database (OMIM) for
which between 3 and 10 disease genes have been identified. For each disease
gene, they construct an artificial locus containing 100 candidate genes. Us-
ing Prioritizer to rank these candidate genes, they observed that for 54 % of
the diseases, at least one candidate gene was ranked within the top five genes
(representing a 2.8 fold increase over random selection).

Lage et al. (2007) construct a scored protein-protein interaction network by
pooling interactions from many different protein-protein interaction databases,
and by transferring data from 17 different eukaryotic organisms, using rigorous
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Figure 2: Three different types of cis-regulatory module detection algorithms.

quality control. In addition, they developed a text-mining based phenotypic
similarity score that could be integrated with the protein-protein interaction
network. The hypothesis underlying their gene prioritization approach is that
mutations in different members of a protein complex lead to comparable pheno-
types. Their approach extract a protein complex around each candidate gene
from the constructed phenome-interactome network, and uses a Bayesian pre-
dictor to score the phenotype of interest in this phenotype annotated complex.
In a large-scale five-fold cross-validation, they used 1404 artificial linkage inter-
vals containing on average 109 genes, including one gene known to be involved
in a particular disease. Their approach made 669 predictions, of which 298
were correct, indicating a precision of 45 % and a recall of 21 %.

4 Computational cis-regulatory module detection

In contrast to the available knowledge about genes, the annotation of regulatory
regions in the human genome is far from complete. In the field of regulatory
bioinformatics, many computational methods have been developed that aim
to detect regulatory sequences. Here, we discuss these methods, focussing
specifically on in silico approaches to detect cis-regulatory modules (CRMs).

The existing CRM detection approaches can be classified in three concep-
tually different classes, based on the specific aims of the methods (Figure 2):

1. Methods that screen sequences or complete genomes for CRMs based
on a pre-defined model. These approaches aim to identify CRMs that
contain binding sites for a specific combination of position weight matrices
(PWMs). We call these “Type I CRM detection methods”.
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2. Methods that look for similar CRMs in a set of co-regulated or co-
expressed genes. These approaches construct or select a combination
of PWMs for which binding sites can be found in the putative regula-
tory regions of some or all of the given co-regulated genes. We call these
“Type II CRM detection methods”.

3. Methods that screen sequences or complete genomes for CRMs as ho-
motypic or heterotypic clusters of binding sites for any combination of
transcription factors. These methods do not require a predefined model
or a predefined set of PWMs, but instead they look for clusters of bind-
ing sites for any combination of PWMs. We call these “Type III CRM
detection methods”.

4.1 Type I CRM detection methods

The properties of the different Type I CRM detection methods are outlined
in tables 1 and 2. These methods commonly require a combination of PWMs
and a genomic sequence as input, as well as a variable number of parame-
ters. A number of different principles are used to incorporate homotypic and
heterotypic clustering of transcription factor binding sites (PWM hits): e.g.
counting of occurrences in a specific window, logistic regression analysis to
predict the probability of a CRM hit and hidden Markov models (table 1).

Table 1: The different Type I CRM detection algorithms: working principles, inputs
and parameters

Algorithm Input Parameters Principle

LRA
(Wasserman
and Fick-
ett, 1998;
Krivan and
Wasserman,
2001)

(i) training set
of known CRMs
(with identical
length); (ii) neg-
ative training
set; (iii) set
of PWMs; (iv)
genomic sequence

(i) score threshold logistic regression analysis: model
the (probability of) occurrence of
CRMs as a function of the transcrip-
tion factor binding site scores using
multivariate logistic regression

Cister (Frith
et al., 2001)

(i) set of PWMs;
(ii) a sequence

(i) binding site de-
tection threshold;
(ii) average distance
between transcription
factor binding sites;
(iii) average num-
ber of transcription
factor binding sites;
(iv) average distance
between CRMs; (v)
window size for local
background model

hidden Markov model

Ahab (Ra-
jewsky et al.,
2002)

(i) putative regu-
latory sequences
of the whole
genome; (ii) set
of PWMs

(i) window size; (ii)
window step size

computes via maximum likelihood
the probability that the window se-
quence is made up by sampling from
the known PWMs or background (for
each window); overlap is allowed and
multiple weak instances are taken
into account (since all possible seg-
mentations in binding sites are con-
sidered)
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Table 1: continuation

Algorithm Input Parameters Principle

(e)CIS-
ANALYST
(Berman
et al., 2002,
2004)

(i) DNA
database; (ii)
set of binding
sites of cooper-
atively working
transcription
factors

(i) window size; (ii)
cut-off score per site
(p-value); (iii) mini-
mum number of sites

counts number of sites scoring above
threshold; if this number is higher
than the minimum number of sites
asked, a CRM prediction is returned

Halfon et al.
(2002)

- - looks for combinations of 2 Mad, 2
Tin, 2 Twi, 2 Pnt and 1 dTCF bind-
ing site, derived from Drosophila eve
dorsal mesodermal enhancer, within
a 500 base pair window

COMET
(Frith et al.,
2002)

(i) set of se-
quences to
search; (ii) set of
PWMs

(i) gap penalty
(expected average
distance between
motifs); (ii) window
width for local nu-
cleotide frequency
background model

add PWM scores, use gap penalty
for spacer sequences (in fact: hid-
den Markov model); statistics: log
likelihood ratio of observing the data
given a model of cis-element clusters
versus a model of background DNA

SCORE (Re-
beiz et al.,
2002)

(i) a (whole
genome) se-
quence to scan;
(ii) a consensus
sequence

none detect overrepresentation of binding
sites of one particular transcription
factor in differently sized windows

Cluster-
Buster (Frith
et al., 2003)

(i) set of se-
quences to
search; (ii) set of
PWMs

(i) gap penalty (in
fact: expected aver-
age distance between
motifs); (ii) window
width for (local nu-
cleotide frequency)
background model

similar to COMET

MCAST
(Bailey and
Noble, 2003)

(i) DNA
database; (ii)
set of PWMs

(i) p-value cutoff (for
a single transcrip-
tion factor binding
site); (ii) maximum
gap length; (iii) gap
penalty

hidden Markov model

Module-
Scanner
(Aerts et al.,
2003b)

(i) a set of ge-
nomic sequences
or conserved
non-coding se-
quences; (ii) a set
of PWMs

(i) max CRM size; (ii)
overlap; (iii) penaliza-
tion

looks for combination of PWMs gives
the highest score (sum of binding en-
ergies)

MSCAN
(Johansson
et al., 2003)

(i) a set of tran-
scription factor
binding profiles
(PWMs) and (ii)
a sequence

(i) significance thresh-
old (for single PWM
hits); (ii) window size;
(iii) maximum num-
ber of motifs in a
CRM

looks for significant PWM hit com-
binations; a p-value is assigned to
each binding site, and these are later
combined to a CRM score (two op-
tions: minimum p-value or product
of p-values); this CRM score is then
fitted to a statistical distribution to
derive a p-value

Stubb (Sinha
et al., 2003,
2004)

(i) set of se-
quences (or a full
genome) of one
or more species;
(ii) set of PWMs

(i) window length; (ii)
window step size; (iii)
background model

based on Ahab, with two modifica-
tions: (i) correlation between factors
is modeled (e.g. factor A preferen-
tially follows factor B) and (ii) com-
parative genomics: sequence conser-
vation in multiple species is incorpo-
rated (by counting scores in aligned
blocks in both species)
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Table 1: continuation

Algorithm Input Parameters Principle

PFR-
Searcher
(Grad et al.,
2004)

(i) set of similar
PFRs (output of
PFR-Sampler,
tables 5 and 6);
(ii) a (usually
full genome) PFR
database

none a set of PFRs (phylogenetically
footprinted non-coding regions) is
collected by aligning two genomes
(Drosophila melanogaster and
Drosophila pseudoobscura) and next
selecting regions of sufficient se-
quence conservation (60 % in 100
base pairs) and sufficient local
sequence conservation (5th order
hidden Markov model); Markov
chain discrimination (i.e. log-
likelihood of PFR generated by
a “CRM” hidden Markov model
compared to a “background” hidden
Markov model)

ModuleFinder
(Philippakis
et al., 2005)

(i) set of tran-
scription factor
binding profiles
(PWMs); (ii)
sequence

(i) window width; (ii)
window step size; (iii)
threshold score

for each window, the number of tran-
scription factor binding sites is con-
sidered (along with their evolution-
ary conservation), and the likelihood
of observing this is calculated

EEL (Hal-
likas et al.,
2006)

(i) 2 homologous
DNA sequences;
(ii) set of PWMs

4 parameters that
weigh different as-
pects of the alignment
score (can be calcu-
lated based on the full
genome)

aligns sequences in the transcription
factor binding site domain

Validation procedures used range from purely in silico to extensive in vivo
studies, although the latter have been performed mostly in Drosophila (table
2). These validations indicate that the methods are useful in practice to detect
CRMs in the complete Drosophila genome, although it should be kept in mind
that only for a very limited number of processes sufficient data is available to
construct a combination of PWMs. Although considerable progress has been
made (table 2), most notably by the incorporation of comparative genomics in
multiple methods, detecting CRMs by a genome-wide scan in the larger human
genome remains a challenge.

Table 2: The different Type I CRM detection algorithms: validation, comments
and availability.

Algorithm Validation Comments Availability

LRA
(Wasserman
and Fick-
ett, 1998;
Krivan and
Wasserman,
2001)

(i) skeletal muscle: 66 % sensitivity on
training set, 60 % sensitivity on test set,
one prediction every 32 kb; (ii) liver: 62
% sensitivity on training set, 50 % in
complete jackknife analysis, one predic-
tion per 35 kb

(i) first to show the
principle; (ii) no di-
rect comparative ge-
nomics, but they do
use it as a second step
screening strategy

available in
any statisti-
cal package

Cister (Frith
et al., 2001)

(i) regulatory targets of LSF (human):
sensitivity: 67 %, one prediction every
33 kb; (ii) skeletal muscle: performance
comparable to LRA

output is difficult to
interpret

available as
an online
tool

Ahab (Ra-
jewsky et al.,
2002)

(i) body patterning of the Drosophila em-
bryo (8 PWMs): 146 CRMs are found in
the genome, including 17 of 27 known
CRMs, estimated false positive rate is
estimated to be about 50 %. (ii)
Schroeder et al. (2004): Ahab predic-
tions on the Drosophila segmentation net-
work were experimentally validated by
reporter constructs: 13 of 16 novel pre-
dictions drove expression in a correct
pattern

(i) more or less the al-
gorithm of choice (if
comparative genomics
not available); (ii)
claimed to work also
when PWMs are de-
fined by Gibbs sam-
pling; (iii) no compar-
ative genomics

code avail-
able upon
request
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Table 2: continuation

Algorithm Validation Comments Availability

(e)CIS-
ANALYST
(Berman
et al., 2002,
2004)

CIS-ANALYST: Bcd, Cad, Hb, Kr and
Kni in Drosophila finds 9 known CRMs
and 22 novel predictions (augmented to
28 by also looking for Bcd, Hb, Kr and
Kni), 6 of those were positive; eCIS-
ANALYST was constructed based on the
results

(i) very simple,
but very good per-
formance (on the
Drosophila segmen-
tation network,
although the choice
of parameters was
dictated by sensi-
tivity/specificity for
finding known CRMs)

available as
an online
tool

Halfon et al.
(2002)

1 of 33 predicted enhancers was experi-
mentally validated (and fully character-
ized) and shown to function in a simi-
lar way as the eve enhancer; some others
were tested by reporter assays but shown
to be non-functional

not a general ap-
proach, but applied
to a specific example

a perl scripts
is available
online

COMET
(Frith et al.,
2002)

(i) promoters regulated by LSF (in com-
bination with Sp1, Ets-1 and the TATA
box), muscle (Mef2, Myf, SRF, Tef, Sp1)
(human); (ii) Comparison with Cister
and LRA: performance is comparable

(i) E-value per CRM
(and first to do this);
(ii) construction of a
model of background
DNA is not straight-
forward; (iii) no com-
parative genomics

(i) down-
loadable
executable;
(ii) online
tool

SCORE (Re-
beiz et al.,
2002)

applied to Su(H) sites in Drosophila: one
prediction was successfully validated in
the lab

only homotypic clus-
ter

none stated

Cluster-
Buster (Frith
et al., 2003)

validated using Gene Ontology term en-
richment in (i) muscle and (ii) LPS stim-
ulation Bluthgen et al. (2005)

- (i) down-
loadable
executable
and (ii)
online tool

MCAST
(Bailey and
Noble, 2003)

(i) simulated data; (ii) real data in
human and Drosophila; compared with
COMET: similar but slightly better per-
formance

(i) E-value per mod-
ule; (ii) sensitive to
the setting of its pa-
rameters; (iii) no com-
parative genomics

website is
given, but no
longer online

Module-
Scanner
(Aerts et al.,
2003b)

(i) in silico: human cell cycle PWM set
predicted by ModuleSearcher validated
by Gene Ontology; (ii) in vitro (human,
study 1 in this work): CRMs in upregu-
lated HL-60 cells

- (i) avail-
able on
request; (ii)
integrated
in Toucan
(Aerts et al.,
2003a, 2005)

MSCAN
(Johansson
et al., 2003)

(i) liver (66 % sensitivity, 1 putative
CRM detected every 23 kb); (ii) skele-
tal muscle (66 % sensitivity; 1 putative
CRM detected every 15 kb); compari-
son to LRA, Cister and COMET (slightly
better performance)

- available as
an online
tool

Stubb (Sinha
et al., 2003,
2004)

(i) synthetic sequences for multiple
species; (ii) yeast toy example (se-
quences selected for having binding sites
for 2 factors with correlations); (iii)
gap gene system of Drosophila: all 16
known CRMs are recovered, together
with only 2 novel predictions; (iv)
the Drosophila melanogaster segmenta-
tion network, including Drosophila pseu-
doobscura sequences (in silico, using an-
notated anterior/posterior-segmentation
genes)

(i) the multi-species
version significantly
outperformed the
single-species version;
(ii) more or less the
standard algorithm
when an extra species
is available

you can re-
quest a copy
online

PFR-
Searcher
(Grad et al.,
2004)

set of co-regulated genes centered around
10 Drosophila blastoderm genes that are
known to share transcription factor bind-
ing sites, leave-one-out cross-validation

- C-code avail-
able for
download
(after licence
agreement)
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Table 2: continuation

Algorithm Validation Comments Availability

ModuleFinder
(Philippakis
et al., 2005)

(i) skeletal muscle: sensitivity: 96.3 %,
specificity: 94.4 % (although the thresh-
old score is chosen as to maximize these
values); (ii) compared to LRA, Cister,
Comet and MSCAN: performance is bet-
ter, but none of the other algorithms
use comparative genomics; (iii) in Philip-
pakis et al. (2006): Drosophila muscle
founder cells

- stated to be
available for
download,
but website
does not
exist

EEL (Hal-
likas et al.,
2006)

in silico and in vivo: (i) detects all known
Drosophila eve enhancers; (ii) expression
in transgenic mice embryo’s (successrate:
≥ 30 %)

novel idea and high
performance

tool available
for download

We would like to highlight one recent novel approach (Enhancer Element
Locator (EEL), Hallikas et al. (2006)) that uses alignment of predicted tran-
scription factor binding sites in two species to make CRM predictions. In this
method, first the sequences of both species are used to predict binding sites us-
ing the given PWMs. In the second step, the sequences themselves are not used
anymore, and a Smith-Waterman alignment (Smith and Waterman, 1981) of
the predicted binding sites is performed. The validation of this methods pre-
dictions in the human-mouse system by expression constructs in transgenic
mice embryo’s showed a success-rate of over 30 %, indicating that this method
may achieve sufficient sensitivity and specificity levels to annotate CRMs in
the human genome.

4.2 Type II CRM detection methods

In general, these methods take as input a set of co-regulated or co-expressed
genes (or their putative regulatory sequences), and they predict (i) the tran-
scription factors (or PWMs) working cooperatively in regulating these genes
and (ii) the cis-regulatory modules regulating these genes, as combinations of
binding sites for these PWMs. We subclassify these Type II methods in two
parts: (a) methods that select PWMs from a PWM library and (b) methods
that construct their own PWMs.

Type IIa methods

The different Type IIa CRM detection methods are outlined in tables 3 and
4. The number of available algorithms is relatively limited: only two early
approaches fall strictly into this category: ModuleSearcher (Aerts et al., 2003b,
2004) and CREME (Sharan et al., 2003, 2004), as well as our ModuleMiner
algorithm, discussed in this work (study 2). The MARSMOTIF algorithm has
a slightly different focus: it models microarray gene expression as a function of
motif content (similar to REDUCE, Bussemaker et al. (2001)).
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Table 3: The different Type IIa CRM detection algorithms: working principles,
inputs and parameters

Algorithm Input Parameters Principle

Module-
Searcher
(Aerts et al.,
2003b, 2004)

(i) database
of PWMs; (ii)
sequences of
co-regulated
genes

(i) maximum CRM
length; (ii) maximum
number of PWMs;
(iii) penalization

identifies PWM combinations with
maximum sum of scores in the given
set of genes; comparative genomics:
looks in conserved non-coding re-
gions

CREME
(Sharan
et al., 2003,
2004)

(i) database of
PWMs; (ii) pro-
moter sequences
of a (large)
set of (loosely)
co-regulated
human genes
(and orthologous
sequences in the
mouse and rat
genome)

(i) maximum CRM
length; (ii) maximum
number of PWMs;
(iii) threshold for
individual motif hits

multistep algorithm: (i) select only
single motifs that are overrepre-
sented (compared to a background
set of sequences); (ii) filter simi-
lar PWMs (by overlap in predicted
binding sites); (iii) hashing algo-
rithm to go through all combina-
tions of PWMs and calculate their
combined significance (compared to
the expected frequency based on the
occurrences of their component mo-
tifs); (iv) filter similar CRMs

MARS-
MOTIF (Das
et al., 2004)

(i) microarray ex-
pression data; (ii)
set of candidate
motifs

number of maximum
interactions allowed
(corresponds to the
size of CRMs)

model microarray gene expression as
a function of motif content (PWM
score), including combinations of
motifs using multivariate adaptive
regression splines

ModuleMiner (i) database of
PWMs; (ii) set
of co-regulated
genes

none similar to ModuleSearcher, but iden-
tifies the CRMs that are the most
discriminative for the given set of
co-regulated genes, compared to the
rest of the genome; see study 2 in
this work

Except for the in vitro validation of ModuleSearcher (in combination with
ModuleScanner, study 1 in this work) and the extensive in silico validation of
ModuleMiner (study 2 in this work), these methods have only been validated
to a limited extent (table 4).

Table 4: The different Type IIa CRM detection algorithms: validation, comments
and availability.

Algorithm Validation Comments Availability

Module-
Searcher
(Aerts et al.,
2003b, 2004)

(i) in silico: human cell cycle, validated
using Gene Ontology; (ii) in vitro: differ-
ential regulation in HL-60 differentiation;
see study 1 in this work

- (i) avail-
able on
request; (ii)
integrated
in Toucan
(Aerts et al.,
2003a, 2005)

CREME
(Sharan
et al., 2003,
2004)

(i) cell cycle data, validated using corre-
lation in microarray data; (ii) stress re-
sponse data, validated using Gene Ontol-
ogy

(i) only 1.5 kb 5’ of
TSS is tested; (ii)
starts with about 500
loosely co-regulated
genes

available as
an online
tool

MARS-
MOTIF (Das
et al., 2004)

(i) simulated data; (ii) yeast cell-
cycle, compared to REDUCE (Busse-
maker et al., 2001); (iii) application
to tissue-specific expression modeling
(Smith et al., 2006): for 56 tissues (GNF
Symatlas), 500 positive (tissue-specific)
and negative genes were selected and
MARSMOTIF was used to build a clas-
sifier; significant performance was ob-
served for 45 tissues, although the errors
were still large

(i) mostly finds bi-
nary interactions; (ii)
more focussed on find-
ing transcription fac-
tors working coopera-
tively than on the de-
tection of CRMs

(i) software
available
after licence
agreement



4. Computational cis-regulatory module detection 13

Table 4: continuation

Algorithm Validation Comments Availability

ModuleMiner (i) smooth muscle genes; (ii) compared to
other algorithms; (iii) application to mi-
croarray clusters (tissue-specific expres-
sion) and developmental gene sets; see
study 2 in this work

- (i) online
tool; (ii)
stand-alone
version avail-
able upon
request

Type IIb methods

The different Type IIb CRM detection methods are summarized in tables 5 and
6. These methods can be viewed as extensions of approaches detecting single
motifs (see Tompa et al. (2005) and references therein for an overview of motif
detection methods), aiming to overcome the limitations of these methods by
incorporating cooperativity. Often these methods are based on multiple com-
ponent models, where the singular motifs and their combination are optimized
simultaneously or iteratively (table 5). Two of these methods incorporate com-
parative genomics: PRF-sampler (Grad et al., 2004) (Drosophila melanogaster
and Drosophila pseudoobscura) and the Gibbs Module Sampler (Thompson
et al., 2004). This last algorithm extends the Gibbs sampling approach for
single motif detection to combinations of motifs and to motifs conserved in two
species.

Table 5: The different Type IIb CRM detection algorithms: working principles,
inputs and parameters

Algorithm Input Parameters Principle

CO-Bind
(GuhaThakurta
and Stormo,
2001)

(i) set of co-
regulated genes
and their se-
quences; (ii) set
of background
sequences

(i) maximum distance
between binding sites;
(ii) algorithm parame-
ters: step-size and de-
cay factor

Gibbs sampling strategy and neural
network (perceptron) to find PWMs
for two sets of similar binding sites
close together

PFR-
Sampler
(Grad et al.,
2004)

set of co-
regulated genes

(i) number of initial
hits (default equal to
the number of co-
regulated genes); (ii)
algorithm parameters

a set of PFRs (phylogenetically
footprinted non-coding regions) is
collected by aligning two genomes
(Drosophila melanogaster and
Drosophila pseudoobscura) and next
selecting regions of sufficient se-
quence conservation (60 % in 100
base pairs) and sufficient local
sequence conservation (5th order
hidden Markov model); algorithm:
simulated annealing, using sum of
PFR-Searcher scores

Kreiman
(2004)

(i) set of co-
regulated genes
(and their puta-
tive regulatory
sequences); (ii)
putative regula-
tory sequences of
all genes in the
genome

(i) maximum distance
between adjacent mo-
tif occurrences; (ii)
maximum overlap be-
tween binding sites;
(iii) minimum number
of genes with a CRM;
(iv) p-value cutoff

exhaustively tries all combinations
of up to 4 PWMs; ensures that the
co-occurring motifs are sparsely dis-
tributed throughout the genome
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Table 5: continuation

Algorithm Input Parameters Principle

CisModule
Zhou and
Wong (2004)

sequences of a set
of co-regulated
genes

(i) number of PWMs
and (ii) module length

(generative) hierarchical mixture
model, consisting of 2 levels: (i)
CRM vs. background and (ii)
(within CRM) transcription factor
binding sites vs. background; it-
erative algorithm consisting of 2
steps (similar to Gibbs sampling):
(i) given CRM and transcription
factor binding site positions, es-
timate parameters, and (ii) given
parameters, estimate (sample) CRM
and transcription factor binding site
positions

Gibbs Mod-
ule Sampler
Thompson
et al. (2004)

set of orthologous
sequences of a set
of co-regulated
genes

(i) maximum num-
ber of motifs; (ii)
maximum distance
between motifs (hard-
coded to 100 base
pairs)

Gibbs motif sampler extended to (i)
find conserved motifs (sampling over
aligned pairs of sites) and (ii) find
CRMs as combinations of motifs (in-
cluding neighbor interactions)

EMCMODULE
(Gupta and
Liu, 2005)

(i) putative regu-
latory sequences
of a set of co-
regulated genes;
(ii) starting set of
PWMs (optional)

(i) prior probability
distribution of bind-
ing site occurrence;
(ii) distribution of dis-
tance between motif
sites (truncated geo-
metric distribution)

statistical model to describe CRM
structure (hidden Markov model)
and an evolutionary Monte Carlo
motif screening strategy (similar to
a genetic algorithm)

Segal and
Sharan
(2005)

sequence data
of a set of co-
regulated genes
(and a negative
set)

(i) window size; (ii)
window step size

three-component model: (i) motif
model (PWMs), (ii) module model
(CRMs as weighed PWM combina-
tions; models the probability that
a sequence window contains a CRM
given the binding site occurrences of
the motifs in it) and (iii) regulation
model (probabilities that the given
positive and negative genes are reg-
ulated by the CRM); all three mod-
els are logistic functions, optimized
by an expectation-maximization al-
gorithm

The performance of these methods is relatively limited (table 6), in part
because motif detection is a complex and unresolved problem (Tompa et al.,
2005). In this work (study 2), we compare the performance of our novel Type
IIa algorithm ModuleMiner to several other Type IIa and Type IIb CRM de-
tection algorithms, confirming this limited performance of the Type IIb algo-
rithms. Therefore, and because we believe the emergence of the protein-binding
microarray technology (Mukherjee et al., 2004) will make high quality PWMs
available for most transcription factors in the near future, we believe that Type
IIa algorithms will prove to be more useful for the annotation of regulatory re-
gions in the human genome.

Table 6: The different Type IIb CRM detection algorithms: validation, comments
and availability.

Algorithm Validation Comments Availability

CO-Bind
(GuhaThakurta
and Stormo,
2001)

(i) synthetic data and (ii) 4 yeast sets
(promoters selected for sharing known
binding sites): in three cases, both pat-
terns could be identified

only combinations of
up to two factors

downloadable
executable
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Table 6: continuation

Algorithm Validation Comments Availability

PFR-
Sampler
(Grad et al.,
2004)

set of co-regulated genes centred around
10 Drosophila blastoderm genes that are
known to share transcription factor bind-
ing sites, leave-one-out cross-validation

- C-code is
download-
able (after
licence agree-
ment)

Kreiman
(2004)

(i) random sets of genes (negative con-
trol); (ii) yeast cell cycle; (iii) Drosophila
pattern development: finds 3 motifs
(overlap with true motifs is not dis-
cussed); predicted CRMs (regions) corre-
spond to known CRMS; (iv) human mus-
cle regulatory regions: finds the three
correct PWMs; predicted CRMs (re-
gions) correspond quite well with known
regulatory regions

- (i) source
code is avail-
able upon
request

CisModule
Zhou and
Wong (2004)

(i) artificial sequences, (ii) 3 cases of ho-
motypic clustering in Drosophila: sen-
sitivity (based on transcription factor
binding sites discovered) was 56 %, but
number of sites was not that small; and
in all three cases, the correct PWM
was found; (iii) (human) muscle-specific
regulatory regions: 4 PWMs were cor-
rectly identified, sensitivity (based on
transcription factor binding site discov-
ery) was 88 %; an analysis was added
checking sensitivity to added negative se-
quences: in 29 positive and 40 negative
sequences, 54 % of detected CRMs were
in the positive sequences

- available on-
line

Gibbs Mod-
ule Sampler
Thompson
et al. (2004)

(i) skeletal muscle: 4 of 5 motifs were
correctly identified; 17 of 20 CRMs were
correctly located in 3 kb sequences (50
% overlap); transcription factor binding
sites: sensitivity: 69 %, false positive
rate: about 35 %; (ii) smaller liver case-
study: only HNF1 was detected; (iii)
comparison to COMET: roughly similar
performance, showing that the addition
of comparative genomics can offset the
extra difficulty of modeling the PWMs

- none stated

EMCMODULE
(Gupta and
Liu, 2005)

(i) bacillus subtilis; (ii) Drosophila early
development: PWMs were correctly iden-
tified for 4 of the 5 factors; compared
to Gibbs module sampler and CisModule:
recovered none of the known motifs; (iii)
human skeletal muscle: recovered 3 of the
5 motifs; when using JASPAR (Sandelin
et al., 2004) as starting motifs: recovered
4 of the 5 motifs

can work with a start-
ing set of PWMs (al-
though these need to
be selected carefully)

available on-
line

Segal and
Sharan
(2005)

(i) simulated data; (ii) yeast data (ChIP-
chip, genes sets selected for sharing bind-
ing sites for 2 factors): in 11 of 25 sets,
CRMs were identified; 7 of 11 PWMs
were correct; (iii) human: CRM predic-
tions done on all 381 Gene Ontology cat-
egories: 83 CRMs were identified in 71
Gene Ontology categories; of 203 motifs,
54 correspond to known motifs

assigns a weight to
PWMs

none stated

4.3 Type III CRM detection methods

The properties of the different Type III CRM detection methods are summa-
rized in tables 7 and 8. In general, these methods require a database of PWMs
and a genomic sequence as input. We can subdivide these methods into early
approaches (Argos and TraFac) that delivered proof-of-principle but are not
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aimed at detecting CRMs genome wide, and late approaches (PreMod and
Enhancer Element Locator) that aim to make genome-wide predictions. The
Regulatory Potential method does not strictly aim to detect CRMs, but calcu-
lates the regulatory potential as a function of genomic position, based on two-
or three-way alignments.

Table 7: The different Type III CRM detection algorithms: working principles,
inputs and parameters

Algorithm Input Parameters Principle

Argos (Ra-
jewsky et al.,
2002)

(i) genomic
sequence; (ii)
database of
PWMs

(i) window size; (ii)
window step size

looks for overrepresented motifs is
a sequence, and combines 5 differ-
ent non-overlapping motifs into one
score

TraFaC
(Jegga et al.,
2002)

(i) two ortholo-
gous sequences;
(ii) PWM library

none looks for clusters of conserved bind-
ing sites in one sequence

Regulatory
Potential
(Elnitski
et al., 2003;
Kolbe et al.,
2004)

human-mouse(-
rat) alignments

none, although many
hard coded choices are
made

collapses alignment alphabet to
fewer symbols and uses a higher or-
der hidden Markov model (trained
on positive vs. negative sequences)

PreMod
(Blanchette
et al., 2006)

(i) human-mouse-
rat whole genome
alignments; (ii)
database of
PWMs

(i) maximum length
of CRMs; (ii) score/p-
value thresholds for
transcription factor
binding sites and
CRM detection

search for statistically significant
clusters of (phylogenetically con-
served) binding sites for 1-5 tran-
scription factors (PWMs); homo-
typic clustering is extensively used

EEL (Hal-
likas et al.,
2006)

(i) 2 homologous
DNA sequences;
(ii) database of
PWMs

4 parameters that
weigh different as-
pects of the alignment
score (can be calcu-
lated based on the full
genome)

aligns sequences in the transcription
factor binding site domain

These methods are more general than the Type I or Type II CRM detec-
tion methods: the latter aim to detect CRMs with a specific function, while
Type III methods focus on the detection of CRMs as homotypic and/or het-
erotypic clusters of binding sites for any combination of PWMs. Hence, these
Type III methods require no prior knowledge. However, as a consequence, the
performance is lower and no inference can be made about the function of the
predicted CRMs.

Table 8: The different Type III CRM detection algorithms: validation, comments
and availability.

Algorithm Validation Comments Availability

Argos (Ra-
jewsky et al.,
2002)

predictions over the full genome: false
negative rate estimated to be 50 %; one
prediction per 5 kb

first of its kind none stated

TraFaC
(Jegga et al.,
2002)

very specific case-studies leaves the detection
of the CRMs to the
interpretation of the
user

available as
an online
tool

Regulatory
Potential
(Elnitski
et al., 2003;
Kolbe et al.,
2004)

In King et al. (2005): applied to a class
of erythroid specific genes, including β-
globin: sensitivity: 60 %, specificity: 60
%

plots regulatory po-
tential as a function
of sequence position,
hence does not really
detect CRMs

available
as a UCSC
genome
browser
track
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Table 8: continuation

Algorithm Validation Comments Availability

PreMod
(Blanchette
et al., 2006)

(i) overlap with known CRMs; (ii) ChIP-
chip validation for ER and E2F4 binding
sites: low performance

- full genome
predictions
are available

EEL (Hal-
likas et al.,
2006)

validated as a Type I algorithm designed as a Type I
method, with Type III
potential

tool and
predictions
available for
download

5 Conclusions

Systems biology is a promising emerging field expected to complement the clas-
sical reductionist approach of the biologist. Microarrays expression profiling,
together with its analysis methods, are widely-used techniques that fit well in
this systems biology philosophy. Network-based methods can provide novel
insights into biological processes and diseases. Bioinformatics and systems bi-
ology methods have been developed to assist in the hunt for disease genes.
Although many of these systems biology methods have delivered solid proof-
of-principle, this field is still embryonal and at this moment the reductionist
approach maintains its prominent role in biological research.

Computational methods to detect cis-regulatory modules can be classified
into three main classes. Type I methods aim to detect CRMs based on known
examples. Type II methods aim to find similar CRMs in co-regulated genes.
Type III methods aim to detect CRMs as clusters of binding sites for any com-
bination of transcription factors. Type I methods have reached an advanced
stage and predictions can be made with reasonable sensitivity and specificity,
provided sufficient prior knowledge about the system under study is available.
Type II and Type III methods have shown proof-of-principle, but their per-
formance is still limited. Given the limited high-throughput possibilities to
experimentally annotate regulatory regions in the human genome, computa-
tion CRM detection remains an important area of research.
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Rationale and aims

In this work, we aim to (i) develop novel bioinformatics and systems biology
methods for cis-regulatory module detection and gene prioritization, and (ii)
apply bioinformatics, systems biology and statistics to tackle two biomedical
problems.

1 Development of novel systems biology methods

Study 1: Gene prioritization through genomic data fusion

The identification of key disease and pathway genes is an important endeavour
in current biomedical research. These genes are often selected by a two-step
process: in the first step, a set of candidate genes is defined by classical genetics
approaches or high-throughput systems biology techniques, while in the second
step, the key disease or pathway gene is selected from these candidate genes.
Computationally, this second step can be tackled by prioritizing (or ranking) a
set of candidate genes, using genome-wide data sources. As explained in section
3 in the introduction to this work, multiple methods have been developed
for computational gene prioritization. However, although a plethora of quasi
genome-wide databases are available, each of these methods uses only one or
two of these data sources.

Here, we aimed to develop a novel gene prioritization method able to inte-
grate data from multiple heterogeneous data sources. In addition, we aimed to
incorporate expert knowledge into the system and to make it highly modular.
Finally, we aimed to make the system publicly available and user-friendly.

We reasoned that the integration of data from multiple data sources might
significantly increase the performance of computational gene prioritization. In
addition, the ability to handle heterogeneous data (e.g. literature, microarray
gene expression data, structured annotation such as Gene Ontology) drasti-
cally increases the data sources available. The modularity of the system would
further add to this, making it easily extendible when novel data becomes avail-
able. The incorporation of expert knowledge by the user decreases the sensitiv-
ity to noise in high-throughput databases and allow approaching the problem
from specific (and possibly multiple) angles. Finally, a publicly available user-
friendly tool minimizes any thresholds for biomedical researchers in using the
method.
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We incorporate expert knowledge specifically under the form of a set of
training genes. These training genes are typically genes known to be involved
in the process or disease under study. The user can influence this set by main-
taining a specific confidence threshold in the selection of training genes, or
by focussing on specific subphenotypes or processes. In addition, for diseases
where no known genes are available, genes involved in related diseases or phe-
notypes can be selected. Our gene prioritization framework, Endeavour, is
based on similarities between the candidate genes and the training genes. In
this regard, our method can be considered a thorough extension of the BLAST
algorithm, where we not only consider sequence similarities, but also e.g. ex-
pression similarities, interaction similarities and similarities in literature about
the genes.

We validated Endeavour extensively in silico, in vitro and in vivo. The
in silico validation consisted of a large-scale leave-cross-validation as well as
specific case-studies prioritizing recently identified monogenic and complex dis-
ease genes. For the in vitro validation, we aimed to predict genes differentially
regulated in macrophage differentiation, combining a cis-regulatory module
detection method with Endeavour. Finally, an extensive in vivo validation of
a novel predicted DiGeorge syndrome gene was also an important aim of this
collaborative study, although this was not part of this doctoral thesis work.

Study 2: ModuleMiner: improved computational detection of
cis-regulatory modules. Different modes of gene regulation in
embryonic development and adult tissues?

Since the sequencing of the human genome, the annotation of functional ele-
ments has taken a decisive leap, most notably for protein-coding genes. How-
ever, transcriptional regulatory regions are lagging far behind in these large-
scale annotation efforts. Therefore, computational detection of regulatory re-
gions is an important area of research. The general aim of this work is to
improve computational methods to detect cis-regulatory modules.

Our classification of cis-regulatory module detection methods (section 4
in the introduction) showed that: (i) methods aiming to detect CRMs based
on a specific collection of position weight matrices for transcription factors
working cooperatively (Type I CRM detection methods) perform quite well,
yet for few systems these data are available; (ii) methods that look for similar
CRMs in co-regulated genes (Type IIa and IIb CRM detection methods) and
non-parametric methods to scan the complete genome for regulatory regions
(Type III CRM detection methods) have shown proof-of-principle, but may
not yet be usable for reliable large-scale regulatory region annotation; (iii)
Type III and Type IIb CRM detection methods aim to solve a problem that
is considerably more complex than that of Type IIa CRM detection methods.
For these reasons, we believe Type IIa CRM detection algorithms are the most
interesting area of research. Hence, the specific aim of this work is to develop
a novel Type IIa CRM detection method with an increased performance, and
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make this publicly available.
All existing CRM detection algorithms require a priori parameters about

the CRMs, such as the length (in base pairs) of the CRMs and the number of
PWMs involved (Tables 3 and 5 in the General introduction). We aimed to
develop a CRM detection algorithm that does not require these user param-
eters. In addition, we aimed to maximize specificity of the algorithm for the
given set of co-regulated genes.

We approach this maximization of specificity by basing our algorithm, Mod-
uleMiner, on a whole-genome optimization, effectively optimizing the “signal”
in the given co-regulated genes compared to all other genes in the genome.
This whole-genome optimization strategy also allows optimization over various
parameters, allowing us to eliminate all a priori parameters about the CRMs.

We assess the performance of ModuleMiner by direct comparison with other
state-of-the-art Type IIa and Type IIb CRM detection algorithms on bench-
mark data. In addition, the sensitivity of ModuleMiner to false positive genes
is assessed, as a low noise sensitivity is a prerequisite for application of the
algorithm to gene sets obtained from clustering of microarray data.

Finally, we use ModuleMiner on a large scale to make predictions regarding
CRMs directing expression in adult tissues and CRMs involved in embryonic
development. These two groups of CRM predictions are subsequently com-
pared, most notably regarding location preference.

2 Applications to cancer stratification and
understanding

In the second part of this work, we apply bioinformatics, systems biology and
statistical methods aiming to obtain a better understanding of two types of
cancer. Although the entities investigated and the methods applied are unre-
lated, the general aims are somewhat similar. Indeed, in both cases, we aim to
link properties of the cancer entities to clinicopathological parameters and to
gain a better understanding of the precise similarities and differences of related
cancer entities.

Study 3: T cell/histiocyte rich large B cell lymphoma shows
a tolerogenic host immune response: the lymphoma
microenvironment as a target for therapy

Many tumours contain additional cells apart from the clonal tumour cells that
are not outgrown by the malignant cells. Specifically in lymphoma, the impor-
tance of this tumour microenviroment has been underlined by two microarray
expression profiling studies showing that the microenvironment plays a role in
the profile of the lymphoma and in predicting the prognosis (Dave et al., 2004;
Monti et al., 2005). Aiming to elucidate the mechanisms by which this microen-
vironment can contribute to the prognosis, we used systems biology techniques
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to study two lymphoma entities with many similarities, but a prominently
different microenvironment and a clear difference in prognosis.

T cell/histiocyte rich B cell lymphoma (THRLBCL) is a rare variant of dif-
fuse large B cell lymphoma sharing many characteristics with a specific subtype
of Hodgkin’s disease: nodular lymphocyte predominant Hodgkin’s lymphoma
(NLPHL). In both cases, the malignant cells themselves constitute only a mi-
nority of the tumour cell mass, while the majority of tumour cell mass is taken
up by the microenvironment. In addition, the malignant cells of both lym-
phomas express pan B cell markers, show strong similarities to germinal center
B cells and share a number of chromosomal aberrations. In sharp contrast,
the prognosis of both lymphoma entities is clearly different: NLPHL is a very
indolent disorder, while THRLBCL is very aggressive.

We aim to gain more insight into the microenvironment of both lymphomas
and its link with clinicopathological parameters, and specifically into the pos-
sible involvement of the microenvironment in explaining the bad prognosis of
THRLBCL. In addition, we wish to study to what extent the differences be-
tween the NLPHL and THRLBCL microenvironment can be captured by a
very limited number of genes.

By microarray expression profiling, we study to what extent and in what
way the differences in cellular composition of the microenvironment in THRL-
BCL and NLPHL translate to differences in expression profiles. Secondly, by
careful study of the NLPHL and THRLBCL (microenvironment) expression
profiles, we hope to attain mechanistic hypotheses regarding the (putative)
involvement of the microenvironment in the bad prognosis of THRLBCL. In
addition, we correlate our expression profiles with other microarray experi-
ments related to the microenvironment in lymphoma, most particularly Monti
et al. (2005) and Dave et al. (2004). Finally, we investigate to what extent three
genes (selected from our microarray expression profiling experiment) can suffice
to classify additional in-house and external cases using real-time quantitative
RT-PCR.

Study 4: Polysomy 17 in breast cancer: clinicopathological
significance and impact on HER2 testing

Amplification of the gene HER2 (also called ERBB2 or neu), located on chro-
mosome 17 and encoding the human epidermal growth factor receptor 2 protein,
defines an important distinct subgroup of breast cancers associated with a bad
prognosis. However, focused HER2-targeted therapies such as trastuzumab
(Herceptin R©, Genentech), a monoclonal antibody targeting the extracellular
domain of the HER2 protein, have been developed that improve the prognosis
of these HER2 positive breast cancers, either alone or in combination therapy
(Vogel et al., 2002; Slamon et al., 2001). As a consequence, trastuzumab is now
a widely used agent in HER2 positive breast cancer.

For the determination of the HER2 status in breast cancer, a large variety
of techniques are available, measuring HER2 amplification status at the pro-
tein, mRNA or DNA level. Immunohistochemistry (IHC) to measure HER2
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protein levels is the most widely used technique. In this technique, HER2 pro-
tein expression is scored on a 0 to 3+ scale. A score 0 or 1+ is interpreted
as HER2 negative and a score 3+ as HER2 positive. A score 2+ should be
regarded as inconclusive or equivocal, indicating further molecular analysis is
required to determine the HER2 status in such cases. HER2 amplification sta-
tus (positive, negative or equivocal) can also be determined by fluorescence in
situ hybridisation (FISH), a highly sensitive technique to measure DNA copies
of the HER2 gene. However, because of its relatively high cost and require-
ment for specialized equipment, FISH analysis is not preferred for primary
HER2 status screening. It is at the moment unclear whether or not patients
with an equivocal HER2 status (either by IHC or by FISH) would benefit from
trastuzumab therapy.

Chromosome aneuploidy occurs often in cancer and reflects genetic insta-
bility. In relation to HER2 amplification in breast cancer, chromosome 17
aneuploidy plays an important yet unknown role. Indeed, tumour with an
increased chromosome 17 copy number will also have an increased number of
HER2 gene copies which might result in increased HER2 protein expression lev-
els. In addition, the impact of polysomy 17 on different HER2 testing methods
is currently unclear.

We aimed to elucidate the effect of polysomy 17 on HER2 testing methods,
and to investigate to what extent polysomy 17 breast cancers share biological
characteristics with breast cancers showing a true HER2 amplification.

For a series of 226 primary invasive breast carcinomas, we correlate results
of HER2 IHC with that of two different FISH assays: (i) one-probe FISH to
measure the absolute HER2 copy number and (ii) two-probe FISH to measure
the relative HER2 copy number (compared to the number of copies of chro-
mosome 17). In addition, we investigate the impact of polysomy 17 to the
results of these three HER2 status assays. We stratify the patient population
by HER2 status and polysomy 17 (HER2 amplified, polysomy 17 and HER2
normal), and we measure HER2 mRNA levels by real-time quantitative RT-
PCR in the different groups, aiming to gain quantitative insight into the effect
of HER2 gene amplification and polysomy 17 on the transcriptional levels of
the HER2 gene. Finally, a set of clinicopathological parameters, including sur-
vival, is correlated with this population stratification, with the aim to elucidate
the clinicopathological significance of polysomy 17 in relation to that of HER2
gene amplification.
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Study 1

Gene prioritization through
genomic data fusion

Contribution of the doctorandus: co-development of the data fusion method,
application to pathway data (prioritization of genes predicted to be differen-
tially regulated in HL-60 differentiation) and experimental validation of the
results.
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Gene prioritization through genomic
data fusion
Stein Aerts1,4,5, Diether Lambrechts2,5, Sunit Maity2,5, Peter Van Loo3–5, Bert Coessens4,5, Frederik De Smet2,
Leon-Charles Tranchevent4, Bart De Moor4, Peter Marynen3, Bassem Hassan1, Peter Carmeliet2 & Yves Moreau4

The identification of genes involved in health and disease 
remains a challenge. We describe a bioinformatics approach, 
together with a freely accessible, interactive and flexible 
software termed Endeavour, to prioritize candidate genes 
underlying biological processes or diseases, based on their 
similarity to known genes involved in these phenomena. Unlike 
previous approaches, ours generates distinct prioritizations 
for multiple heterogeneous data sources, which are then 
integrated, or fused, into a global ranking using order statistics. 
In addition, it offers the flexibility of including additional data 
sources. Validation of our approach revealed it was able to 
efficiently prioritize 627 genes in disease data sets and 76 
genes in biological pathway sets, identify candidates of 16 
mono- or polygenic diseases, and discover regulatory genes of 
myeloid differentiation. Furthermore, the approach identified 
a novel gene involved in craniofacial development from a 2-Mb 
chromosomal region, deleted in some patients with DiGeorge-
like birth defects. The approach described here offers an 
alternative integrative method for gene discovery.

With the advent of ’omics, identifying key candidates among the thou-
sands of genes in a genome that play a role in a disease phenotype or a 
complex biological process has paradoxically become one of the main 
hurdles in the field. Indeed, contrary to some early concerns in the 
community that a lack of sufficient global data would still be a limit-
ing factor1, it is precisely the opposite, a bounty of information that 
now poses a challenge to scientists. This has translated into a need for 
sophisticated tools to mine, integrate and prioritize massive amounts 
of information2,3.

Several gene prioritization methods have been developed4–10. Most 
of them determine, either directly or indirectly, the similarity between 
candidate genes and genes known to play a role in defined biological pro-
cesses or diseases. These methods offer several advantages but also pose 

a number of challenges. Indeed, even though multiple data sources are 
available, such as Gene Ontology (GO) annotations4–6,10, protein domain 
databases6,10, the published literature5,7, gene expression data5,7,10 and 
sequence information8–10, most of the available programs access only 
one or two of these databases, which each have their limitations. For 
instance, functional data sources (GO and literature) are incompletely 
annotated and biased toward better-studied genes8, whereas sequence 
databases have thus far been used only to produce general disease prob-
abilities8,9. Some of the existing tools access more than two databases, but 
do not provide an overall ranking that integrates the separate searches5,10. 
Several tools rank disease genes but only one of them prioritizes genes 
involved in biological pathways10, and none offers the combination of 
both. Thus far, only two prioritization tools5,10 are publicly available. 
Thus, there is still a need for improvement of gene prioritization.

Here, we report the development and characterization of a new gene 
prioritization method, and offer its freely accessible, interactive and flex-
ible software1. Compared to existing methods, ours provides additional 
opportunities for candidate gene prioritization: it accesses substantially 
more data sources and offers the flexibility to include new databases; it 
provides the user control over the selection of training genes and thereby 
takes advantage of the expertise of the user; it prioritizes both known 
and unknown genes, ranks genes involved in human diseases and bio-
logical processes, and it uses rigorous statistical methods to fuse all the 
individual rankings into an overall rank and probability.

RESULTS
Principles of prioritization used by Endeavour
Genes involved in the same disease or pathway often share annotations 
and other characteristics in multiple databases. Indeed, genes involved 
in the same disease share up to 80% of their annotations in the GO 
and InterPro databases6, whereas genes involved in a similar biological 
pathway often share a high degree of sequence similarity with other 
pathway members11. It is therefore reasonable to assume that this simi-
larity among genes is not restricted to their annotation or sequence 
alone, but is also true for their regulation and expression. We reasoned 
that a bioinformatics framework capable of comparing and integrat-
ing all available gene characteristics might be a powerful tool to rank 
unknown candidate ‘test’ genes according to their similarity with known 
‘training’ genes, and based on this notion, we developed Endeavour. 
Prioritization of genes using this algorithm involves three steps (Fig. 1). 
To validate its performance, we used several complementary strategies 
discussed below.

1Laboratory of Neurogenetics, Department of Human Genetics, 2The Center 
for Transgene Technology and Gene Therapy, 3Human Genome Laboratory, 
Department of Human Genetics, Flanders Interuniversity Institute for 
Biotechnology (VIB), University of Leuven, Herestraat 49, bus 602, 3000 
Leuven, Belgium. 4Bioinformatics Group, Department of Electrical Engineering 
(ESAT-SCD), University of Leuven, Belgium. 5These authors contributed equally 
to this work. Correspondence should be addressed to S.A.
(stein.aerts@med.kuleuven.be).

Published online 5 May 2006; doi:10.1038/nbt1203
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 

Select known
(training) genes

Data source

Assemble characteristics of the 
training sets for all data sources

Extract from each
data source information 
specific for known genes

A    B  C   D  E   F   G   H   I   J    KRepeat this
procedure
for all data

 sources (A→K)

Step 1

Training

Select candidate 
(test) genes

Step 2

A 

Test for similarity with 
characteristics of the training sets

K

A 

K

1 

n

Obtain rank (1→n) of each 
prioritization per data 

source (A→K) 

Step 3 A 

K

1 

n

1 

n

Fuse data by 
order statistics

Obtain one overall rank (1→n) 

Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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prioritizations are also shown.
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To minimize this variability and to increase the performance of rank-
ing, we integrated all individual prioritizations into a single overall 
rank by implementing an algorithm based on order statistics. With this
algorithm, the probability of finding a gene at all the observed posi-
tions is calculated and a single overall rank is obtained by ranking genes 
according to these probabilities. To evaluate the performance of this 
overall ranking, we calculated its AUC values, as described above for the 
individual data sources. The AUC scores were 86.6% and 89.9% for dis-
ease and pathway genes compared to 48.4% for randomly selected genes 
(Fig. 3a,b). The correct pathway gene ranked among the top 50% of test 
genes in 95% of the cases, or among the top 10% in 74% of the cases. 
The variability of the overall prioritization was substantially smaller 
than that of individual data sources (Supplementary Fig. 1), and each 

of the data sources contributed to the overall ranking (Supplementary 
Fig. 2 online). Our validation experiment thus results in biologically 
meaningful prioritizations.

Almost every data source but especially functionally annotated data-
bases are incompletely annotated. For instance, only 63% of the genes are 
currently annotated in the GO database. Consequently, existing methods 
using these data sources introduce an undesired bias toward better-studied
genes. Our approach should suffer less from these shortcomings as it also 
uses sequence-based sources containing information about known and 
unknown genes. In support of this, we found that the overall ranking of 
defector genes was not substantially influenced by the number of data 
sources if at least three sources with data annotations were available 
(Supplementary Fig. 3a online). In fact, even unknown genes lacking a 
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Figure 3  Cross-validation results. (a) Rank ROC curves obtained for the disease validation. (b) Rank ROC curves obtained for the pathway validation. In both 
figures, the control ROC curve (red line) was obtained after prioritization with randomly constructed training sets and by using all data sources. For all other 
ROC curves, disease or pathway-specific training sets were generated. The data sources used to construct every ROC curve are indicated on the figure.

Table 1  Prioritizations of recently identified monogenic disease genes
Rank position using the indicated data sources

Disease Gene Ensembl ID Publication date All Literature

Arrhythmia CACNA1C ENSG00000151067 October 2004 (ref. 34) 4 3

Congenital heart disease CRELD1 ENSG00000163703 April 2003 (ref. 35) 3 1

Cardiomyopathy 1 CAV3 ENSG00000182533 January 2004 (ref. 36) 2 1

Parkinson disease LRRK2 ENSG00000188906 November 2004 (ref. 37) 50 *

Charcot-Marie-Tooth disease DNM2 ENSG00000079805 March 2005 (ref. 38) 14 100

Amyotrophic lateral
sclerosis

DCTN1 ENSG00000135406 August 2004 (ref. 39) 27 97

Klippel-Trenaunay
disease

AGGF1
(also known as VG5Q)

ENSG00000164252 February 2004 (ref. 40) 3 39

Cardiomyopathy 2 ABCC9 ENSG00000069431 April 2004 (ref. 41) 1 51

Distal hereditary motor
neuropathy

BSCL2 ENSG00000168000 March 2004 (ref. 42) 15 62

Cornelia de Lange syndrome NIPBL ENSG00000164190 June 2004 (refs. 43,44) 9 75

Average rank 13 ± 5 48 ± 13

For all genes, a mutation was inherited in a mendelian fashion (or was shown to cause the disease phenotype). The name of the disease and disease-causing gene, the Ensembl 
ID and the publication date of the article reporting the gene mutation (month-year) are shown, together with the rank (out of 200 test genes) at which they were prioritized by 
Endeavour, using all data sources or using the pre-publication date literature source alone. The average rank (mean ± s.e.m.) for each prioritization is indicated. For LRRK2, no 
literature information was available. This has been indicated in the table by an asterisk (*).
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HUGO name and with very little information available could be ranked 
highly (Supplementary Fig. 3b). Thus, our method takes into account 
data sources with relevant information, while disregarding noninforma-
tive ones. This may be particularly advantageous for the prioritization 
of disease genes, as unknown genes are not readily considered as disease 
candidates when selected manually.

Endeavour does not rely on literature-derived data alone
For each OMIM gene used in the disease validation, a mutation causing 
the disease had previously been reported in a landmark study. Because 
the inclusion of these publications may artificially increase the relative 
contribution of the literature data source in the overall performance of 
this algorithm, we excluded, as a test, the entire literature database from 
the disease validation protocol. For the same reason, the GO, KEGG 
and literature data sources were excluded from the pathway validation. 
Even under such unrealistic conditions where entire data sources were 
not used, the overall performance of the algorithm was only negligibly 
affected: the performance dropped by only 6.1% for disease genes (from 
86.6% to 80.5%; Fig. 3a) and by only 2.3% for pathway genes (from 

89.9% to 87.6%; Fig. 3b). Thus, the diversity of data sources used in 
our approach enables meaningful prioritizations, even without the use 
of literature information.

Clearly, this caution is only of importance in the context of a valida-
tion. In a more realistic situation, when the precise function of a disease 
gene is not known yet, the literature could still provide valuable indirect 
information about other properties of a gene. In a study of ten mono-
genic diseases (see below), we mimicked this situation by using only 
‘rolled-back’ literature information, available one year before the land-
mark publication. Even then Endeavour provided a high rank for three 
genes (position 1, 1 and 3 out of 200 test genes, Table 1), illustrating that 
the literature contributes to the prioritization of yet undiscovered dis-
ease genes. For the seven other genes, use of the literature as the only data 
source was not very efficient, but inclusion of all the other data sources 
yielded a high rank (Table 1). Overall, even though the literature may 
provide valuable information, our method does not rely on literature as 
the only critical data source. But also, its performance is not restricted 
by the lack of available literature data, because of its ability to access and 
integrate multiple other data sources.

Table 2  Prioritizations of recently identified polygenic disease genes
Disease Gene Ensembl ID Publication date Rank

Atherosclerosis 1 TNFSF4 ENSG00000117586 April 2005 (ref. 45) 54

Crohn disease SLC22A4, SLC22A5 ENSG00000197208 May 2004 (ref. 46) 71

Parkinson disease GBA ENSG00000188906 November 2004 (47) 23

Rheumatoid arthritis PTPN22 ENSG00000134242 August 2004 (ref. 48) 11

Atherosclerosis 2 ALOX5AP ENSG00000132965 February 2004 (ref. 49) 29

Alzheimer disease UBQLN1 ENSG00000135018 March 2005 (ref. 50) 54

Average rank 40 ± 10

The nature of the genetic variation in these genes was in each case a polymorphism, which typically was inherited as a risk factor for the respective disease. The name of 
the complex disease in which these genes were identified, their gene name, Ensembl ID and the publication date when the disease gene was reported as a susceptibility 
gene are given, together with the rank (out of 200 test genes) at which they have been prioritized by all data sources with rolled-back literature. The relative contribution 
of these genetic variations as risk factors for disease susceptibility will become clearer once replication studies are performed. The average rank (mean ± s.e.m.) for each 
prioritization is indicated.
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Figure 4  In vitro functional validation of 
Endeavour. Results of real-time quantitative 
PCR measurements in differentiated versus 
undifferentiated HL-60 cells. Expression 
profiles of 4 out of 18 training genes (left), 
which were tested as a positive control, and 
20 target genes predicted by the cis-regulatory 
module model (center) are shown. Expression 
levels of SPP1 and NGKBIL2 differed more 
than threefold between differentiated and 
undifferentiated cells; expression levels for six 
genes could not be measured. The expression 
profiles of the 20 highest-ranking target genes 
after prioritization by Endeavour (right) are 
also shown. Expression levels of eight genes 
(SPP1, BCL6, PTPRB, MET, TNFRSF6, 
NFAT5, PET112L and EVI2B) differed more 
than threefold between differentiated and 
undifferentiated cells; four genes could not 
be measured. The fold difference is depicted 
on a logarithmic scale; error bars represent 
the s.e.m. The line indicates the threshold 
(threefold up- or downregulation).
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Use of disease-specific data sources
An important asset of Endeavour is that its framework was designed to 
allow the inclusion of additional data sources, such as disease-related 
features, in the prioritization strategy. We illustrate this for the priori-
tization of disease genes. On the basis of a number of selection criteria 
(e.g., protein length, phylogenetic conservation), Lopez-Bigas and Adie 
determined for every gene a ‘general’ disease probability, or its probabil-
ity as a disease candidate gene8,9. When integrating the Lopez-Bigas or 
Adie criteria in Endeavour as an additional data source, we found that 
its performance improved further (AUC scores increased by up to 5% 
regardless of the inclusion of literature sources). Likewise, microarray 
data specific for the process or disease under study can be included. Our 
approach thus allows the user to add, in a flexible and modular man-
ner, additional data sources, such as appropriate disease-specific data 
sources, to enhance its overall performance.

Prioritization of genes causing monogenic diseases
In the large-scale validation, 627 genes were automatically selected from 
the OMIM database, without taking their mono- or polygenic nature 
into account. We therefore assessed whether our approach could be used 
to prioritize genes that cause monogenic diseases. As experimentalists 
often prefer to select their own sets of training genes, instead of rely-
ing on automatically derived genes or characteristics, we selected ten 
monogenic diseases and constructed sets of training genes together with 
a biological expert (Table 1 and Supplementary Table 1). To simulate the 
real life situation, we deliberately chose recently identified disease-caus-
ing genes, and used rolled-back literature together with all other data 
sources. The set of test genes included the gene causing the monogenic 
disease, and 199 genes flanking its immediate chromosomal surround-
ings. The algorithm gave the ten monogenic disease–causing genes an 
average rank of 13 ± 5 out of 200 test genes (Table 1). When using a 
training set not related to the disease under study to prioritize the test 
sets as a negative control, the disease genes ranked randomly (position 
96 on average). As a further validation the algorithm was applied to a 
very large set of test genes (that is, all 1,048 genes from chromosome 3; 
Supplementary Notes and Supplementary Table 2 online).

This pseudo-prospective analysis, using rolled-back literature, reveals 
that expert-based construction of training sets may lead to high discov-
ery rates when hunting for monogenic disease genes in both small and 
large test sets.

Prioritization of genes underlying polygenic diseases
In many cases, human disease is not monogenic, but polygenic in nature. 
We therefore prioritized six genes, recently identified as polygenic dis-
ease genes, together with 199 chromosomal flanking genes (Table 2). 
The sets of training genes used for these prioritizations are explained 
in Supplementary Table 1. On average, the susceptibility genes ranked 
at position 40 ± 10, when using the rolled-back literature together with 
all the other data sources. As expected, the prioritization of polygenic 
disease candidate genes is a greater challenge than ranking monogenic 
disease genes. Nonetheless, the ranking was still specific, as the suscep-
tibility genes ranked at position 96 ± 10, when training sets for these 
disorders were randomly assigned to other test sets as a negative control. 
Thus, although the performance is lower than for monogenic diseases (as 
anticipated), susceptibility genes to polygenic diseases can be enriched 
by Endeavour’s prioritization.

Prioritization of regulatory pathway genes
To analyze whether Endeavour could also rank genes involved in a partic-
ular biological process, we combined computation with functional vali-
dation in vitro. First, using the previously characterized ModuleSearcher 
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Figure 5  Functional validation of Endeavour in zebrafish. (a) Part of 
chromosome 22, illustrating the hemizygous 3-Mb region deleted in many 
DGS patients and the atypical 2-Mb region, which is deleted in some 
(atypical) DGS patients. For clarity, only some of the 58 Ensembl-annotated 
genes within the 2-Mb region, and only TBX1 in the 3-Mb deleted region, are 
shown. It remains unknown whether any of the genes in the 2-Mb region play 
a role in pharyngeal arch development defects seen in DGS. (b) YPEL1 was 
prioritized among the 58 genes of the 2-Mb deleted region by Endeavour as 
the most likely candidate involved in pharyngeal arch development.
(c) Photo of a zebrafish, which has been used as a suitable model to study 
the role of YPEL1 in pharyngeal arch development. (d,e) Lateral view of the 
head in live embryos at 4 d after fertilization. The lower jaw is clearly visible 
in the control, whereas ypel1KD embryos show an underdeveloped lower 
jaw (mandibular arch; indicated by the red dotted line) and open mouth 
(indicated by the vertical line). (f,g) Ventral view of the pharyngeal arch 
cartilage using alcian blue stain at 3 d after fertilization. Black arrow depicts 
the mandibular arch; white arrow depicts hyoid arch. In ypel1KD embryos, the 
jaw arches were severely malformed with the mandibular arch often reduced 
in size. The pharyngeal arch cartilage also showed reduced or no staining.
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algorithm within TOUCAN12,13, we predicted a cis-regulatory module 
(CRM) in the regulatory regions of 18 genes, known to be upregulated 
during myeloid differentiation14. We then selected 100 putative target 
genes containing this CRM from the genome, and ordered them accord-
ing to their CRM score (see Supplementary Notes). These 100 genes 
were then prioritized with the algorithm, using the 18 genes involved 
in myelopoiesis as a training set. To investigate whether it enriched the 
number of true-positive target genes involved in myeloid differentiation, 
we induced differentiation of HL-60 cells in vitro and analyzed which of 
the 20 best ranking genes, before and after prioritization by Endeavour, 
were more than threefold up- or downregulated. Before prioritization, 
the expression of two genes (Fig. 4) was differentially regulated, whereas 
after prioritization up to eight genes were differentially regulated (P < 
0.05; Fig. 4). Importantly, several of these differentially regulated genes 
are implicated in myeloid function: SPP1, BCL6 and MET are known 
to be involved in myeloid differentiation15–17, whereas FRSF6, better 
known as the FAS inducer of apoptosis, is a suppressor of macrophage 
activation18. The possible involvement of PTPRB, NFAT5, PET112L and 
EVI2B in myeloid differentiation was, however, unknown. Our prioriti-
zation protocol can thus be used for gene discovery as well.

Functional validation of Endeavour in zebrafish
As a final and most stringent test, we validated our approach in an animal 
model in vivo. The DiGeorge syndrome (DGS) is a common congenital 
disorder, in which craniofacial dysmorphism and other defects result 
from abnormal development of the pharyngeal arches19,20. Many DGS 
patients typically have a 3-Mb hemizygous deletion in chromosome 22 
(del22q11)19,20. Genetic studies in mice and zebrafish have established 
Tbx1 as a key DGS disease candidate gene in this region21–24 (Fig. 5a). In 
atypical DGS cases, a 2-Mb region, downstream of del22q11 is deleted25, 
but it remains unknown which of the 58 Ensembl-annotated genes in 
this region plays a role in pharyngeal arch development. In this experi-
ment, we first assessed whether the algorithm would prioritize any of 
these genes as a possible regulator of pharyngeal arch development, and 
then analyzed whether this gene indeed affected this process in vivo.

We first tested, as a positive control, whether 
Endeavour would identify TBX1 as a DGS can-
didate when added to the list of 58 test genes. 
To avoid possible selection bias due to an overly 
restricted choice of training genes, we used 
various training sets according to their rela-
tionship with DGS, cardiovascular or cleft pal-
ate birth defects (typical DGS symptoms), or 
neural crest biology (neural crest cell anoma-
lies cause DGS-like symptoms; Supplementary 
Notes). When using these training sets, TBX1 
ranked first or second (Table 3). This prioriti-
zation was specific, as TBX1 was not identified 
as a DGS candidate gene when using train-
ing genes unrelated to DGS. We then used 
our approach to prioritize the 58 genes of the
2-Mb deleted region. When using various sets 
of DGS-related training genes, the top-ranking 
gene was always YPEL1 (Table 3 and Fig. 5b). 
Similar to the TBX1 simulation, use of a set of 
training genes, unrelated to DGS, confirmed 
that the prioritization was specific for DGS.

To assess the functional role of YPEL1 in vivo, 
we used the zebrafish model, which has been 
previously used as a suitable model to study 
pharyngeal arch development26 (Fig. 5c). Ypel1 

protein levels in zebrafish embryos were knocked down using a set of 
antisense morpholino oligonucleotides (morpholinos), each targeting 
different sequences of the ypel1 transcript and dose-dependently and 
specifically inhibiting ypel1 translation (not shown). The role of ypel1 
in pharyngeal arch morphogenesis was evaluated by phenotyping the 
development of its derivatives, that is, the jaws and other skeletal struc-
tures of the skull27. Ypel1 knockdown (ypel1KD) embryos displayed vari-
ous craniofacial defects. In particular, they exhibited an underdeveloped 
jaw, with the most severely affected embryos displaying an open-mouth 
phenotype suggestive of craniofacial dysmorphism (Fig. 5d,e). Ypel1KD 
embryos also displayed defects in pharyngeal arch cartilage formation, 
ranging from an overall disorganization to a complete loss of the jaw and 
pharyngeal arch cartilage. In some ypel1KD embryos, the mandibular 
arch was strongly reduced in size. Occasionally, no staining of cartilage 
could be detected at all (Fig. 5f,g). Ypel1KD embryos exhibited addi-
tional pharyngeal arch defects, which will be described in more detail 
elsewhere.

In summary, our method identified YPEL1 as a candidate DGS gene 
and in vivo experiments confirmed its role in pharyngeal arch develop-
ment. These data raise the intriguing question whether YPEL1 might be 
a novel disease candidate gene of atypical DGS in humans.

DISCUSSION
The number of publicly available databases containing information 
about human genes and proteins continues to grow. Here, we developed 
a method to integrate all this information and prioritize any set of genes 
based on their similarity to a set of reference genes. Such a prioritiza-
tion is not only useful for gene hunting in human diseases, but also for 
identifying members of biological processes.

Our approach is useful in several respects. First, it uses genes to 
retrieve information about a disease or biological pathway, instead of 
disease characteristics. Existing methods that use disease characteristics 
can only retrieve information from databases that use the same dis-
ease vocabulary4,5,7. By using genes, Endeavour accesses not only these 
vocabulary-based data sources, but also other data sources, storing

Table 3  Prioritization of YPEL1 by Endeavour
Training sets used to prioritize TBX1 or 
YPEL1 Rank assigned to YPEL1 Rank assigned to TBX1

DGS-related

DGS (14) 1* 1*

Cardiovascular birth defects (14) 3* 1*

Cleft palate birth defects (9) 2* 1*

Neural crest genes (14) 1* 2*

Average rank 1.75 ± 0.48 1.25 ± 0.25

DGS-unrelated

Atherosclerosis (24) 12 24

Parkinson disease (9) 31 15

Distal hereditary motoneuropathy (8) 13 41

Charcot-Marie-Tooth disease (17) 9 16

Alzheimer's disease (5) 21 14

Rheumatoid arthritis (8) 20 7

Inflammatory bowel disease (7) 7 24

Average rank 16 ± 3 20 ± 4

The set of test genes contained the 58 genes present in the 2-Mb atypical deletion region on chromosome 22q11 
(middle column) or, in addition, the TBX1 gene (right column). These test genes were prioritized by Endeavour for 
their similarity to the indicated set of training genes, which were related or unrelated to DGS. As shown, TBX1 and 
YPEL1 ranked among the first three test genes, indicating their high degree of similarity with the set of training 
genes (*, probability of P < 0.05 that the test and training genes had a similar profile). The number of training 
genes is indicated between brackets.
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information about a gene (e.g., derived from a microarray experiment) 
or a gene sequence (e.g., BLAST sequence similarity). Moreover, by using 
genes, the method is also suitable for gene prioritization in biological 
processes as well.

Second, compared to existing methods, which access only one or two 
data sources4–7, our method accesses many more data sources (cur-
rently up to 12). Importantly, consultation of each of the individual 
sources by Endeavour generates biologically relevant prioritizations. 
We developed an algorithm based on order statistics to fuse all these 
separate prioritizations into a single overall rank. This algorithm is able 
to handle genes with missing values, thereby minimizing the bias for 
known or well-characterized genes. This bias will decrease even further 
in the future, when new and better high-throughput data become avail-
able, and when the genome annotation and curation processes reach 
their finalization.

Third, the algorithm is publicly available as a software tool, built by 
bioinformaticians, but designed for experimentalists, helping them to 
focus readily on key biological questions. The only other available pri-
oritization tool for diseases, G2D, uses GO and literature data sources 
and is therefore restricted in making predictions about annotated or 
known genes5.

Fourth, the approach gives the user maximal control over the set of 
training and test genes. Biologists prefer the flexibility of interactively 
selecting their own set of genes over an automatic and noninteractive 
data-mining selection procedure.

We validated the method extensively, in a large-scale validation study 
of 703 disease and pathway genes, and in a number of case-specific 
analyses. The validation results were remarkably good: on average, the 
correct gene was ranked 10th out of 100 test genes—for monogenic 
diseases, the performance was even better. The algorithm was capa-
ble of prioritizing large test sets (up to 1,000 genes)—the upgrade of 
Endeavour into a package capable of prioritizing the entire genome 
would be an interesting perspective for the future. Functional validation 
studies in vitro further demonstrated that the method worked equally 
well for prioritization of pathway genes. Furthermore, in vivo studies 
in zebrafish revealed that YPEL1, a gene prioritized by Endeavour in a 
2-Mb chromosomal region deleted in patients with craniofacial defects, 
indeed regulates morphogenesis of the pharyngeal arches and their cra-
niofacial-derivative structures.

Lastly, the Endeavour software design is modular and allows the inclu-
sion of publicly available or proprietary data sources (e.g., disease-specific 
microarray experiments). We have illustrated and validated this possibil-
ity by including the general disease probability criteria of Lopez-Bigas9 
and Adie8.

In summary, we present a computational method for fast and interac-
tive gene prioritization that fuses genomic data regardless of its origin.

METHODS
Data sources. A more detailed description of the data sources is available as 
Supplementary Methods online. Briefly, for information retrieved from attri-
bute-based data sources (that is, Gene Ontology, EST expression, InterPro and 
KEGG), the algorithm uses a binomial statistic to select those attributes that are 
statistically overrepresented among the training genes, relative to their genome-
wide occurrence. Each overrepresented attribute receives a P-value pi that is 
corrected for multiple testing. For information retrieved from vector-based 
data sources (that is, literature, microarray expression data or cis-regulatory 
motif predictions), the algorithm constructs an average vector profile of the 
training set. The literature profile is based on indexed abstracts and contains 
inverse document frequencies for each term of a GO-based vocabulary28; the 
expression profile contains expression ratios; the motif profile contains scores of 
TRANSFAC position weight matrices, obtained by scanning promoter sequences 
of the training genes that are conserved with their respective mouse orthologous 

sequences. To rank a set of test genes, attribute-based data are scored by Fisher’s 
omnibus meta-analysis (Σ-2logpi), generating a new P-value from a χ2-distri-
bution. Vector-based data are scored by Pearson correlation between the test 
vector and the training average. The data in the BLAST, BIND and cis-regulatory 
module (CRM) databases are neither vector- nor attribute-based. For BLAST, 
the similarity score between a test gene and the training set is the lowest e-value 
obtained from a BLAST against an ad hoc indexed database consisting of the 
protein sequences of the training genes. For BIND (Biomolecular Interaction 
Network Database)29, the similarity score is calculated as the overlap between all 
protein-protein interaction partners of the training set and those of the test gene. 
Lastly, for CRM data, the best combination of five clustered transcription fac-
tor binding sites—in all human-mouse conserved noncoding sequences (up to 
10 kb upstream of transcription start site) of the training genes—is determined 
using a genetic algorithm12,30. The similarity of this trained model to a test gene 
is determined by scoring this motif combination on the conserved noncoding 
sequences of the test gene.

Order statistics. The rankings from the separate data sources are combined using 
order statistics. A Q statistic is calculated from all rank ratios using the joint 
cumulative distribution of an N-dimensional order statistic as previously done 
by Stuart et al.31

They propose the following recursive formula to compute the above integral:

where ri is the rank ratio for data source i, N is the number of data sources used, 
and r0 = 0. However, two problems arose when we tried to use this formula. First, 
we noticed that this formula is highly inefficient for moderate values of N, and 
even intractable for N > 12 because its complexity is O(N!). We therefore imple-
mented a much faster alternative formula with complexity O(N2):

with Q(r1,r2,...,rN) = N!VN, V0 = 1, and ri is the rank ratio for data source i.
Second, we noticed that the Q statistics calculated by (1) are not uniformly 

distributed under the null hypothesis and can thus not directly be used as P-val-
ues. Therefore, we fitted a distribution for every possible number of ranks and 
used this distribution to calculate an approximate P-value. We found that the Q 
statistics for N ≤ 5 randomly and uniformly drawn rank-ratios are approximately 
distributed according to a beta distribution. For N > 5 the distributions can 
be modeled by a gamma distribution. The cumulative distribution function of 
these distributions provides us with a P-value for every Q statistic from the order 
statistics. Next to the original N rankings, we now have an (N + 1)th that is the 
combined rank of all separate ranks.

Cell culture, RNA isolation and RT-PCR. HL-60 cells were grown in RPMI 1640, 
supplemented with 10% FCS. Differentiation was induced by 10 nM phorbol 12-
myristate 13-acetate (PMA), when cells were grown to a density of 7 × 105/ml. 
Before induction and 24 h after induction, cells were harvested by centrifugation 
and RNA was isolated using the trizol reagent (Invitrogen), and subsequently 
treated with Turbo DNA-free DNase (Ambion). First-strand cDNA was synthe-
sized using Superscript II reverse transcriptase (Invitrogen). Real-time quantita-
tive PCR was performed using the qPCR core kit for SYBR green (Eurogentec), 
on an ABI PRISM 7700 SDS (Applied BioSystems). The mRNA levels were nor-
malized to the geometric average of four different housekeeping genes: ACTB, 
GAPDH, UBC and HPRT1. Numbers of differentially expressed genes before and 
after prioritization were compared with a chi-square test.
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Zebrafish care and embryo manipulations. Wild-type zebrafish (Danio rerio) 
of the AB strain were maintained under standard laboratory conditions32. 
Morpholino oligonucleotides (Gene Tools) were injected into one- to four-cell-
stage embryos27. Alcian blue cartilage staining was carried out as previously 
described33. All animal studies were reviewed and approved by the institutional 
animal care and use committee for Medical Ethics and Clinical Research of the 
University of Leuven.

Software availability. Endeavour is freely available for academic use as a Java 
application at http://www.esat.kuleuven.be/endeavour.

Note: Supplementary information is available on the Nature Biotechnology website.
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Abstract  

We present MODULEMINER, a novel algorithm for computationally detecting cis-

regulatory modules (CRMs) in a set of co-expressed genes. MODULEMINER 

outperforms other methods for CRM detection on benchmark data and successfully 

detects CRMs in tissue-specific microarray clusters and in embryonic development 

gene sets. Interestingly, CRM predictions for differentiated tissues show a strong 

enrichment close to the transcription start site, while CRM predictions for embryonic 

development gene sets are depleted in this region. 

 

 

 

 

List of abbreviations  

AUC: area under the curve 

CNS: conserved non-coding sequence 

CRM: cis-regulatory module 

GO: Gene Ontology 

LOOCV: leave-one-out cross-validation 

PWM: position weight matrix 

ROC: receiver operator characteristic 

TFBS: transcription factor binding site 

TRGM: transcriptional regulatory global model 

TRM: transcriptional regulatory model 

TSS: transcription start site 
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Background  

The identification and functional annotation of transcriptional regulatory sequences in 

the human genome is lagging far behind the rapidly increasing knowledge of protein-

coding genes. These transcriptional regulatory sequences are often build up in a 

modular fashion and exert their function in cis through the concerted binding of 

multiple transcription factors (and co-factors), resulting in the formation of protein 

complexes that interact with RNA polymerase II [1,2]. These sequences are called cis-

regulatory modules (CRMs). In theory, these CRMs can be detected by the presence 

of multiple transcription factor binding sites. However, in practice, the reliable 

detection of functional transcription factor binding sites is difficult and results in 

many false positives, partly because these binding sites are too short and too 

degenerate [3]. Hence, the computational detection of functional regulatory sequences 

in the human genome remains a formidable challenge. 

Multiple method have been developed that aim to computationally detect regulatory 

sequences [4-8]. Promising and validated results have been delivered mostly in model 

organisms with relatively compact genomes (e.g. Drosophila melanogaster) [9-11]. In 

the larger human genome, deep sequence conservation (e.g. up to zebrafish) or 

extreme sequence conservation (e.g. perfect conservation in mouse over 200 base 

pairs), irrespective of transcription factor binding site detection, remains the method 

of choice for approaches validating regulatory sequences in vitro or in vivo [12-14]. 

While these conservation approaches are quite successful in predicting which regions 

have a regulatory function, they provide no information on what expression pattern 

these regions produce and by which transcription factors they are targeted.  
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When several similar CRMs have been characterized, and the regulatory factors and 

binding sites have been elucidated, one can use this knowledge to find new examples 

of similar CRMs directing the transcription of other genes involved in the same 

process. A number of computational methods have been described that apply this 

approach [15-17]. These methods have been highly successful [10,11,18], but in 

practice, apart from in Drosophila embryonic development, the lack of available data 

often precludes the application of these approaches. 

When this knowledge is not available, the detection of tissue- or process-specific 

CRMs can be tackled by looking for recurring combinations of transcription factor 

binding sites in putative regulatory regions of a set of co-expressed genes. A few 

methods applying this approach have been developed [19-22]. However, in part 

because this is a more complex problem, these methods have only been applied on a 

limited scale and did not report many successful predictions. To our knowledge, only 

our ModuleSearcher method [20] has provided results subjected to experimental 

validation [23]. 

Here, we develop MODULEMINER, a novel algorithm to detect similar CRMs in a set 

of co-expressed genes, focussed on the human genome. MODULEMINER does not 

require prior knowledge of regulating transcription factors or annotated binding sites, 

but uses only a library of position weight matrices (PWMs). Contrary to existing 

algorithms that require a priori unknown CRM properties (such as the length of the 

CRMs or the number of binding sites) as input parameters, MODULEMINER is 

parameterless. In addition, MODULEMINER differs from existing similar approaches in 

that it implements a whole-genome optimization strategy to specifically look for 

signals that discriminate the given co-expressed genes from all other genes in the 

genome. By leave-one-out cross-validation on benchmark data, we show that 
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MODULEMINER outperforms other methods that computationally detect CRMs. 

Finally, we demonstrate that MODULEMINER can successfully detect similar CRMs in 

microarray clusters with a tissue specific expression profile, as well as in custom-

build gene sets related to specific embryonic developmental processes. In total, 

MODULEMINER predicted 257 CRMs near the genes studied, as well as an additional 

1400 CRM predictions resulting from full genome scans for new target genes. We 

further analyze these CRM predictions to elucidate differences between CRMs 

directing transcription in differentiated tissues and CRMs directing transcription 

during embryonic development. 
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Results 

MODULEMINER: detection of similar cis-regulatory modules in a set of co-

expressed genes 

We developed MODULEMINER, a novel algorithm to detect similar CRMs in a set of 

co-expressed genes. MODULEMINER models similar CRMs as a combination of motifs 

(represented by PWMs), as in [20]. These models are called “transcriptional 

regulatory models” (TRMs) [24]. We postulate that a good TRM is able to retrieve 

targets in the genome. Therefore, we express the fitness of a TRM in terms of its 

target gene recovery and we select the TRM that has maximum specificity for the 

given set of co-expressed genes, by a whole-genome optimization strategy. To 

determine the fitness of a TRM, each gene’s search space is first scored with the 

TRM, where we define a gene’s search space as the collection of all conserved non-

coding sequences within 10 kb 5’ of the transcription start site (see Materials and 

methods). These scores are then used to rank all genes in the genome. Finally, the 

ranks of the given co-expressed genes are determined, and the probability of 

observing this collection of ranks by chance is calculated using order statistics (see 

Materials and methods). If a large part of the co-expressed genes are ranked high, the 

order statistic is highly significant, and hence the TRM is considered to have a high 

fitness for modelling similar cis-regulatory modules regulating these genes. 

MODULEMINER searches the TRM with the most significant order statistic (i.e. the 

best fitness) using a genetic algorithm (detailed in Materials and methods). 

We introduce MODULEMINER and its rigorous validation procedure by an example 

case study. We constructed a high quality set of 12 smooth muscle marker genes [25], 

and performed leave-one-out cross-validation (LOOCV). In each validation run, one 
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gene was left out and MODULEMINER constructed a TRM using the remaining 11 

genes. This TRM was then used to rank all genes in the genome and the position of 

the left-out gene was determined. The set of 12 ranks obtained in this way was used to 

calculate sensitivity/specificity pairs, which were subsequently plotted on a receiver 

operator characteristic (ROC) curve. We used the area under this curve (AUC) as a 

measure of MODULEMINER performance on this set of co-expressed genes. 

We repeated the LOOCV for three sets of candidate transcription factor binding sites 

(TFBSs): (i) predicted binding sites in human-mouse conserved non-coding sequences 

(CNSs), obtained by aligning 10 kb 5’ of all human-mouse orthologs and selecting 

regions of at least 75 % identity over a minimum of 100 base pairs; (ii) binding sites 

from (i), retaining only the PWMs for which in both the human and mouse CNS an 

instance is predicted (we follow the nomenclature in [10] and call these sites 

preserved sites); (iii) as in (ii), but here the CNSs are obtained by aligning 10 kb 5’ of 

all human genes to 110 kb 5’ + 100 kb 3’ of the transcription start site of their mouse 

orthologs (and hence correcting for possible differences in transcription start site 

annotation) (Table 1). The resulting ROC curves are shown in Figure 1A. In all three 

cases, the AUC values are significantly above 50 % (the theoretical value obtained if 

the left-out genes would be ranked randomly), indicating that the TRMs obtained are 

sensitive and specific in predicting cis-regulatory modules near the left-out genes. 

We observed that similar TRMs have a similar fitness and a similar order statistic. 

The TRM that is selected by MODULEMINER (the one that has the lowest order 

statistic) is surrounded by similar TRMs with order statistics that are only slightly 

larger. The selection of one TRM out of these similar TRMs is inherently arbitrary 

and depends only marginally on the true regulatory signals. To make MODULEMINER 

more robust to this “noise”, we cluster the top-scoring TRMs and select the most 
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prominent cluster, instead of the single optimal TRM. We call this cluster of TRMs a 

“transcriptional regulatory global model” (TRGM). The results of a LOOCV when 

using these TRGMs (Figure 1B) show that this indeed has a positive effect on 

MODULEMINER performance, as the AUCs increased by 6 % on average. 

Furthermore, these TRGMs provide additional information compared to singular 

TRMs, since they allow an estimate of the relative importance of each PWM 

involved, as discussed below. 

Table 1. Genome-wide databases of candidate transcription factor binding sites 

 

When comparing the performance of MODULEMINER (using TRGMs) on the three 

sets of candidate binding sites, a large difference between selecting all detected 

binding sites (set 1, AUC value of 84.6 %) and restricting to preserved sites only (set 

2, AUC value of 92.8 %) is apparent. Correcting for transcription start site (TSS) 

differences in human and mouse (set 3, AUC value of 92.5 %) did not increase this 

performance further. Thus, for this high quality set of co-expressed genes, the 

preservation of binding sites is highly beneficial for efficient detection of cis-

regulatory modules. This strongly suggests that for this gene set, the trans-acting 

factors are conserved between human and mouse. 

 

Nr Database properties Nr genes 
Nr 

regions 

Nr binding 

sites 

1 human-mouse conserved regions, 10 kb 5' of TSS 8759 22582 1858800 

2 
(1) + limited to binding sites occurring both in the 

human and mouse CNS 
8759 22582 878338 

3 
(2) + correct for possible mouse TSS differences (add 

100 kb of mouse sequence 5' and 3') 
11653 35021 1316927 
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Figure 1. Performance of MODULEMINER on a set of smooth muscle marker genes, using the 

three different sets of candidate transcription factor binding sites. ROC curves are shown, 

representing results for leave-one-out cross-validations on the set of smooth muscle markers, (A) using 

singular transcriptional regulatory models (TRMs) and (B) using transcriptional regulatory global 

models (TRGMs). 
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We next applied the MODULEMINER algorithm to the full set of 12 smooth muscle 

marker genes, using the site preservation measure (set 2). The resulting TRGM 

identifies SRF, SMAD4, SP1 and ATF3 as the main transcription factors involved in 

the co-regulation of these genes (detailed MODULEMINER output is reported at our 

website). Importantly, MODULEMINER implicates SRF as the most important smooth 

muscle regulator, and suggests that smooth muscle specific regulation often entails 

two or more SRF binding sites, in agreement with literature [26]. 

To verify the added value of the resulting combination of PWMs over SRF alone, we 

manually generated a TRGM containing only PWMs for SRF and compared this to 

MODULEMINERs performance. When we applied this “SRF only” TRGM to rank the 

genome, we obtained an AUC of 79.9 %, significantly smaller than the 92.8 % AUC 

of MODULEMINER (obtained in an LOOCV setting).  

Sensitivity to noise 

To assess the performance of MODULEMINER as a function of the composition of the 

input set of co-expressed genes, we performed LOOCV on input sets that contain a 

varying percentage of genuinely co-regulated genes (“true positives”). As true 

positive genes, we selected the set of 10 smooth muscle markers that share similar cis-

regulatory modules that can be identified by MODULEMINER (these 10 genes all are 

ranked within the top 7 % of the genome by a LOOCV, as shown in Figure 1B). We 

approximated negative genes (genes that do not contain the smooth muscle cis-

regulatory module) by random genes. 

In a first analysis, we kept the number of true positive genes constant at 10, and we 

added a varying number of negative genes. The decrease in performance as a function 

of an increasing number of negative genes was surprisingly small (Figure 2). Even 

when only 10 of 50 genes contained the smooth muscle cis-regulatory module, 
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MODULEMINER was able to pick up this signal (the AUC was 85.2 %, and SRF and 

SP1 were still found as key factors). 

In a second analysis, we kept the total number of genes constant at 10, and we varied 

the percentage of negative genes. We now observed a steep decrease in 

MODULEMINER performance as a function of an increasing percentage of negative 

genes (Figure 2).  

Figure 2. Sensitivity of MODULEMINER’s performance to the quality of the input genes. The ratio 

of true positive genes (containing the smooth muscle CRM) to negative genes (approximated by 

random genes) was varied. Each time, a leave-one-out cross-validation was performed, an ROC curve 

was constructed, and the area under the curve was calculated. These AUCs were plotted as a function 

of the ratio negative genes/positive genes. As an AUC of 50 % signifies random ordering of the left-out 

genes (and hence indicates that no CRMs can be detected), this value was taken as the origin on the Y-

axis. Blue: the number of positive genes was kept constant at 10, and the number of negative genes was 

varied. Red: the total number of genes was kept constant at 10, and the ratio negative genes/positive 

genes was varied. 

 

We conclude from these experiments that MODULEMINER requires a critical mass of 

true positive genes for successful detection of similar cis-regulatory modules. 
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However, when this critical mass is present, MODULEMINER is highly robust to false 

positive genes.  

Comparison to other CRM detection algorithms 

We next compared MODULEMINER to other in silico approaches for CRM detection 

on benchmark data. From PAZAR [27], we selected all ‘boutiques’ containing 

annotated regulatory regions directing expression in a particular system: (i) M02, 

muscle; (ii) M03, liver; (iii) M08, ORegAnno Stat1 and (iv) M09, ORegAnno 

Erythroid. As a fifth benchmark set, we used the 12 smooth muscle genes described 

above. On each of these 5 sets, we compared the performance of MODULEMINER to 

that of 4 state-of-the-art publicly available algorithms to detect similar CRMs in co-

expressed genes: ModuleSearcher [28], CREME [19], CisModule [22] and 

EMCMODULE [29]. We also included the Clover algorithm [30], which looks for 

individual overrepresented transcription factor binding sites in putative regulatory 

sequences of a set of co-expressed genes. We note that our analysis does not focus 

specifically on the known enhancers, but in contrast, we consider all CNSs in the 

entire 10 kb 5’ of the TSS (which may or may not contain the known enhancer, as 

well as other sequences). This effectively mimics a real-life situation, where the exact 

location of the regulatory sequences is not known a priori. 

The CREME algorithm was unable to identify similar CRMs in any of the 5 

benchmark sets, most likely in part because of its focus on larger sets of more loosely 

co-expressed genes [19]. Using the remaining algorithms, we performed LOOCV on 

each of the 5 benchmark sets. For this LOOCV, we used each algorithm to train a 

TRM or TRGM using gene sets where one gene is left out (see Materials and methods 

for details). Hence, as training data, we used all CNSs in the 10 kb 5’ of the TSS of 

the benchmark set, except for the left-out gene. For CisModule and EMCMODULE, 
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the inputs were the sequences of the CNSs; for Clover, the inputs where the sequences 

of the CNSs as well as all TRANSFAC and JASPAR vertebrate PWMs; for 

ModuleSearcher, the inputs were the predicted binding sites within those CNSs, using 

all TRANSFAC and JASPAR vertebrate PWMs. The combination of PWMs that each 

algorithm provided as output was used to build a TRM or TRGM. We subsequently 

used the ModuleScanner algorithm to rank all genes in the genome based on the 

predicted TRM/TRGM, and we used the results to construct ROC curves. We used 

the site preservation measure (candidate TFBS set 2) for the MODULEMINER runs (as 

this was the set where we obtained the best results for the smooth muscle genes). 

Since the other algorithms do not use site preservation in the discovery step, we used 

candidate TFBS set 1 (without preservation) also in their genome ranking step. We 

also constructed random ROC curves based on genome ranking using random TRMs 

(see Materials and methods for details). On the OregAnno Erythroid benchmark set 

neither MODULEMINER nor any of the other algorithms seem to perform better than 

random (Figure 3A). As this is the smallest set, containing only 6 genes with human-

mouse CNSs, this is consistent with the results we obtained in the previous section, 

where we concluded that a critical number of co-regulated genes is required for CRM 

detection. In contrast, on each of the 4 other benchmark sets, MODULEMINER 

performs better than random TRMs, as do some of the other algorithms (Figure 3B-

E). Comparing the performance of all CRM detection algorithms, MODULEMINER 

seems to show the best performance in all 4 cases. Interestingly, only MODULEMINER 

can compete with “simple” transcription factor binding site overrepresentation in this 

setup, emulating a real-life situation where the regulatory sequences are not known. 

Indeed, only MODULEMINER outperforms Clover on four of the five benchmark sets.  
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Figure 3. Comparison to other CRM detection algorithms. (A-E) ROC curves for the LOOCV 

using MODULEMINER, ModuleSearcher, CisModule, EMCMODULE, Clover and random TRMs for 

each of the 5 benchmark sets: (A) ORegAnno Erythroid, (B) liver, (C) muscle, (D) ORegAnno Stat1 

and (E) smooth muscle. (F-I) ROC curves when using TFBS preservation (TFBS set 2) in the genome 

ranking step for all algorithms, on the 4 benchmark sets that performed above random: (F) liver, (G) 

muscle, (H) ORegAnno Stat1 and (I) smooth muscle. (J) MODULEMINER performance for the three 

TFBS sets on the muscle benchmark data.  
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On the fifth benchmark set (muscle), Clover and MODULEMINER seem to be closely 

matched, with the Clover method showing a steeper start of the ROC curve. 

The performance of the other CRM detection algorithms can be improved by using 

site preservation (TFBS set 2) in the genome ranking step (Figure 3F-I), although here 

as well, MODULEMINER outperforms all other CRM detection algorithms, suggesting 

that the TRMs predicted by MODULEMINER are more informative or more specific 

than those suggested by other methods. Candidate TFBS set 2 was not in all cases the 

optimal choice for MODULEMINER: on the muscle benchmark set, candidate TFBS set 

3 performed better (Figure 3J). 

We noticed the CRM predictions MODULEMINER made on the muscle, liver and 

ORegAnno Stat1 sets, correspond well with the known regulatory elements. The 

TRGMs MODULEMINER contructed contain PWMs for SRF, MEF2, Myf and MyoD 

(muscle), HNF1, HNF3, HNF4 and CEBP (liver) and STAT (ORegAnno Stat1), even 

though we used all CNSs in the 10 kb upstream region. In addition, the CRM 

predictions mostly overlap the true enhancer, when the real regulatory sequence was 

in our CNS collection. Indeed, for the muscle set, in 9 of the 11 cases where the 

known enhancer was in our CNS set, MODULEMINER was ably to identify this region. 

For the liver set, MODULEMINER identified 7 out of 8 regulatory elements (data not 

shown).  

Detection of cis-regulatory modules in microarray clusters 

Realizing that clustering of microarray data provides a rich source of large co-

expressed gene sets, where robustness to genes that are not co-regulated (“false 

positive genes”) is critical, our sensitivity to noise analysis above encouraged us to 

apply MODULEMINER to microarray clusters on a larger scale. The GNF SymAtlas 

[31] contains expression profiles of 140 human and mouse tissues. Nelander et al. 
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[32] obtained gene clusters by hierarchically clustering this dataset, followed by a 

Pearson’s correlation coefficient cut-off. From this clustering, we selected all clusters 

with at least 25 genes in our dataset (i.e. genes with at least one CNS within 10 kb 5’ 

of the TSS). This results in 10 clusters with sizes ranging from 26 to 214 genes. Large 

clusters were randomly divided in a training set of 50 genes, and a test set containing 

the remaining genes.  

As it was our goal here to identify similar cis-regulatory modules within a subset of 

the genes in each microarray cluster, we used a two-step procedure, first detecting 

which subset of genes potentially share cis-regulatory modules, and next detecting the 

actual cis-regulatory modules in their upstream regions (Figure 4A). The first step 

consisted of a five-fold cross-validation, where in each validation run, we used 

MODULEMINER to train a TRGM on four-fifth of the genes in a cluster, and next we 

determined which of the other one-fifth left-out genes were targets of the TRGM. If 

the total number of true target genes among left-out genes would not be significantly 

higher than random, we concluded that MODULEMINER is not able to detect similar 

CRMs within this cluster. If on the other hand there is a significant enrichment of 

these true target genes, we concluded that MODULEMINER is able to detect similar 

CRMs, and we use these high scoring genes in the second step. In this second step, 

MODULEMINER was applied to this focussed subcluster, identifying similar cis-

regulatory modules regulating these genes. As an extra validation, LOOCV was used 

to confirm the presence of similar cis-regulatory modules, as done previously on the 

smooth muscle and other benchmark sets.  

Application of this procedure to the microarray clusters described above resulted in 

successful cis-regulatory module detection in 9 of the 10 clusters (Table 2, Figure 

4B). In each case, this success was confirmed by a LOOCV on the selected subcluster  
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Figure 4. Application of MODULEMINER to microarray clusters. (A) The 2-step procedure used to 

detect similar cis-regulatory modules in a subset of genes within a given microarray cluster. In the first 

step, a five-fold cross-validation is performed, and the number of left-out genes considered as target 

genes is counted. If this number is significantly more than expected under a random distribution of the 

ranks, these genes are transferred to the second step. In this second step, MODULEMINER is used to 

model the similar cis-regulatory modules regulating the genes in this focused subcluster. (B) Results of 

the first step of the procedure in (A) for the 10 microarray clusters and the three different sets of 

candidate transcription factor binding sites. Significantly higher numbers of target genes among the 

left-out genes than randomly expected are depicted by an asterisk. Clusters 7 and 10 only contained 

sufficient genes (≥ 25) in transcription factor binding site set 3 and therefore are omitted for the other 

two sets. (C) Leave-one-out cross-validation results on the subclusters with a significant enrichment of 

target genes from (B). Each left-out gene was ranked using the TRGM obtained on the remaining 

genes. Next, sensitivity/specificity pairs where calculated for different detection thresholds, and these 

were used to construct ROC curves. The area under these ROC curves (AUC) was calculated and is 

depicted here. Colors: as in (B). (D) Example of a set of similar cis-regulatory modules identified by 

MODULEMINER. These results were obtained on the cardiac muscle genes by the procedure depicted in 

(A). Each horizontal line represents a human-mouse conserved non-coding sequence upstream of a 

gene within the cluster. The different colored boxes represent binding sites of different transcription 

factors. Detailed results, including descriptions of the genes shown, and the exact positions of the 

CNSs are available at [33]. 
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(all AUCs were significantly above 50 %, with an average AUC of 90.3 %, Figure 

4C). For the TRGMs obtained for clusters containing over 50 genes, the number of 

targets in the independent test set was determined. This was significantly higher than 

random in three of the five cases (Table 2). In total, we predicted 209 CRMs. These 

MODULEMINER predictions can be viewed in detail at our website. 

Table 2. Summary of MODULEMINER’s results for the 10 microarray clusters. 

Cluster Annotation 
TFBS 

set 

Nr target genes 

after cross-

validation      

(p-val) 

AUC on 

target 

genes 

Nr target genes 

in independent 

test set (p-val) 

Total nr 

of CRMs 

1 Protein synthesis 1 
10 / 50            

(p = 0.025) 
0.96 

14 / 123            

(p = 0.35) 
30 

2 
Oocyte / 

fertilized egg 
3 

10 / 50              

(p = 0.025) 
0.98 

30 / 164         

(p = 8.6 × 10
-4
) 

43 

3 Neural tissues 3 
10 / 50              

(p = 0.025) 
0.84 

15 / 122            

(p = 0.24) 
29 

4 Lymphocytes 3 
10 / 50              

(p = 0.025) 
0.87 

23 / 85              

(p = 7.0 × 10
-6
) 

36 

5 
Testis / sper-

matogenesis 
- - - - - 

6 Liver 3 
14 / 50              

(p = 2.9 × 10
-4
) 

0.93 
7 / 29           

(p = 0.022) 
23 

7 Mitochondrion 3 
9 / 31           

(p = 0.0026) 
0.87 - 12 

8 
Extracellular 

matrix 
2 

7 / 32                

(p = 0.036) 
0.92 - 10 

9 Cardiac muscle 3 
17 / 32              

(p = 6.6 × 10
-10

) 
0.95 - 16 

10 
Energy 

metabolism 
3 

7 / 26                

(p = 0.012) 
0.82 - 10 

 

TFBS: transcription factor binding site. TFBS sets: set 1: human-mouse CNSs, 10 kb 5’ of TSS; set 2: 

set 1 + binding site preservation; set 3: set 2 + correction for TSS differences. For clusters where 

multiple TFBS sets resulted in successful CRM detection, only the result showing the best cross-

validation performance is shown. Genes (in the cluster) that by cross-validation where ranked within 

the top 10 % of the genome where considered target genes of the TRGM. The total number of CRMs 

constitutes all successful CRM predictions near genes in the cluster. CRM predictions were considered 

successful if the TRGM score was sufficient to rank the target gene within the top 10 % of the genome. 

In some cases, multiple CRMs are found controlling the same target gene. 
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Detection of cis-regulatory modules in embryonic development gene sets 

In the previous section, we detected CRMs in microarray clusters expressed in 

different adult tissues. Next, we aimed to predict CRMs involved in embryonic 

development processes.  

We constructed 5 gene sets involved in specific embryonic development processes, 

based on literature (Table 3). Contrary to the previous section, where we aimed to 

detect similar CRMs in a subset of the genes in the microarray clusters (using a two-

step approach), here we can assume that the embryonic development gene set are 

more focussed, and hence we can directly apply MODULEMINER to these sets (as in 

our high quality smooth muscle gene set). We performed LOOCV, confirming that 

MODULEMINER was able to successfully detect similar CRMs in all five gene sets 

(Table 3).  

Table 3. Summary of MODULEMINER’s results for the 5 embryonic development gene sets. 

Embryonic development 

process 
TFBS set 

Nr target genes after leave-one-out 

cross-validation (p-val) 
AUC 

Primary heart field [34] 1 6 / 7 (p = 6.4 × 10
-6
) 0.92 

Secondary heart field [34] 1 6 / 9 (p = 6.4 × 10
-5
) 0.79 

Neural crest cells [35] 2 6 / 10 (p = 1.5 × 10
-4
) 0.86 

Eye development [36] 1 10 / 15 (p = 1.9 × 10
-7
) 0.79 

Limb development [37] 1 10 / 24 (p = 5.2 × 10
-5
) 0.77 

 

A key review or book used as a basis for construction of the development gene set is given in the first 

column. The genes in each set, as well as the detailed results can be viewed at our website [33]. TFBS: 

transcription factor binding site. TFBS sets: set 1: human-mouse CNSs, 10 kb 5’ of TSS; set 2: set 1 + 

binding site preservation; set 3: set 2 + correction for TSS differences. For clusters where multiple 

TFBS sets resulted in successful CRM detection, only the result showing the best cross-validation 

performance is shown. Genes (in the cluster) that by cross-validation where ranked within the top 10 % 

of the genome where considered target genes of the TRGM. 
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Characterization of the cis-regulatory modules 

The transcriptional regulatory global models that were predicted by MODULEMINER in 

each of the 10 microarray clusters and each of the 5 embryonic development gene sets 

are summarized in Tables 4 and 5. Apart from this TRGM, MODULEMINER also 

provides additional information characterizing the cis-regulatory modules. We will 

discuss here the results we obtained on cluster 9, which contains genes related to 

cardiac muscle function.  

Table 4. Transcriptional regulatory global models constructed for the 10 microarray clusters. 

Cluster Key transcription factors and binding sites in TRGM (weight) 

Protein 

synthesis 

NF-Y (1.59), DEC (1.13), HIC1 (1.09), general initiator sequence (0.47), CCAAT 

box (0.44), TCF-4 (0.32) 

Oocyte / 

fertilized egg 
T3R (1.00), NF-Y (1.00), ETS/PEA3 (0.99), MAZ (0.92), AP2α (0.78), SP1 (0.30) 

Neural tissues 
UF1-H3β (1.13), CRE-BP/CJUN/ATF-1 (1.00), AP-2 (0.87), ETF (0.55), AP-1/NF-

E2 (0.33) 

Lymphocytes STAT6 (1.00), PU.1 (0.99), ETS (0.96), STAT5/STAT (0.95), SP1 (0.89) 

Testis / sper-

matogenesis 
- 

Liver 
TCF1/HNF-1 (1.00), NF-1 (1.00), C/EBP (0.99), HNF-4/COUP (0.99), PPAR/HNF-

4/COUP/RAR (0.66), MYC-MAX (0.58), PPAR (0.33) 

Mitochondrion 
c-ETS (1.35), VDR (1.00), GATA-1/GATA-2 (1.00), ZID (0.82), AR (0.43), ROAZ 

(0.34) 

Extracellular 

matrix 

AP-1/NF-E2/BACH1 (2.00), FOXD1 (1.00), BLIMP1 (1.00), SRF (0.70), MEF-

2/RSRFC4 (0.51), STAT5/STAT6 (0.35) 

Cardiac 

muscle 

SP-3 (1.00), Myogenin (1.00), MEF2A (1.00), SRF (1.00), Tyroid hormone 

receptor/RAR/RXR (0.91), Muscle TATA box (0.48) 

Energy 

metabolism 
CREB/ATF/HLF (1.01), WHN (1.00), SPIB (0.71), PPARγ/RXRα (0.65), general 

initiator sequence (0.51), RFX (0.31) 
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Table 5. Transcriptional regulatory global models constructed for the 5 embryonic development 

sets. 

Development 

process 
Key transcription factors and binding sites in TRGM (weight) 

Primary heart field 
D type LTRs (1.12), HAND1/TCF3 (1.01), STAT3 (0.92), STAT5A (0.89), 

GATA1/GATA2 (0.63), ELK1 (0.32) 

Secondary heart 

field 
HNF3α (1.56), STAT5A/STAT5B (1.00), GATA2 (0.56), NFAT (0.56), 

GATA/GATA3 (0.48), WHN (0.35) 

Neural crest cells FREAC-7 (1.00), Poly A (1.00), TBX5 (1.00), HSF (0.89), FREAC-2 (0.30) 

Eye development 
RREB1 (1.00), IRF (0.96), POU3F2 (0.92), ZF5 (0.80), GATA/GATA1 (0.46), 

LMO2 (0.39), NKX6-1 (0.32) 

Limb development 
TEF (1.00), PLZF (1.00), PAX4 (0.96), EGR (0.87), AP-2 (0.65), PBX (0.63), 

Ikaros 1 (0.37) 

 

First, MODULEMINER characterizes the given input genes, retrieving descriptions and 

commonly used identifiers (e.g. HGNC) from the Ensembl database. In addition, the 

Gene Ontology (GO) terms annotated to the input genes are retrieved, and the 

overrepresented GO terms are reported. For the cardiac muscle subcluster, “muscle 

contraction” (GO:0006936), “muscle development”  (GO:0007517), “organogenesis” 

(GO:0009887), “contractile fibre” (GO:0043292) and “regulation of heart contraction 

rate” (GO:0008016) were among the overrepresented GO terms. 

Next, MODULEMINER determines the weight of each PWM in the transcriptional 

regulatory global model (see Materials and methods). By grouping similar PWMs, the 

weight of each trans-factor involved is determined. The cardiac muscle TRGM 

contains PWMs for SRF, MEF2A, myogenin, SP3, a thyroid hormone response 

element (all with weights of approximately 1), and a muscle TATA box (with weight 

approximately 0.5). MODULEMINER also displays the cis-regulatory modules it 

identifies on the input genes. Figure 4D shows this for the heart muscle genes. 
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As our approach uses only human and mouse sequences to model cis-regulatory 

modules, sequenced genomes of other species can be used as validation data. 

MODULEMINER employs the rat and dog genomes for this purpose, by checking for 

cis-regulatory modules that fit the obtained TRGM in rat-dog conserved non-coding 

sequences. For the cardiac muscle genes, 11 orthologs were present in our rat-dog 

TFBS database, 7 of which were ranked within the top 10 % of the genome (p = 2.28 

× 10
-5
). 

Finally, MODULEMINER selects putative new target genes of the TRGM from the 

complete genome. We aim to minimize noise in these target gene predictions by using 

network level conservation [38], particularly through phylogenetic fusion of target 

gene rankings. To this end, first all genes in the human-mouse transcription factor 

binding site database (excluding the input genes), and all (non-input) genes in the 

dog-rat transcription factor binding site database are ranked separately. 

MODULEMINER then fuses these two rankings into one global ranking using order 

statistics (similar to the approach used in [23] and [39]). Among the 100 top ranking 

new target genes of the cardiac muscle TRGM were MYL3 (“Cardiac myosin light 

chain 1”), MYOD1 (“Myoblast determination protein 1”), TNNI1 (“Troponin I”) and 

MYH3 (“Myosin heavy chain, embryonic skeletal muscle”).  

The results we obtained on all sets of co-expressed genes discussed in this work, can 

be viewed at [33]. 

Where are the cis-regulatory module predictions located? 

MODULEMINER successfully detected 9 sets of similar CRMs in the 10 microarray 

clusters and 5 sets of similar CRMs in the 5 embryonic development gene sets. In 

total, 257 CRMs were predicted. In addition to this, MODULEMINER predicted 100 
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new target genes of each TRGM. We next used this compendium of 1657 CRMs to 

examine their positions relative to the TSS of the genes they regulate. 

Since a gene’s search space was defined as all CNSs within 10 kb 5’ of the TSS, we 

first examined the distributions of CNS locations, as these represent the background 

distribution to which the CRM locations will be compared. A first important 

observation is that the CNSs are highly overrepresented close to the TSS, as shown in 

Figures 5A and 5B. The type of gene set, namely adult tissue versus embryonic 

development, introduces a second CNS location bias (Figure 5C). Indeed, the adult 

tissue CNS set is enriched in sequences close to the TSS (< 200 base pairs) (p = 7.6 × 

10
-16

 by a Wilcoxon rank sum test), while the embryonic development CNS set is 

depleted in sequences close to the TSS and enriched in sequences further from the 

TSS (2000 – 4000 base pairs) (p = 5.6 × 10
-7
). When evaluating each of the gene sets 

separately (Figure 5F), 8 of the 9 adult tissue CNS sets are enriched in sequences less  

 

Figure 5 (next page). Distribution of distance to transcription start site for CNSs and predicted 

cis-regulatory modules. (A) All human-mouse CNSs in TFBS sets 1 and 2 (both are based on the 

same set of CNSs), and in TFBS set 3. (B) The distribution from (A), when divided in 6 unequal bins. 

(C) Distribution of all conserved non-coding sequences upstream of genes within the microarray 

clusters (of genes expressed in different adult tissues) and the embryonic development gene sets, where 

CRMs could successfully be detected (Tables 2 and 3), divided in the same 6 bins as under (B). (D) 

Distribution of the distance to transcription start for the cis-regulatory modules MODULEMINER 

identified near the genes from (C). (E) Distribution of distance to transcription start for the cis-

regulatory modules MODULEMINER identified in a whole genome scan (genes in (D) where removed, 

such that only new target genes where represented here). Note that (B), (C), (D) and (E) are drawn to 

the same scale. (F) Portion of CNSs near the genes in the different microarray clusters and embryonic 

development sets that is located within 200 bp of the transcription start site. (G) Portion of predicted 

CRMs near the genes in the different microarray clusters and embryonic development sets that is 

located within 200 bp of the transcription start site. (H) Portion of CRMs, predicted in a whole genome 

scan for the TRGM built for the different gene sets that is located within 200 bp of the transcription 

start site. The blue line in (F), (G) and (H) indicates the portion of all CNSs (within 10 kb 5’ of all 

human genes) that is less then 200 bp of the transcription start site. 
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than 200 base pairs from the TSS (in 6 cases, this was statistically significant by a 

Chi-square test), while all 5 embryonic development CNS sets are depleted in 

sequences less then 200 base pairs from the TSS (in 3 cases, this was statistically 

significant). 

Next, we examine the location distribution of the CRMs that were identified by 

MODULEMINER. For adult tissue genes, CRMs are strongly overrepresented close to 

the TSS (Figure 5D). Sixty-three percent of these CRMs are within 200 base pairs of 

the TSS. In contrast, the CRMs MODULEMINER identified near the embryonic 

development genes are depleted close to the TSS and enriched further away (1000 – 

2000 base pairs). These conclusions remain valid even when controlling for both 

biases mentioned above: comparing Figure 5D to Figure 5C (the predicted CRMs in 

Figure 5D can be considered as a selection from the CNS sets in Figure 5C), the 

enrichment of predicted CRMs directing expression in adult tissues close to the TSS 

persisted: p = 2.6 × 10
-27

 (calculated as follows: the distances to the TSS of (i) the 

predicted CRMs and (ii) all CNSs of the genes in the microarray clusters were ranked 

and the Wilcoxon rank sum test was applied). For the CRMs directing expression in 

embryonic development, no statistically significant deviation from random selection 

from the embryonic development CNS sets could be observed (p = 0.18). When 

considering the gene sets separately, in 8 microarray clusters expressed in adult 

tissues, CRMs are enriched in sequences close to the TSS (Figure 5G) (this was 

statistically significant when controlling for bias in 6 cases). In contrast, in 4 

embryonic development gene sets, CRMs are depleted close to the TSS (markedly, for 

three of these sets, no CRMs were predicted within 200 base pairs of the TSS). 

A similar difference in TSS distance distribution was also seen for the new target 

genes (Figure 5E). Here as well, the distances to the TSS of the CRMs predicted to 
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direct expression in adult tissues were clearly non-randomly distributed compared to 

all CNSs (p = 3.6 × 10
-74

 by a Wilcoxon rank sum test). For the CRMs predicted to 

direct expression in embryonic development, no statistically significant difference 

was observed (by a Wilcoxon rank sum test). However, these sequences seem to be 

(slightly) depleted within 200 base pairs of the TSS (p = 1.5 × 10
-4
 by a Chi-square 

test). Considering each of the gene sets separately (Figure 5H), in 7 adult tissue 

microarray clusters, CRMs were significantly enriched within 200 base pairs of the 

TSS, while for 2 embryonic development gene sets, CRMs were significantly 

depleted close to the TSS. Although in six cases this effect was highly significant (p < 

10
-9
), it was smaller than the effect within the clusters (compare Figures 5D and 5E).  

In summary, the cis-regulatory modules MODULEMINER detected were non-randomly 

positioned in the genome. CRMs predicted to direct expression in adult tissues were 

highly enriched very close to the transcription start site, while CRMs predicted to 

direct expression in embryonic development were depleted very close to the 

transcription start site. 
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Discussion 

Although the sequence of the human genome has been available for a considerable 

time now, our ability to chart the regions controlling gene expression is still very 

limited. The situation seems to improve as a function of smaller genome size. Indeed, 

in the Drosophila early segmentation network, CRMs can be predicted based on 

known examples [10,11]. In the yeast Saccharomyces cerevisiae, with an even much 

smaller genome, it is possible to go one step further and predict the expression of 

genes based only on upstream sequences [40]. Here we focus on the computational 

detection of CRMs in the human genome, and hence this work is a contribution in 

bridging this gap. 

MODULEMINER detects CRMs by taking as input a set of co-expressed genes, under 

the assumption that a subset of these are co-regulated, and looking for a recurrent 

pattern of (computationally predicted) transcription factor binding sites. The 

advantages of this approach are that it does not require known examples and that it 

allows prediction of a probable function for the detected CRMs.  

MODULEMINER is similar in scope to ModuleSearcher [20,28] and CREME [19]. It 

differs from these previous approaches in that MODULEMINER maximizes specificity 

for the given set of co-expressed genes by performing a whole genome optimization. 

Indeed, MODULEMINER optimizes the combined rankings of the given gene set in a 

ranking of the complete genome. In addition, this approach allows comparison 

between TRMs with different parameters (e.g. maximum CRM length, number of 

PWMs in the TRM). Therefore, MODULEMINER is able to optimize over these 

parameters, and hence, our approach effectively eliminates the parameters required by 

the previous approaches. 
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Other algorithms have been developed that aim to detect similar CRMs in a set of co-

expressed genes that (contrary to the approaches above) do not use a library of PWMs 

[21,22,29,41]. Instead, these algorithms optimize, besides the combination of motifs, 

also the motifs themselves. Hence, these methods attempt to solve a problem with 

considerably higher complexity, resulting in lower performance, as confirmed by our 

comparison on benchmark data. Given the extremely poor performance of motif 

detection methods in other organisms than yeast [42], we have opted to circumvent 

motif optimization by using experimentally determined PWMs. Note that this 

decision not necessarily limits the search to known PWMs, as libraries of 

computationally predicted PWMs are also available (e.g. the phylofacts PWM library 

[43]). In addition, we believe that with the emergence of the protein binding 

microarray technology [44], high quality PWMs will soon become available for a 

large fraction of the human transcription factor repertoire. Even though the currently 

available libraries of experimental PWMs show high redundancy and may contain 

low quality PWMs, our new approach of clustering similar TRMs is able to group 

redundant PWMs and our validations show that in many cases a combination of five 

experimental PWMs can capture enough information of a CRM to yield acceptable 

genome-wide specificity levels. 

MODULEMINER outputs the predicted CRMs, and a transcriptional regulatory global 

model (TRGM). This TRGM can be considered as a bag of PWMs (selected from 

TRANSFAC and JASPAR), with a weight associated to each PWM. Therefore, this 

TRGM not only predicts the transcription factors functioning in the process under 

study, but in addition also allows an assessment of the relative importance of each of 

these transcription factors.  
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TRGMs do not contain spatial relations between transcription factor binding sites 

(except for the total size of the CRMs and a Boolean parameter indicating whether 

different binding sites can overlap or not). Although certain spatial relations between 

transcription factors working in concert are known to exist (e.g. [45,46]), we did not 

find any reports indicating that this is the rule rather then the exception. Therefore, we 

reasoned that any such relationships should not be hard-coded in the TRGMs, but 

rather would become apparent by inspection of the predicted CRMs. Upon inspection 

of the predicted CRMs presented above, no such spatial relationships surfaced.  

Our method for scoring a sequence using a TRM or TRGM (see Materials and 

methods) does not take homotypic clustering of transcription factor binding sites into 

account (like HMM based methods do [15,17,47]). However, this cooperative binding 

of one transcription factor can nevertheless be modelled in our framework by the 

construction of a TRM or TRGM that contains multiple instances of the same PWM. 

Therefore, if multiple instances of a specific transcription factor are important for the 

regulation of a set of co-regulated genes, this is represented accordingly in the optimal 

model. For example, when applying MODULEMINER to the tightly co-expressed set of 

smooth muscle markers, the transcription factor SRF occurs 2 or 3 times in each of 

the TRMs in the resulting TRGM, suggesting an extensive cooperation between SRF 

binding sites for smooth muscle specific transcription regulation. In contrast, the 

SMAD4, SP1 and ATF3 PWMs occur exactly once in 97.5 % of the TRMs (SMAD4 

and SP1 occur twice in 1.5 % and 1 % of the TRMs respectively). 

MODULEMINER takes the genomic background sequence into account in two ways. 

Firstly, a third order background model is used in the process of annotating putative 

transcription factor binding sites. Secondly, our optimization strategy selects the TRM 

(or TRGM) that optimally separates the given genes (sequences) from all other genes 

64 Study 2 – ModuleMiner: computational CRM detection



in the genome. Hence, our system corrects both for local sequence properties (by the 

third order background model) as for more global sequence properties (by selecting 

against combinations of transcription factor binding sites that occur independently of 

the given sequences). 

We included all CNSs up to 10 kb 5’ of the transcription start site in our pipeline. 

Although this choice is inherently arbitrary, it is motivated by the following 

arguments: (i) sequences 3’ of the transcription start site might harbour translational 

regulatory signals, which we do not want to model here; (ii) potential regulatory 

sequences far upstream can be difficult to assign to a target gene; (iii) selecting 10 kb 

5’ of the transcription start site has proven to be valuable in our previous study [20], 

and others have made similar choices as well [48]; (iv) in a previous study where 

CRMs were predicted in an unbiased way across the complete human genome [8], it 

was shown that CRMs are highly depleted between 10 kb and 30 kb 5’ of the 

transcription start site. 

The validation framework we use, combining genome-wide ranking with leave-one-

out cross-validation, could also be useful in evaluating or comparing hypotheses 

regarding the working principles of transcription regulation, and in this regard can be 

considered similar in scope to CodeFinder [24]. In this work, two such tests are 

implicitly performed: (i) CRMs driving a tissue-specific expression pattern are 

compared to CRMs driving an embryonic development expression pattern and (ii) by 

the comparison of the three sets of putative transcription factor binding sites (e.g. 

Figure 1, Figure 3J, Figure 4B), the importance of binding site preservation is 

evaluated as well as the impact of a correction for differences in transcription start 

sites between human and mouse. 
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Construction of a high-quality set of co-regulated genes involved in a certain process 

under study is not always straightforward. In this regard, robustness to noise in a set 

of putative co-expressed genes is highly desirable in an algorithm to detect similar 

CRMs. We found MODULEMINER to be highly robust to the quality of this input gene 

set. Indeed, in our experiments with smooth muscle marker genes, we observed that 

even when only 10 of 50 given genes are really co-regulated, MODULEMINER was still 

able to pick up the correct signal (Figure 2). These properties of MODULEMINER 

prompted us to apply the algorithm to gene sets obtained from clustering microarray 

data. In 9 out of 10 microarray clusters, MODULEMINER succeeded in finding similar 

CRMs in a subset of the genes. Perhaps unsurprisingly, a critical mass of co-regulated 

genes is required for MODULEMINER to detect similar CRMs. However, this minimum 

required number of co-regulated genes is sufficiently small so as not to preclude 

application of the algorithm. This is illustrated both by our results obtained on the 

smooth muscle genes (Figure 2), and by the successful CRM detection in two small 

heart development gene sets (Table 3). 

Application of MODULEMINER to the smooth muscle marker genes resulted in CRMs 

with multiple binding sites for SRF, and with single binding sites for SMAD4, SP1 

and ATF3. Both SRF and SP1 have been shown to play a role in regulating smooth 

muscle specific expression [26]. Furthermore, SMADs are effectors of the TGF-β 

signalling pathway, and have been shown to work in concert with SRF to control 

smooth muscle cell differentiation [49]. MODULEMINER identified transcription 

factors known to play a key role in other co-expressed gene sets as well. Examples are 

GATA-factors, NFATs and HAND1 in heart development, HNF-1 and HNF-4 in 

liver-specific gene expression, PU.1 in lymphocyte specific gene expression, and 
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Myogenin, SRF, the thyroid hormone receptor, and MEF2 in heart specific gene 

expression. 

Imposing trans-factor conservation by motif preservation between human and mouse 

sequences of a CNS significantly improved the performance of MODULEMINER on the 

set of smooth muscle marker genes. A similar approach has also been shown to 

improve CRM detection performance in the Drosophila early segmentation gene 

network [10]. When we applied MODULEMINER to the microarray clusters and the 

embryonic development gene sets, in some cases this trans-factor conservation also 

increased performance (microarray clusters 6, 7 and 9, and the neural crest cell gene 

set), but in other cases it did not. 

Correcting for possible differences in transcription start site in human and mouse by a 

three-step alignment procedure (see Materials and methods), resulted in increased 

performance for most of the microarray clusters, but not for the development gene 

sets. This marked difference may be related to the different locations of the detected 

CRMs in these two different systems. 

We observed a significant difference in the locations of the CRMs MODULEMINER 

predicted to direct expression in adult tissues and the CRMs MODULEMINER predicted 

to direct expression in embryonic development. CRMs driving tissue-specific 

expression are highly overrepresented within 200 base pairs of the TSS. In contrast, 

CRMs driving expression in embryonic development are more evenly distributed in 

the 10 kb sequences we considered, and seem to be underrepresented within 200 base 

pairs of the TSS. These results suggest that transcription regulation of tissue-specific 

expression is mainly exerted by proximal promoters, while transcription regulation of 

expression during embryonic development seems to be mainly exerted by more distal 

enhancers.  
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MODULEMINER can be applied to 3 conceptually different tasks: (i) prediction of 

transcription factors that play a role in regulating a set of co-regulated genes, (ii) 

prediction of regulatory regions and (iii) predictions of new target genes of a TRGM. 

It is important to realize that the accuracy of the predictions differs between those 

tasks. Although exact performance statistics can only be obtained through the careful 

experimental testing of our predictions, which is outside the scope of the present 

study, the results we obtained in this work can be used to provide rough estimates of 

the predictive accuracy. When we applied MODULEMINER to the two well-studied 

benchmark sets, we obtained HNF1, CEBP, HNF3, GATA1, PAX6 and HNF4 for the 

liver benchmark set, and MZF1, PPARγ, SRF, MEF2, the Epstein-Barr virus 

transcription factor R, MYF and MYOD for the muscle benchmark set. Comparing 

this to literature [4,50] and to the PWM libraries we use, we obtain a sensitivity of 70 

% (7 out of 10 known PWMs are recovered), a specificity of 99.6 % (630 of 633 

(liver) and 619 of 621 (muscle) likely incorrect PWMs are rejected) and a positive 

predictive power of 62 % (8 of 13 total predicted PWMs are correct).  These values 

need to be regarded with some reservations when extrapolating to other cases, since 

both liver and muscle are well-studied systems with high quality PWMs available. 

Nevertheless, we can conclude that MODULEMINER is quite accurate in selecting 

PWMs/transcription factors that play a key role in the regulation of the genes under 

study. Regarding detection of regulatory sequences, MODULEMINER was able to 

detect 16 of 24 known muscle/liver enhancers, when a total of 24 predictions where 

made. This is a sensitivity of 67 % and a positive predictive power of 67 %, although 

we emphasize that this last value is an underestimate as some of our predictions may 

be yet unknown enhancers. Notwithstanding some reservations on extrapolating these 

data, we conclude that the predictive accuracy of MODULEMINER for detection of 
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regulatory regions (CRMs) near a set of co-regulated genes is quite high. Regarding 

the predictive accuracy of MODULEMINER for the detection of new target genes given 

a TRGM, the results of our LOOCV procedure can provide some estimates. From the 

resulting ROC curves, one can see that for a sensitivity of 50 %, the specificity is 

about 90 %, and for a sensitivity of 80 %, specificity is about 80 %, although the 

differences between different gene sets can be large. However, typically only a few 

dozen new target genes can be tested, and thus specificity may not be high enough to 

select the right targets from the complete genome. In our previous study [23], we 

confirmed that the predictive accuracy of new target genes is quite low, although we 

showed it to be detectably present. We note that in that study, we used our previous 

ModuleSearcher algorithm which was shown here to have a lower performance than 

MODULEMINER. In addition, MODULEMINER’s use of network level conservation 

between human/mouse and rat/dog predictions of new target genes might increase 

performance. Finally, the results we obtained in the transcription start site distribution 

of the CRMs predicted near the new target genes are consistent with these 

performance predictions: Figures 5E and 5H show a similar trend as Figures 5D and 

5G, but to a lesser extend, hence pointing to a substantial amount of noise, but also 

indicating that a signal can be picked up, even in a whole genome scan. 
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Conclusions 

We present MODULEMINER, the first algorithm to detect similar cis-regulatory 

modules in the human genome that is based on whole-genome optimization. 

MODULEMINER is generally applicable, and outperforms other similar approaches to 

detect CRMs on benchmark data. In addition, MODULEMINER can detect similar 

CRMs in noisy sets of co-expressed genes, such as microarray clusters. We 

successfully applied the algorithm to sets of genes expressed in adult tissues and sets 

of genes expressed in embryonic development processes. We show that CRMs 

predicted to regulate genes expressed in adult tissues are highly overrepresented 

within 200 base pairs of the transcription start site, while CRMs predicted to regulate 

genes involved in embryonic development processes are depleted within this region. 

These findings suggest that expression in adult tissues is mainly directed by proximal 

promoters, while expression in embryonic development is more often regulated by 

distal enhancers.  
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Materials and methods 

Construction of 3 sets of candidate transcription factor binding sites 

We constructed three sets of genome-wide candidate transcription factor binding sites 

in human-mouse conserved non-coding sequences (CNSs). The first set contains all 

predicted binding sites in all CNSs. Sequences 10 kb 5’ (+ 50 bp 3’) of the 

transcription start site of all human genes and their mouse orthologs were obtained 

from Ensembl (version 36). When another gene was encountered, only the sequence 

up to that gene was included. Conserved non-coding sequences were selected by 

LAGAN alignments [51]. Thresholds were set to 75 % conservation over at least 100 

base pairs. Transcription factor binding site predictions were performed using 

MotifScanner [52], with the prior set to 0.2. Both TRANSFAC [53] (version 9.4) and 

JASPAR [43] were used as PWM libraries. 

The second set aims to restrict the candidate binding sites by enforcing that the 

regulatory factors should be conserved. This is achieved by selecting only binding 

sites in each human region for transcription factors for which we also detect binding 

sites in the orthologous mouse region (preserved sites). We note that this constraint 

does not impose that the binding sites should be conserved, nor that they should align.  

In the construction of the third set we aimed to correct for differences in human and 

mouse transcription start sites (TSSs), and for possible annotation errors of TSSs. To 

this end, we extended the mouse sequences used in the alignments by 100 kb in both 

directions. Alignment errors were kept in check by applying a multi-step alignment 

procedure. The human 10 kb sequence was aligned to (A) the 10 kb mouse sequence, 

(B) the mouse sequence extended by 10 kb in both directions, and (C) the mouse 

sequence extended by 100 kb in both directions. If in alignment (A) CNSs were 
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predicted, we assumed that the correct orthologous region in the mouse is not off by 

more then 10 kb, and hence we used the CNSs from alignment (A), supplemented by 

all additional CNSs from alignment (B). CNSs that were truncated in alignment (A) 

because they extended over the sequence borders, were replaced by their counterpart 

from alignment (B). If in alignment (A) no CNSs were predicted, we reasoned that the 

correct orthologous region in the mouse might be off by more then 10 kb, and we 

used the CNSs from alignment (C). Here also, for each CNS (in human), we selected 

only preserved binding sites.  

The same procedure was used with the dog and rat sequences to create sets of 

candidate transcription factor binding sites corresponding to the three human-mouse 

sets. As neither dog nor rat could serve as a reference species, we did not extend the 

sequences in the dog-rat candidate transcription factor binding site set that 

corresponds to human-mouse set 3. 

Transcriptional regulatory models 

We model similar cis-regulatory modules in a set of co-expressed genes by 

transcriptional regulatory models. These TRMs are parameterized as in [20]. A TRM 

is a combination of PWM instances (up to 6), supplemented by three parameters: (i) 

the maximum length of cis-regulatory modules, (ii) a Boolean parameter stating 

whether different binding sites can overlap or not, and (iii) a Boolean parameter that 

indicates whether incomplete modules will be penalized or not. Given a TRM and a 

sequence, a score Sseq can be calculated, as detailed in [20]. A TRM may contain 

multiple instances of one specific PWM: in the calculation of Sseq, each PWM in the 

TRM is matched to at most one binding site – thus if a PWM occurs twice, up to two 

binding sites for the corresponding transcription factor can be taken into account. We 

assign a score Sg to a gene by taking the maximum of Sseq for all CNSs of that gene. 
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The Sg scores for the given set of co-regulated genes are used to determine a ‘fitness 

score’ of a TRM. This fitness score of a TRM for a given set of co-expressed genes is 

determined by the positions of the co-expressed genes in a ranking of Sg for all genes 

in the genome. We use order statistics to assign a probability to the combination of 

ranks of the given co-expressed genes (using the numerical approach detailed in [23]). 

Hence, the resulting p-value represents how well that TRM models the given set of 

co-expressed genes, compared to all other genes in the genome. We use 1 minus that 

p-value as the fitness score for the TRM. 

The MODULEMINER algorithm 

MODULEMINER uses a genetic algorithm to find the TRM with the optimal fitness 

score. At the onset, a starting population of TRMs is obtained by running our 

ModuleSearcher algorithm [28] using many different combinations of parameters. 

This initial step is not absolutely required (one can start from a population of 

randomly generated CRMs), but it provides a speed advantage. These TRMs obtained 

by ModuleSearcher are assigned a fitness score, and the 200 best scoring TRMs are 

retained as starting population for the ModuleMiner genetic algorithm. During each 

‘generation’ of the algorithm, 200 new individuals (TRMs) are generated (based on 

the TRM population at that time) and added to the population. This population of 400 

TRM is then required to compete (by fitness score), and the 200 best scoring TRMs 

are retained. This procedure is repeated until the stop criterion is reached (at least 300 

generations and at most 1000 generations). Generation of new individuals (TRMs) is 

done using 2 ‘parent’ TRMs randomly selected from the population. Each of the TRM 

parameters (number of PWMs, length, overlap and penalization) is determined by 

random selection from both parents, allowing a small probability of mutation (i.e. 

each parameter is set to a random value with a probability of 0.1). Subsequently, 
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PWMs are selected at random from both parents. Here as well, each PWM can be 

‘mutated’ (replaced by a PWM randomly selected from TRANSFAC and JASPAR) 

with a probability of 0.1. As stop criterion, we use homogeneity of the population: if 

more than 80 % of the TRMs can be grouped into one TRGM (see below) and at least 

300 generations have passed, the algorithm is stopped. If this stop criterion is not 

reached, the algorithm is stopped after 1000 generations. The parameters of the 

ModuleMiner genetic algorithm (e.g. population size, mutation probability, …) were 

selected by optimizing for speed. The convergence of the algorithm is highly 

insensitive to these parameters over a wide range, and sensitivity of speed to these 

parameter settings is also limited (data not shown).  

Transcriptional regulatory global models 

Aiming to minimize the sensitivity of our models of similar cis-regulatory modules to 

noise in transcription factor binding site predictions, we constructed composite 

models (TRGMs) from multiple high-scoring TRMs. To this end, similar TRMs are 

clustered, and the largest cluster is returned as resulting TRGM. TRMs were clustered 

when the cis-regulatory modules they predict near the high scoring genes (out of the 

given set of co-expressed genes) occur in the same CNS. As a cut-off for determining 

which genes are among the “high scoring genes”, we used the top 2.5 % in a ranking 

of the complete genome.  

Scoring a sequence with a TRGM is performed by scoring this sequence for each 

TRM within the TRGM, subsequently normalizing this score (maximum CNS score = 

1), and finally adding the normalized TRM scores. 

As a TRGM is a collection of TRMs and TRMs each contain a collection of PWM 

instances, TRGMs are also collections of PWMs. In addition, a weight can be 

assigned to each PWM in the TRGM, quantifying the significance of the PWM for the 
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process under study. This weight of a PWM is calculated as follows: for each TRM in 

the TRGM, the number of instances of that PWM is counted, and this number is 

averaged over all the TRMs in the TRGM. 

Performance comparison on benchmark data 

Four benchmark data sets containing annotated regulatory regions directing 

expression in a particular system were selected from PAZAR [27]. We selected all 

human genes (or human orthologs) from each of these ‘boutiques’. The regulatory 

sequence search space was defined as all CNSs within 10 kb 5’ of the TSS (as 

throughout our study). We used this search space for all algorithms, except CREME 

[19], where only the online version was available that by default uses one CNS within 

1.5 kb of the TSS. As the other CRM detection algorithms had multiple parameters 

(absent in MODULEMINER), these parameters were set to default options. For the 

ModuleSearcher algorithm [28], we used the same parameters as in the cell cycle case 

study reported [20]. For CisModule [22] and EMCMODULE [29] we used the default 

parameter settings. We used Clover [30] as follows: for each PWM found 

overrepresented, we constructed a TRM (with parameters: no overlap between 

binding sites, no penalization and a maximum distance of 1000 bp), and this way we 

constructed TRGMs containing enriched PWMs reported by Clover. We also 

generated 100 random TRMs (combinations of 3-6 PWMs with randomly generated 

parameters) and we used these to rank the genes of each benchmark set, as a proxy for 

a method unable to detect similar CRMs. 

Availability 

MODULEMINER can be accessed at our website [33]. A stand-alone version is 

available upon request. 
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Abstract 

Gene expression profiling has successfully identified the prognostic significance of the host 

response in lymphomas. We endeavour to obtain a better understanding of this host 

response, comparing two B cell lymphomas characterized by a paucity of tumour cells 

embedded in an overwhelming background: the aggressive T cell/histiocyte rich large B cell 

lymphoma (THRLBCL) and the indolent nodular lymphocyte predominant Hodgkin’s 

lymphoma (NLPHL). The tumour cells of both lymphomas share several characteristics, 

while the cellular composition of their microenvironment is clearly different. Aiming to study 

this microenvironment, which constitutes the majority of the tumour cell mass in both 

THRLBCL and NLPHL, we performed microarray expression profiling on entire tissue 

sections. We observed that the NLPHL microenvironment is molecularly very similar to a 

lymph node characterized by follicular hyperplasia, while the THRLBCL microenvironment is 

clearly different. The THRLBCL signature is hallmarked by up-regulation of CCL8, IFN-γ, 

IDO, VSIG4 and Toll-like receptors. These features may be responsible for the recruitment 

and activation of T cells, macrophages and dendritic cells, characterizing the stromal 

component of this lymphoma, and may point towards innate immunity and a tumour 

tolerogenic immune response in THRLBCL. 
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Introduction 

B cell lymphomas with a high content of T cells, occasionally misinterpreted as T cell 

lymphomas in the past, have been recognized as a caveat for pathologists and were 

therefore indicated as “T cell rich B cell lymphoma” (1). Initial studies demonstrated that a 

particular subgroup of T cell rich B cell lymphomas may mirror nodular lymphocyte 

predominant Hodgkin's lymphoma (NLPHL) and are characterized by a histiocyte-rich stroma 

(2, 3). These lymphomas carry a distinct clinical behaviour and a bad prognosis (4). In the 

WHO classification of 2001, this T cell/histiocyte rich large B cell lymphoma (THRLBCL) is 

listed as a variant of diffuse large B cell lymphoma (DLBCL) and is defined by the presence 

of scattered large B cells in a background rich in T cells, together with or without histiocytes 

(5). The precise relationship between THRLBCL and other lymphomas, more particularly 

NLPHL, remains unclear (2, 3, 6). Indeed, the atypical B cells of NLPHL and of THRLBCL 

share many characteristics, including expression of pan B cell markers, germinal centre B 

cell origin, and common chromosomal imbalances (7-10). An important difference between 

both lymphomas lies in their clinical presentation and prognosis. THRLBCL is a very 

aggressive disorder, mostly not responding to therapy (11). These patients frequently 

present with stage III and IV disease, splenomegaly, hepatomegaly and bone marrow 

involvement. In contrast, NLPHL is an indolent disorder. Most patients present at an early 

stage of disease and carry a good prognosis (12).  

Gene expression profiling of lymphomas clearly illustrated that aside from the characteristics 

of the tumour cells, the microenvironment of the tumour also defines the profile of the 

lymphoma, and more importantly plays a role in predicting the prognosis (13, 14). Here, we 

aimed to gain insight into the role of the microenvironment of THRLBCL, by comparing its 

expression profile with that of NLPHL and a pool of reactive lymph nodes with follicular 

hyperplasia.  
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Materials and Methods 

Patients 

A series of 98 cases were retrieved from the files of the department of pathology of the 

University Hospitals of K.U.Leuven, all documented by frozen material. The series includes 

all cases recorded over the last 25 years (i) as NLPHL or lymphocyte rich classical Hodgkin’s 

lymphoma (LRCHL) or (ii) as THRLBCL or DLBCL with a prominent histiocyte and T cell rich 

stromal component. As an additional and external control series, 26 cases recorded as 

THRLBCL, NLPHL or LRCHL at the department of pathology of the Rikshospitalet-

Radiumhospitalet HF Oslo were added to the study material. Upon review, the diagnosis of 

THRLBCL and NLPHL was confirmed in 34 and 57 cases respectively. In all these cases, the 

atypical cells represented less than 10 % of the tumour mass. Thirty-one cases were 

excluded from the study because the frozen material was not representative or because 

material for review or additional immunostainings were not available, or because upon review 

they were diagnosed as DLBCL or LRCHL. Finally, 2 cases were excluded from the study 

because an unambiguous diagnosis of NLPHL or THRLBCL could not be made; their 

morphology fulfilled that of the cases described by Boudova et al. (15). 

World Health Organization (WHO) criteria (version of 2008) were applied to assign cases to 

the different categories (16). 

From the series diagnosed at the University Hospitals of K.U.Leuven, we randomly selected 

10 typical NLPHL and 10 typical THRLBCL cases for microarray analysis. Finally, a pool of 5 

reactive lymph node biopsies, characterized by follicular hyperplasia, was constructed for 

use as a reference tissue. Most lymphoma cases were included in one of our previous 

studies on NLPHL and/or THRLBCL (3, 7, 10, 11, 17). 

This study was approved by the local ethical commission of the University Hospitals 

K.U.Leuven. 
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RNA extraction 

Total RNA was extracted from 20 micron sections of each frozen tissue sample using the 

TriZol reagent (Invitrogen, Merelbeke, Belgium), followed by purification using the RNeasy 

mini kit (Qiagen, Venlo, The Netherlands), according to the manufacturer’s 

recommendations. RNA quality and concentration were measured using a Nanodrop 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). 

 

Gene expression profiling 

Five micrograms of RNA were biotin labeled and hybridized onto human oligonucleotide 

microarrays (Affymetrix HG-U133 Plus 2.0; Affymetrix, High Wycombe, UK). The resulting 

data are available online at the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/ 

projects/geo/), accession number GSE7788. These data were analyzed using Bioconductor 

software (18). Statistical testing for genes differentially expressed between the two 

lymphomas was done by a T-test. Multiple testing corrections were performed by a step-

down maxT procedure (19). 

The statistical significance of overlap with other expression profiling studies was calculated 

using hypergeometric statistics.  

 

Immunohistochemistry 

Aside from the immunohistochemical stainings used for diagnostic purposes, including 

CD20, CD3, CD4, CD8 and CD57 stainings, paraffin embedded sections were stained with a 

commercially available mouse anti-indoleamine 2,3 dioxygenase (IDO) monoclonal antibody 

(Chemicon international), following the manufacturer’s recommendations. Figure 2 was taken 

with a Leica DMBL microscope, using a HCX PL Fluotar 40X/0.75 objective and a Leica DFC 

300 camera. Adobe software was used for brightness/contrast correction. 
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Results and discussion 

Clinical data 

Clinical characteristics of the patients are summarized in Table 1. Both T cell/histiocyte rich 

large B cell lymphoma (THRLBCL) and nodular lymphocyte predominant Hodgkin’s 

lymphoma (NLPHL) show a clear male predominance. Ann Arbor staging, the International 

Prognostic Index (IPI) and the initial response to treatment confirm that THRLBCL is a very 

aggressive disease, while NLPHL is an indolent disorder. These results are further 

strengthened by the Kaplan-Meier estimates of overall survival (Supplementary Figure 1). 

 

Table 1. Clinical data. 

Disease entity THRLBCL
1 

NLPHL
1
 

Nr cases 28 [10] 47 [10] 

male/female 22/6 [8/2] 39/8 [8/2] 

median age in years (range) 50 (20-75) [50 (40-75)] 35 (7 - 74) [43 (22-71)] 

I 0 [0] 15 [5] 

II 3 [0] 9 [3] 

III 7 [3] 6 [1] 

stage (Ann 
Arbor)

2
 

IV 14 [7] 2 [0] 

Low 5 [0] 

low intermediate 8 [5] 

high intermediate 4 [2] 

prognostic 
score (IPI)

2 

High 6 [2] 

not applicable 

complete remission 8 [4] 30 [8] 

partial remission 2 [0] 1 [0] 
initial response 
to treatment

2 

progressive disease 13 [5] 0 [0] 

median follow-up in years (range)
2 

2 (<1-8) [2 (<1-4)] 8 (<1 - 19) [10 (5-12)] 

alive without disease 4 [2] 24 [5] 

alive with disease 2 [1] 2 [1] 

death without disease 4 [0] 4 [2] 

status at last 
follow-up

2 

death with disease 14 [7] 1 [0] 

                                                 
1
 The numbers of the 20 cases selected for microarray expression profiling are given between square parentheses. 
2
 Ann Arbor staging was available for 56 of 75 cases; IPI scoring for 23 of 28 THRLBCL cases; initial response to 
treatment for 54 of 75 cases; and follow-up for 55 of 75 cases. 
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Expression profiling of THRLBCL vs. NLPHL 

Aiming to study the microenvironment, which constitutes the majority of the tumour cell mass 

in both THRLBCL and NLPHL, we performed microarray expression profiling on entire tissue 

sections. Principal component analysis revealed a clear distinction between these two 

lymphomas (Figure 1A). One THRLBCL was clearly separated from the other THRLBCL 

cases. Interestingly, this was the only sample taken from a spleen, while all other samples 

originated from lymph nodes. As the separation of this sample from the other THRLBCL 

tumours was in a direction perpendicular to the direction of separation of THRLBCL and 

NLPHL (Figure 1A), this sample was not removed in subsequent analyses. However, as a 

control, all subsequent analyses were repeated leaving out this aberrant sample, revealing 

similar results (data not shown). The reactive lymph node pool was located near the NLPHL 

samples, in agreement with expectations. Indeed, the microenvironment in NLPHL 

comprises components of the B follicle (with numerous small B cells) and adjacent T cell 

areas (with numerous T cells), while remnants of B follicles are mostly missing in THRLBCL.  

Using highly significant differentially expressed genes, we constructed expression signatures 

of THRLBCL and NLPHL (Supplementary Figure 2). 392 genes were part of the THRLBCL 

signature, while the NLPHL signature contained 135 genes (Figure 1B, Supplementary Table 

1). Consistent with the principal component analysis above, the reactive lymph node 

reference sample clustered together with the 10 NLPHL cases, when the 21 microarray 

profiles were clustered using only these two gene expression signatures (Figure 1B). Finally,  

 

Figure 1 (next page). Microarray expression profiling of 10 NLPHL cases, 10 THRLBCL cases, 

and a reference pool of lymph nodes with follicular hyperplasia. A. Principal component analysis, 

performed on the complete microarray data (54675 probesets). Blue: NLPHL; red: THRLBCL; green: 

reactive lymph node pool. The first principal component (separating NLPHL from THRLBCL) captured 

42 % of the total variance. The second principal component captured 11 % of the total variance. B. 

Heat map of the 874 differentially expressed probesets (527 unique genes, Supplementary Table 1). 

Top: cluster dendrogram, showing the a priori expected separation between the THRLBCL and 

NLPHL samples, and confirming the similarity between NLPHL and the reactive lymph node reference; 

middle: identity of samples (colors as in A.); bottom: graphical representation of gene expression 

(blue: high expression; red: low expression).  
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the sample originating from a THRLBCL located in the spleen again clustered together with 

the other THRLBCL cases. This result persisted even when only the other 9 THRLBCL 

samples were used for building the gene expression signatures (data not shown).  

To validate these gene expression data, we performed real-time quantitative RT-PCR on 10 

genes (Supplementary Materials and Methods), selected for their involvement in interferon 

pathways, macrophage activation and innate immune responses. Five of these genes were 

in the THRLBCL signature (Supplementary Table 1B), while the other 5 genes were key 

genes in the selected pathways that were not differentially expressed according to our strict 

statistical criteria. With the exception of the gene CD74 (differentially expressed according to 

the microarray data but showing no significant expression difference by real-time quantitative 

RT-PCR), the obtained expression fold differences for these genes correspond well to the 

microarray data (Supplementary Table 2). 

 

The gene expression signature of NLPHL: B cell genes 

In comparison with the gene expression profile of THRLBCL, the expression signature of 

NLPHL comprises mainly genes characteristic of B cells (Table 2A, Supplementary Table 

1A), in line with morphological findings. Moreover, the observed similarities between the 

expression profiles of NLPHL and the reactive lymph nodes, characterized by follicular 

hyperplasia, suggest that the components of the B follicle play a major role in both profiles.  

In line with these findings, the NLPHL signature shows significant overlap with the signature 

Monti et al. (14) found to be related to B cell receptor/proliferation in a subgroup of DLBCL 

(of the 43 genes in the B cell receptor/proliferation signature present on our microarray 

platform, 7 were a part of the NLPHL signature, p = 4.4 × 10-8, Supplementary Table 3A). In 

contrast, the overlap with the oxidative phosphorylation signature and host response 

signature of Monti et al. (14) was not more than randomly expected (2 genes and 0 genes 

respectively). 
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Table 2. A selection of genes differentially expressed between NLPHL and THRLBCL with p < 

0.001. 

A. Expressed at higher levels in NLPHL 

HGNC description 
fold 

difference 
p-value 

FCRL1 Fc receptor-like 1 32.1 2.3E-12 

CD79A 

B-cell antigen receptor complex-associated protein alpha-chain 
precursor (Ig-alpha) (MB-1 membrane glycoprotein) (Surface IgM- 
associated protein) (Membrane-bound immunoglobulin-associated 

protein) (CD79a antigen) 

12.4 2.2E-09 

CD79B 
B-cell antigen receptor complex-associated protein beta-chain 
precursor (B-cell-specific glycoprotein B29) (Immunoglobulin- 

associated B29 protein) (IG-beta) (CD79b antigen) 
7.2 8.4E-08 

CD19 
B-lymphocyte antigen CD19 precursor (B-lymphocyte surface 

antigen B4) (Leu-12) (Differentiation antigen CD19) 
18.1 4.1E-08 

CD22 
B-cell receptor CD22 precursor (Leu-14) (B-lymphocyte cell 

adhesion molecule) (BL-CAM) (Siglec-2) 
15.0 2.4E-09 

MS4A1 
B-lymphocyte antigen CD20 (B-lymphocyte surface antigen B1) 

(Leu-16) (Bp35) 
5.5 1.7E-09 

PAX5 
Paired box protein Pax-5 (B-cell-specific transcription factor) 

(BSAP) 
8.3 4.9E-12 

BCL11A 
B-cell lymphoma/leukemia 11A (B-cell CLL/lymphoma 11A) 

(COUP-TF- interacting protein 1) (Ecotropic viral integration site 9 
protein) (EVI-9) 

12.0 1.1E-11 

FGFR1OP 

C-C chemokine receptor type 6 (C-C CKR-6) (CC-CKR-6) (CCR-
6) (LARC receptor) (GPR-CY4) (GPRCY4) (Chemokine receptor-
like 3) (CKR-L3) (DRY6) (G-protein coupled receptor 29) (CD196 

antigen) 

23.4 2.1E-10 

FCER2 
Low affinity immunoglobulin epsilon Fc receptor (Lymphocyte IgE 
receptor) (Fc-epsilon-RII) (BLAST-2) (Immunoglobulin E-binding 

factor) (CD23 antigen) 
14.0 2.3E-10 

BANK1 B-cell scaffold protein with ankyrin repeats 1 21.0 5.1E-08 

 

B. Expressed at higher levels in THRLBCL 

HGNC ID Description 
fold 

difference 
p-value 

FCER1G 
High affinity immunoglobulin epsilon receptor gamma-subunit 

precursor (FceRI gamma) (IgE Fc receptor gamma-subunit) (Fc-
epsilon RI-gamma) 

9.7 5.1E-13 

VSIG4 
V-set and immunoglobulin domain-containing protein 4 precursor 

(Z39Ig protein) 
569.0 6.9E-13 

IDO 
Indoleamine 2,3-dioxygenase (EC 1.13.11.42) (IDO) (Indoleamine-

pyrrole 2,3-dioxygenase) 
9.0 3.9E-08 

CCL8 
Small inducible cytokine A8 precursor (CCL8) (Monocyte 

chemotactic protein 2) (MCP-2) (Monocyte chemoattractant 
protein 2) (HC14) 

143.5 1.1E-09 

TLR1 
Toll-like receptor 1 precursor (Toll/interleukin-1 receptor-like 

protein) (TIL) (CD281 antigen) 
3.1 4.4E-11 

TLR2 
Toll-like receptor 2 precursor (Toll/interleukin 1 receptor-like 

protein 4) (CD282 antigen) 
11.6 2.2E-11 

TLR4 Toll-like receptor 4 precursor (hToll) (CD284 antigen) 4.0 2.5E-09 
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HGNC ID Description 
fold 

difference 
p-value 

TLR8 Toll-like receptor 8 precursor 11.5 1.4E-09 

CD14 
Monocyte differentiation antigen CD14 precursor (Myeloid cell-

specific leucine-rich glycoprotein) 
9.2 4.0E-10 

STAT1 
Signal transducer and activator of transcription 1-alpha/beta 

(Transcription factor ISGF-3 components p91/p84) 
1.6 1.6E-10 

CCR1 
C-C chemokine receptor type 1 (C-C CKR-1) (CC-CKR-1) (CCR-1) 
(CCR1) (Macrophage inflammatory protein 1-alpha receptor) (MIP-
1alpha-R) (RANTES-R) (HM145) (LD78 receptor) (CD191 antigen) 

10.4 1.2E-10 

CXCL10 
Small inducible cytokine B10 precursor (CXCL10) (10 kDa 
interferon- gamma-induced protein) (Gamma-IP10) (IP-10) 

7.7 6.6E-09 

CXCL16 
Small inducible cytokine B16 precursor (Transmembrane 
chemokine CXCL16) (SR-PSOX) (Scavenger receptor for 
phosphatidylserine and oxidized low density lipoprotein) 

7.9 6.2E-10 

CCRL2 
C-C chemokine receptor-like 2 (Putative MCP-1 chemokine 

receptor) (Chemokine receptor CCR11) (Chemokine receptor X) 
11.9 7.4E-08 

CD80 
T-lymphocyte activation antigen CD80 precursor (Activation B7-1 

antigen) (CTLA-4 counter-receptor B7.1) (B7) (BB1) 
3.4 1.7E-09 

CD86 
T-lymphocyte activation antigen CD86 precursor (Activation B7-2 
antigen) (CTLA-4 counter-receptor B7.2) (B70) (FUN-1) (BU63) 

3.8 2.5E-09 

CD274 
Programmed cell death 1 ligand 1 precursor (Programmed death 
ligand 1) (PD-L1) (PDCD1 ligand 1) (B7 homolog 1) (B7-H1) 

(CD274 antigen) 
6.6 3.7E-08 

CSF1R 
Macrophage colony-stimulating factor 1 receptor precursor (CSF-
1-R) (EC 2.7.10.1) (Fms proto-oncogene) (c-fms) (CD115 antigen) 

4.2 3.0E-08 

CSF3R 
Granulocyte colony-stimulating factor receptor precursor (G-CSF-

R) (CD114 antigen) 
9.7 4.4E-11 

PDCD1LG2 
Programmed cell death 1 ligand 2 precursor (Programmed death 
ligand 2) (PD-L2) (PD-1-ligand 2) (PDCD1 ligand 2) (Butyrophilin 

B7-DC) (B7-DC) (CD273 antigen) 
11.8 7.1E-08 

FCGR3B 

Low affinity immunoglobulin gamma Fc region receptor III-B 
precursor (IgG Fc receptor III-1) (Fc-gamma RIII-beta) (Fc-gamma 

RIIIb) (FcRIIIb) (Fc-gamma RIII) (FcRIII) (FcR-10) (CD16b 
antigen) 

25.7 5.5E-10 

FCGR1A 
High affinity immunoglobulin gamma Fc receptor I precursor (Fc-

gamma RI) (FcRI) (IgG Fc receptor I) (CD64 antigen) 
35.3 3.8E-08 

ICAM1 
Intercellular adhesion molecule 1 precursor (ICAM-1) (Major group 

rhinovirus receptor) (CD54 antigen) 
4.8 2.2E-10 

IL1RN 
Interleukin-1 receptor antagonist protein precursor (IL-1ra) (IRAP) 

(IL1 inhibitor) (IL-1RN) (ICIL-1RA) 
67.7 3.7E-09 

IL18BP Interleukin-18-binding protein precursor (IL-18BP) (Tadekinig-alfa) 6.4 1.2E-09 

IRAK3 
Interleukin-1 receptor-associated kinase 3 (EC 2.7.11.1) (IRAK-3) 

(IL- 1 receptor-associated kinase M) (IRAK-M) 
11.3 1.6E-11 

CD74 
HLA class II histocompatibility antigen gamma chain (HLA-DR 
antigens- associated invariant chain) (Ia antigen-associated 

invariant chain) (Ii) (p33) (CD74 antigen) 
2.8 2.2E-08 

S100A9 
Protein S100-A9 (S100 calcium-binding protein A9) (Calgranulin-
B) (Migration inhibitory factor-related protein 14) (MRP-14) (P14) 
(Leukocyte L1 complex heavy chain) (Calprotectin L1H subunit) 

35.5 1.7E-11 

CASP5 
Caspase-5 precursor (EC 3.4.22.-) (CASP-5) (ICH-3 protease) (TY 

protease) (ICE(rel)-III) 
20.0 1.7E-08 

92 Study 3 – A tumour tolerogenic microenvironment in THRLBCL



 

 

HGNC ID Description 
fold 

difference 
p-value 

MSR1 
Macrophage scavenger receptor types I and II (Macrophage 
acetylated LDL receptor I and II) (Scavenger receptor class A 

member 1) (CD204 antigen) 
38.3 2.9E-07 

CD163 
Scavenger receptor cysteine-rich type 1 protein M130 precursor 

(CD163 antigen) (Hemoglobin scavenger receptor) 
50.5 3.1E-09 

SOD2 Superoxide dismutase [Mn], mitochondrial precursor (EC 1.15.1.1) 5.7 5.4E-10 

IFNAR1 
Interferon-alpha/beta receptor alpha chain precursor (IFN-alpha-

REC) 
2.2 6.7E-09 

IFNGR2 
Interferon-gamma receptor beta chain precursor (Interferon-

gamma receptor accessory factor 1) (AF-1) (Interferon-gamma 
transducer 1) 

2.8 1.3E-09 

IFIT3 
Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) 
(IFIT-4) (Interferon-induced 60 kDa protein) (IFI-60K) (ISG-60) 

(CIG49) (Retinoic acid-induced gene G protein) (RIG-G) 
7.1 7.7E-10 

IFI6 
Interferon-induced protein 6-16 precursor (Ifi-6-16) (Interferon 

alpha-inducible protein 6) 
4.7 1.7E-08 

C1QA Complement C1q subcomponent subunit A precursor 8.3 3.6E-09 

C1QC Complement C1q subcomponent subunit C precursor 6.4 4.8E-09 

C2 Complement C2 precursor (EC 3.4.21.43) (C3/C5 convertase) 10.9 8.8E-10 

C3AR1 C3a anaphylatoxin chemotactic receptor (C3a-R) (C3AR) 11.0 1.3E-11 

 

The gene expression signature of THRLBCL: a tolerogenic immune response 

The signature of THRLBCL underlines the crucial role of an IFN-γ regulated and tolerogenic 

pathway within the microenvironment. Indeed, IFN-γ is up-regulated in THRLBCL 

(Supplementary Table 2), as well as several genes encoding for proteins that are up-

regulated in macrophages and dendritic cells upon treatment with IFN-γ (20, 21) (Table 2B, 

Supplementary Table 1B), indicative for a macrophage activated status. These genes include 

those encoding STAT1, Fc-γ receptor I (FcRI or CD64), ICAM-1, IFN-γ induced protein (IP-

10/CXCL10), CXCL16, and in particular CCL8 and IDO (Table 2B, Supplementary Table 1B). 

CCL8, also designated as monocyte chemotactic protein 2 (MCP2), belongs to the CC 

chemokines. It is strongly induced by IFN-γ (22) and is one of the most potent 

chemoattractants for mononuclear cells, including monocytes and T cells (21). Thus, CCL8 

may contribute to the histiocyte-rich (and T-cell rich) composition of the microenvironment in 

THRLBCL. IFN-γ also promotes, in a STAT1 dependent way, the induction of the tryptophan-

degrading enzyme indoleamine 2,3-dioxygenase (IDO) in monocytes, macrophages and 
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dendritic cells (23, 24). Interestingly, both B7-1 (CD80) and B7-2 (CD86) were part of this 

signature, and through a reverse interaction with CTLA4, these membrane proteins have 

been shown to activate IDO expression, as reviewed by Munn and Mellor (25). IDO has been 

described to promote tumour immune tolerance by suppressing local T cell responses and by 

altering the conversion of effector T cells into T regulatory cells (26, 27). Intriguingly, VSIG4 

(V-set and Ig domain-containing 4, also known as Z39Ig), one of the most significant and 

strongly up-regulated genes of the THRLBCL signature, is a B7 family-related protein 

expressed by macrophages and dendritic cells that acts as a strong negative regulator of 

CD4 and CD8 T cell activation in vitro and in vivo (28). Thus together with IDO, VSIG4 may 

contribute to a state of immune suppression and tumour tolerance. Of interest, aside from its  

suppressive properties on T cells, VSIG4 has also been recognized as a new Complement 

Receptor of the Immunoglobulin superfamily (CRIg), required for phagocytosis of circulating 

pathogens (29). In line with this finding, the THRLBCL signature contains scavenger 

receptors (CXCL16, MSR1, CD163) and Toll-like receptors (TLR1, TLR2, TLR4 and TLR8). 

 

Figure 2. Immunohistochemical staining of IDO on a lymph node involved by THRLBCL. Aside 

from small round cells expressing IDO (weak staining), several positive dendritic cells (large cells, 

intensely stained brown) are seen in the near vicinity of the tumour cells (indicated by arrows). These 

strongly stained dendritic cells were found in all assayed THRLBCL cases and in none of the NLPHL 

cases. 
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These data are indicative for innate immune responses in THRLBCL. Therefore, a possible 

involvement of pathogens in the initiation or propagation of the disease cannot be excluded 

and should be further investigated. 

Altogether these findings suggest that CCL8 and IFN-γ are responsible for respectively the 

recruitment and the activation of monocytes, macrophages and dendritic cells and, in 

synergy with TLR-ligands, for the production of high levels of IDO. This key mediator is at 

least partly produced by dendritic cells, a subpopulation of the numerous histiocytes 

characterizing the THRLBCL stroma (Figure 2). These dendritic cells are present in all these 

THRLBCL cases and intensely stained by IDO immunohistochemistry, but absent in NLPHL. 

We speculate that the production of IDO and VSIG4 results in a tolerogenic 

microenvironment of the tumour cells, as schematically represented in Figure 3. This could 

explain the bad prognosis of these patients, in comparison with those affected by NLPHL.  

 

Figure 3. Schematical proposal on the host immune response in THRLBCL, based on our 

morphological and gene expression data, and on literature evidence. By morphology, the 

microenvironment of THRLBCL is hallmarked by the presence of histiocytes/macrophages. Gene 

expression profiling data confirm the central role of macrophages and/or dendritic cells and suggest 

that these cells may be recruited by CCL8 (21, 22). IFN-γ activates these cells to produce IDO (23, 

24). High levels of IDO, together with VSIG4, suppress the proliferation of effector T cells (such as 

CD8+ cytotoxic T cells), resulting in tumour tolerance (26, 28). Macrophages and dendritic cells also 

express receptors involved in innate immunity, including scavenger and Toll-like receptors, and VSIG4 

as a complement receptor (29). Blocking the production and/or the function of CCL8, IFN-γ, and in 

particular IDO and VSIG4 may abrogate the induction of tumour tolerance. It is encouraging to note 

that inhibitors to target IDO are available (30). 
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The THRLBCL signature shows significant overlap with the signature Dave et al. (13) found 

to be related to an unfavourable immune response in part of the follicular lymphomas (9 of 23 

genes, p = 8.7 × 10-10, Supplementary Table 3B). In addition, the signature Monti et al. (14) 

found to be related to host response in a subgroup of DLBCL, enriched in THRLBCL cases, 

was also significantly overrepresented in our THRLBCL signature (14 of 59 genes, p = 3.8 × 

10-11, Supplementary Table 3C). In contrast, the favourable immune response of Dave et al. 

(13), as well as the oxidative phosphorylation and B cell receptor/proliferation signatures of 

Monti et al. (14) did not overlap more than randomly expected with our THRLBCL signature. 

 

Absence of T cell genes in the NLPHL and THRLBCL gene expression signatures 

Neither the NLPHL nor the THRLBCL gene expression signature contained a significant 

component of T cell-associated genes. As shown in Supplementary Table 4, this absence of 

T cell genes is not due to our strict statistical cut-off, as even with a cut-off of p < 0.05 after 

correction for multiple testing, none of the tested T cell-associated genes showed a 

significant difference. In addition, the ratio between CD4+ and CD8+ T cells, described to 

change in favour of the CD8+ cells in THRLBCL (7, 31), was not reflected in the expression 

profiles either, although we did observe a (non-significant) tendency toward higher 

expression of CD8α (Supplementary Table 4). A partial explanation for this unexpected result 

can be sought in the presence of residual non-neoplastic T cell areas in all NLPHL cases. 

Furthermore, no difference in expression of CD57, described as a typical feature of the T 

cells surrounding the tumour cells in NLPHL, was found. The number of CD57+ T cells 

present in NLPHL is variable and CD57+ T cells are also found in THRLBCL (7, 31). Indeed, 

our immunohistochemical stainings confirm this profound difference in location of CD57+ 

cells, but show that the number of these CD57+ cells is approximately equal in both 

lymphoma entities (data not shown), in agreement with our expression profiling results. 

Altogether, this absence of T cell-associated genes in the THRLBCL expression signature 

might be regarded as a confirmation that not the T cells, but the macrophages/histiocytes 
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represent the functionally important component of the microenvironment in THRLBCL. 

Therefore, we hypothesize that the tolerogenic immune response, mainly orchestrated by 

macrophages/histiocytes and dendritic cells in the THRLBCL microenvironment, is the 

feature responsible for the adverse prognosis of this lymphoma entity, in comparison to 

NLPHL. 

 

THRLBCL and NLPHL gene expression signatures in additional cases 

As we observed large differences between the expression profiles of NLPHL and THRLBCL, 

we were wondering if a simple and intuitive classifier, based on real-time quantitative RT-

PCR measurements of a very limited number of genes, would be able to discriminate both 

entities in additional cases. Therefore, we selected three genes from the gene expression 

signatures and we assayed those in 69 additional NLPHL and THRLBCL cases, both in-

house and external, using quantitative RT-PCR (see Supplementary Materials and Methods). 

In all cases, the quantitative RT-PCR classification agreed with our morphological diagnosis 

(Supplementary Table 5, Supplementary Figure 3), although in a proportion of the 14 

external cases (4 cases, all diagnosed with NLPHL), the difference between the NLPHL 

score and the THRLBCL score was less pronounced than in the in-house cases. These 

results underline that the NLPHL and THRLBCL cases selected for microarray expression 

are representative for these lymphoma entities and suggests that this classifier might have 

some diagnostic use, e.g. in supporting morphological findings. 

 

Conclusion 

We demonstrated that the gene expression profile of THRLBCL, in comparison with that of 

NLPHL, is hallmarked by an increased expression of IFN-γ, CCL8, IDO and VSIG4. Based 

on their function as described in the literature, the products of these genes point towards a 

distinct tolerogenic host immune response that may play a key role in the aggressive 

behaviour of this lymphoma. This leads us to put these mediators forward as potential targets 

for therapy. 
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ABSTRACT  

Purpose Polysomy 17 is frequently found in breast cancer and may complicate the 

interpretation of HER2 testing results. We investigated the impact of polysomy 17 on 

HER2 testing and studied its clinicopathological significance in relation to HER2 gene 

amplification.  

Patients and Methods In 226 patients with primary invasive breast carcinoma,  

HER2 gene and chromosome 17 copy numbers were determined by dual-color FISH. 

The interpretation of FISH results was based on either absolute HER2 gene copy 

number or the ratio HER2/Chromosome 17. Results were correlated to HER2 protein 

expression on IHC, HER2 mRNA expression by RT-PCR and to various 

clinicopathological parameters.  

Results All cases with an equivocal HER2 result by FISH, either by absolute HER2 

copy number (44/226, 19.5%) or by the ratio HER2/Chromosome 17 (3/226, 1.3%), 

displayed polysomy 17. On its own, polysomy 17 was not associated with HER2 

overexpression on IHC or increased HER2 mRNA levels by RT-PCR. Moreover and 

in contrast to HER2 gene amplification, polysomy 17 was not associated with high 

tumor grade, hormone receptor negativity or reduced disease-free survival. 

Conclusion Polysomy 17 affects HER2 testing in breast cancer and is a major cause 

of equivocal results by FISH. We show that tumors displaying polysomy 17 in the 

absence of HER2 gene amplification resemble more HER2 negative than HER2 

positive tumors. These findings urge the need for clinical trials to investigative 

whether or not polysomy 17 tumors benefit from HER2-targeted therapy. 
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INTRODUCTION 

The search for prognostic markers and therapeutic targets in human breast cancer 

has revealed a major role for the HER2 oncoprotein. Overexpression of HER2 has 

been reported in 15 to 25% of invasive breast carcinomas.1,2 In most cases, this can 

be attributed to amplification of the HER2 oncogene located on the long arm of 

chromosome 17 (17q12).3 Both HER2 overexpression and HER2 gene amplification 

have been correlated with poor clinical outcome.4-6 Apart from its prognostic value, 

the HER2 status has major therapeutic implications. Not only does HER2 

overexpression predict response to certain chemotherapeutic agents such as 

anthracyclines or paclitaxel, it is also considered to be a strong predictive marker for 

clinical benefit from HER2-targeted therapy (trastuzumab) in the metastatic and more 

recently also in the adjuvant setting.7-12 While tumors not expressing HER2 have 

virtually no chance of responding to trastuzumab, moderate or even high levels of 

expression are not always associated with a therapeutic success. Moreover, treating 

breast cancer patients with trastuzumab is expensive and not without risk since 

serious cardiac toxicity has been observed in approximately 1 to 4% of patients.13 

Therefore, correct identification of patients that will benefit from trastuzumab therapy 

is of utmost importance.   

 

A wide variety of techniques can be applied to determine the HER2 status in breast 

cancer tissue. Of these, immunohistochemistry (IHC) and fluorescence in situ 

hybridization (FISH) are most frequently used. Although both methods have shown 

high concordance in some studies, reproducibility remains poor in others.14,15 

Recently, an expert team assembled by the American Society of Clinical Oncology 

(ASCO) and the College of American Pathologists (CAP) has developed guidelines 

for HER2 testing in breast cancer.16 Accordingly, HER2 testing results should be 
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reported as either positive, negative or equivocal. The latter group represents a gray 

area of breast tumors scoring 2+ on IHC or having a modest increase in HER2 gene 

copy number by FISH. Interestingly, equivocal HER2 testing results have been 

related to chromosome 17 polysomy.17-19 Indeed, tumors featuring an increased 

chromosome 17 copy number will contain more copies of the HER2 gene which 

could result in elevated HER2 expression. At present, it remains unknown to what 

extent polysomy 17 obscures the interpretation of HER2 testing results and whether 

or not polysomy 17 tumors share biological characteristics with true HER2 positive 

breast cancers. In the present study, we aimed to clarify this issue. 
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MATERIALS AND METHODS 

Cases 

Since 2002, routine HER2 FISH analysis (PathVysion, Vysis, Downers Grove, IL, 

USA) has been performed at the Pathology Department of the University Hospital 

Gasthuisberg on breast cancer cases showing an equivocal or positive HER2 result 

on IHC (score 2+/3+). From this series of 751 cases, non-invasive breast 

carcinomas, metastatic lesions, cases lacking clinical or pathological data and 

referral cases were excluded. The remaining 171 cases as well as a control series of 

55 consecutive cases with a negative HER2 result on IHC were recruited into the 

present study. Table 1 summarizes the clinicopathological characteristics of the 226 

included cases. Patients underwent mastectomy or local wide excision of their 

primary breast tumor with an axillary lymph node dissection at least at level I and II. 

Histopathological examination was performed on HE stained sections and tumors 

were classified and graded according to the World Health Organization Classification 

and the Elston and Ellis grading system respectively.20,21 Disease-free survival was 

defined as the time period (in months) between the date of surgery and the date of 

recurrence or distant metastasis. All patients had the best standard of care for local 

and systemic treatment; trastuzumab was not yet standard of care in the adjuvant or 

neo-adjuvant setting. This study was approved by the Local Commission for Medical 

Ethics and Clinical Studies.  

 

Immunohistochemistry 

Immunohistochemical HER2 assessment was performed using the CB11 mouse 

monoclonal antibody (1/40 diluted, Novocastra Laboratories, Newcastle-upon-Tyne, 

UK). Staining results were scored as described previously.22 For the present study, 

we validated our IHC assay against HercepTest (DakoCytomation, Glostrup, 
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Denmark) in a subset of 50 cases (35 score 0/1+; 15 score 3+) according to the 

ASCO/CAP guidelines for HER2 testing16, revealing 98% concordance between both 

IHC assays. For all cases, immunohistochemical data were available on the estrogen 

receptor (ER) and progesterone receptor (PR) status (mouse monoclonal antibodies 

NCL-ER-6F11, 1/30 diluted and NCL-PgR-312, 1/40 diluted) (Novocastra 

Laboratories). 

Table 1. Clinicopathological characteristics of 226 invasive breast carcinoma              
cases included in our study.  

Parameter N (%) 

Age 
≤ 50 years 
> 50 years 
Tumor grade 

I 
II 
III 

Tumor size 
≤ 2 cm 
> 2 cm 
NPI 
I 
II 
III 

LN status 
Negative 
Positive 
LVI 

Negative 
Positive 
ER status 
Negative 
Positive 
PR status 
Negative 
Positive 

HER2 status on IHC 
Negative (0/1+) 
Equivocal (2+) 
Positive (3+) 
Follow-up 

Mean (months) 
Metastasis 

 
75 (33.2) 
151 (66.8) 

 
12 (5.3) 
75 (33.2) 
139 (61.5) 

 
103 (45.6) 
123 (54.4) 

 
44 (19.5) 
102 (45.1) 
80 (35.4) 

 
120 (53.1) 
106 (46.9) 

 
180 (79.6) 
46 (20.4) 

 
47 (20.8) 
179 (79.2) 

 
90 (39.8) 
136 (60.2) 

 
55 (24.3) 
99 (43.8) 
72 (31.8) 

 
42.2 

33 (14.6) 

    NPI, Nottingham Prognostic Index; LN, lymph node; LVI, lymphovascular invasion;  
                ER, estrogen receptor; PR, progesterone receptor; IHC, Immunohistochemistry;                              
                N, number of cases; (%), percentage of cases 

 

Fluorescence in situ Hybridization (FISH) 

FISH analysis (PathVysion, Vysis) was performed manually, according to the 

manufacturer’s recommendations. Using a Zeiss Axioplan 2 epifluorescence 
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microscope (Carl Zeiss, Germany), we counted signals in at least 100 tumor nuclei in 

2 or more separate regions of the tissue section. Averages of HER2 gene and 

chromosome 17 copy number counts were rounded off to the nearest whole number; 

in case HER2 gene amplification appeared as clusters of uncountable HER2 signals, 

we estimated the average HER2 gene copy number. FISH results were interpreted 

according to 2 different scoring methods: (1) based on absolute HER2 gene copy 

number (HER2 absolute) or (2) based on the ratio HER2 gene/Chromosome 17 copy 

number (HER2/Chr17 ratio). Actually, these scoring methods were developed to be 

used in combination with respectively the Oncor INFORM HER-2/neu test kit 

(Ventana Medical Systems) or the PathVysion test kit. We have previously compared 

both FISH test kits in a series of 20 breast cancer cases and found that the count of 

absolute HER2 gene copy number was nearly identical for both kits.22 Therefore, we 

applied both scoring methods in combination with the PathVysion test kit. As 

proposed by the ASCO/CAP guidelines16, an absolute HER2 gene copy number 

lower than 4 or a HER2/Chr17 ratio of less than 1.8 was considered HER2 negative; 

an absolute HER2 copy number between 4 and 6 or a HER2/Chr17 ratio between 1.8 

and 2.2 was considered HER2 equivocal, and an absolute HER2 gene copy number 

higher than 6 or a HER2/Chr17 ratio higher than 2.2 was considered HER2 positive. 

Polysomy 17 was defined as an average chromosome 17 copy number ≥ 3.19,23  

Lymphocytes, (myo)fibroblasts and normal epithelial cells served as internal control.  

 

Quantitative Reverse Transcriptase Polymerase Chain Reaction 

In 157 out of 226 cases, representative frozen tumor tissue was available for 

quantitative RT-PCR analysis. For each case, total RNA was extracted from 20µm 

sections using the RNeasy mini kit (Qiagen, Hilden, Germany). RNA purity and 

concentration were checked spectrophotometrically (Nanodrop Technologies, 
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Wilmington DE, USA). One µg total RNA was reverse transcribed and PCR reactions 

on the resulting cDNA were performed in the ABI-Prism 7900 HT Sequence Detector 

(Applied Biosystems, Lennik, Belgium). PCR primers and probes for HER2 and 

housekeeping gene GAPDH were obtained from Applied Biosystems (Taqman® 

Gene Expression Assays). Each sample was analyzed in triplicate in a MicroAmpTM 

optical 96-well reaction plate (Applied Biosystems). A sample of normal breast tissue 

was used as a calibrator and the ∆∆Ct-method was applied to determine relative 

gene expression levels.24  

 

Statistical analysis 

Differences in HER2 mRNA expression levels between different subgroups were 

assayed by a Wilcoxon rank sum test. Differences in clinicopathological variables 

between subgroups were checked using chi-square tests. The Bonferroni method 

was used for multiple testing correction. Survival analysis was performed using the 

Kaplan-Meier method. Survival differences between subgroups were assayed by log-

rank tests. A p-value of < 0.05 was considered statistically significant.  
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RESULTS 

Comparison between IHC and FISH for HER2 testing  

This comparison is outlined in Table 2. An equivocal HER2 status by FISH was found 

in 44/226 cases (19.5%) based on absolute HER2 gene copy number and in 3/226 

(1.3%) based on the ratio HER2/Chr17. Note that none of these cases showed 

overexpression on IHC (score 3+). Remarkably, all cases with an equivocal HER2 

status by FISH as well as those cases showing discordant HER2 testing results 

displayed polysomy 17. 

Table 2. Comparison between IHC and FISH for determination of the HER2 status in breast 
cancer. 

Positive Equivocal Negative            FISH 
IHC 

HER2 > 6 R > 2.2 4≤HER2≤ 6 1.8≤R≤2.2 HER2 < 4 R < 1.8 

 
Positive (3+) 

 

 
72/72 (100) 

 
72/72 (100) 

 
0 

 
0 

 
0 

 
0 

 
Equivocal (2+) 

 

 
27/99 (27.3) 

 
25/99 (25.3) 

 
37/99 (37.4) 

 
1/99 (1.0) 

 
35/99 (35.3) 

 
73/99 (73.7) 

 
Negative (0/1+) 

 

 
3/55 (5.5) 

 
0 

 
7/55 (12.7) 

 
2/55 (3.6) 

 
45/55 (81.8) 

 
53/55 (96.4) 

 
102/226 
(45.1) 

97/226 
(42.9) 

44/226 
(19.5) 

3/226 
 (1.3) 

80/226 
(35.4) 

126/226 
(55.8) 

IHC, immunohistochemical determination of HER2 protein expression scored on a 0 to 3+ scale; 
FISH, fluorescence in situ hybridization to determine the HER2 status based on either absolute HER2 
gene copy number (HER2) or the ratio of HER2/Chromosome 17 copy number (R); Percentages are 
given between brackets 

 

Impact of polysomy 17 on HER2 testing results by IHC and FISH 

Polysomy 17 was observed in 104/226 cases (46.0%), either on its own (62/104) or 

in combination with HER2 gene amplification (42/104). As shown in Table 3, 

polysomy 17 did not affect the interpretation of HER2 testing results by FISH when it 

was accompanied by HER2 gene amplification. Furthermore, most of these cases 

showed overexpression on IHC (78.6% score 3+). By contrast, a score 3+ on IHC 

was not found in tumors displaying polysomy 17 in the absence of HER2 gene 

amplification. Moreover, in cases where polysomy 17 on its own resulted in an 

absolute HER2 gene copy number higher than 3, the interpretation of HER2 FISH 
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results was obscured. Indeed, 44 cases showed a modest increase in HER2 gene 

copy number due to polysomy 17 (4 to 6 copies) and were interpreted as equivocal 

by FISH if only HER2 copies were counted. However, when chromosome 17 copy 

number was taken into account (HER2/Chr17 ratio), all these cases turned out to be 

HER2 negative. Five cases showed a relatively high increase in HER2 gene copy 

number due to polysomy 17 (7 to 10 copies) and were interpreted as positive based 

on absolute HER2 gene copy number. According to the HER2/Chr17 ratio however, 

2 of these cases were interpreted as HER2 negative (ratio 7/4 and 7/5, both < 1.8) 

whereas 3 cases fell in the equivocal range (ratio 10/5 = 2.0). These data illustrate 

how polysomy 17 can be interpreted as HER2 positive or HER2 negative, depending 

on which scoring method is applied to interpret HER2 FISH results.  

Table 3. Polysomy 17 in relation to HER2 testing results. 

 PS 17 + HER2 GA 
N (%)  

PS 17 - HER2 GA 
N (%) 

HER2 status by IHC  
Positive (score 3+) 
Equivocal (score 2+) 
Negative (score 0/1+) 
 
HER2 status by FISH (HER2) 
Positive (HER2 > 6) 
Equivocal (4 ≤ HER2 ≤  6) 
Negative (HER2 < 4) 
 
HER2 status by FISH (R) 
Positive (R > 2.2) 
Equivocal (1.8 ≤ R ≤ 2.2) 
Negative (R < 1.8) 

 

 
33 (78.6) 
9 (21.4) 

0 
 

 
42 (100) 

0 
0 

 
 

42 (100) 
0 
0 

 

 
0 

46 (74.2) 
16 (25.8) 

 
 

5 (8.1) 
44 (71.0) 
13 (20.9) 

 
 

0 
3 (4.8) 

59 (95.2) 

 N = 42 N = 62 

IHC, immunohistochemical determination of HER2 protein expression scored on a 0 to 3+ scale; 
FISH, fluorescence in situ hybridization to determine the HER2 status based on either absolute HER2 
gene copy number (HER2) or the ratio of HER2/Chromosome 17 copy number (R); PS 17 + HER2 
GA, polysomy 17 accompanied by HER2 gene amplification; PS 17 - HER2 GA, polysomy 17 on its 
own, in the absence of HER2 gene amplification; N, number of cases; (%), percentage of cases 
 

 

Stratification 

To investigate whether tumors displaying polysomy 17 in the absence of HER2 gene 

amplification should be regarded as HER2 negative or HER2 positive, we compared 
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HER2 mRNA levels and clinicopathological characteristics in the following 3 groups: 

(1) HER2 negative tumors (normal HER2 gene and chromosome 17 copy number, n 

= 67), (2) Polysomy 17 tumors (polysomy 17 in the absence of HER2 gene 

amplification, n = 62) and (3) HER2 positive tumors (HER2 gene amplification 

defined as a ratio HER2/Chr17 ≥ 2.2, n = 97). 

 

 

Figure 1. Distribution of HER2 mRNA expression values in polysomy 17 tumors compared to 
HER2 negative and HER2 positive cases. Polysomy 17 tumors (gray bars) and HER2 negative 
tumors (white bars) show a similar distribution pattern of low HER2 mRNA expression values. By 
contrast, HER2 positive cases (black bars) frequently show elevated expression values with most 
cases having at least a 5-fold increase in HER2 mRNA expression compared to normal breast tissue. 

 

HER2 mRNA expression by quantitative RT-PCR 

As illustrated in Figure 1, polysomy 17 tumors had low relative HER2 mRNA 

expression values comparable to those found in the HER2 negative group (mean 

expression 0.914 versus 0.912, p = 0.1865). By contrast, HER2 positive tumors 

generally had increased relative expression values, with most cases showing at least 

a 5-fold increase in HER2 mRNA expression compared to normal breast tissue. In 

HER2 positive cases, HER2 mRNA expression levels were significantly higher than 
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those in HER2 negative (mean 7.831 versus 0.912, p < 10-15) and polysomy 17 

tumors (mean 7.831 versus 0.914, p < 10-16).  

Table 4. Distribution of clinicopathological features in polysomy 17 tumors compared to HER2 
negative and HER2 positive cases.  

Parameter HER2 negative 
 N (%) 

p-value
1
 Polysomy 17 

N (%) 
p-value

2
 HER2 positive 

N (%) 
p-value

3 

 
Age 

≤ 50 years 
> 50 years 

 
Tumor grade 

I 
II 
III 
 

Tumor size 

≤ 2 cm 
> 2 cm 

 
NPI 

I 
II 
III 
 

LN status 

Negative 
Positive 

 
LVI 

Negative 
Positive 

 
ER status 

Negative 
Positive 

 
PR status 

Negative 
Positive 

 
Follow-up 

Mean (months) 
Metastasis 

 

 
 

21 (31.3) 
46 (68.7) 

 
 

6 (8.9) 
38 (56.7) 
23 (34.4) 

 
 

29 (43.3) 
38 (56.7) 

 
 

20 (29.8) 
30 (44.8) 
17 (25.4) 

 
 

41 (61.2) 
26 (38.8) 

 
 

55 (82.1) 
12 (17.9) 

 
 

5 (7.5) 
62 (92.5) 

 
 

18 (26.9) 
49 (73.1) 

 
 

47.7 
3 (4.5) 

 

 
1.0 
 
 
 

1.0 
 
 
 
 

1.0 
 
 
 

1.0 
 
 
 
 

1.0 
 
 
 

1.0 
 
 
 

1.0 
 
 
 

1.0 
 
 
 

NA 
 
 
 

 
 

14 (22.6) 
48 (77.4) 

 
 

5 (8.1) 
23 (37.1) 
34 (54.8) 

 
 

24 (38.7) 
38 (61.3) 

 
 

15 (24.2) 
27 (43.5) 
20 (32.3) 

 
 

35 (56.5) 
27 (43.5) 

 
 

53 (85.5) 
9 (14.5) 

 
 

4 (6.5) 
58 (93.5) 

 
 

18 (29.0) 
44 (71.0) 

 
 

48.6 
9 (14.5) 

 
0.18 
 
 
 

3.1 ×××× 10
-3 
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NPI, Nottingham Prognostic Index; LN, lymph node; LVI, lymphovascular invasion; ER, estrogen 
receptor; PR, progesterone receptor; N, number of cases; (%), percentage of cases; p-value

1
, HER2 

negative versus Polysomy 17; p-value
2
: Polysomy 17 versus HER2 positive; p-value

3
: HER2 positive 

versus HER2 negative; statistically significant differences are highlighted in bold; NA, not applicable; all 
p-values given are the result of a Chi-square test, corrected for multiple testing by the Bonferroni 
method. 

 

Clinicopathological characteristics of polysomy 17 tumors 

Table 4 shows the distribution of clinicopathological parameters in HER2 negative, 

polysomy 17 and HER2 positive tumors. Compared to HER2 negative cases, HER2 

positive tumors showed higher tumor grade (p < 10-8), higher NPI risk group (p = 
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0.030) and were more frequently ER negative (p < 0.001) and PR negative (p = 

0.0062). Polysomy 17 tumors were more similar to HER2 negative than HER2 

positive cases. While tumor grade (p = 0.0031), ER status (p < 0.001) and PR status 

(p = 0.024) differed significantly between polysomy 17 tumors and HER2 positive 

cases, no differences were found between polysomy 17 tumors and HER2 negative 

cases in any of the clinicopathological parameters investigated. Kaplan-Meier 

survival curves (Figure 2) illustrate shorter disease-free survival in HER2 positive 

tumors compared to HER2 negative cases (p < 0.001). Survival in polysomy 17 

tumors was intermediate between HER2 negative (not significant, p = 0.056) and 

HER2 positive cases (p = 0.031). 

 

 

 

Figure 2. Kaplan-Meier plot of polysomy 17 tumors compared to HER2 negative and HER2 
positive cases. 
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DISCUSSION 

Polysomy 17 is common in breast cancer, with reported frequencies ranging from 13 

to 46% depending on the study population and the definition of polysomy 17.17-19,23,25 

In our series, including 171 cases with an IHC score 2+/3+ and 55 with a score 0/1+, 

polysomy 17 was found in 46.0%. Since polysomy 17 implies extra copies of the 

HER2 gene, is conceivable that polysomy 17 might lead to increased HER2 

expression levels. However, it remains unclear whether or not polysomy 17 results in 

HER2 overexpression in a way similar to HER2 gene amplification and whether or 

not polysomy 17 tumors should be regarded as HER2 positive.17,18,25-29   

 

In the present study, we provide evidence that polysomy 17 and HER2 gene 

amplification are two distinct genetic aberrations with a different clinicopathological 

significance in breast cancer. First, we show that polysomy 17 on its own does not 

result in HER2 overexpression, neither at the protein nor at the mRNA level. Indeed, 

we did not encounter any breast tumor showing HER2 overexpression on IHC (score 

3+) and polysomy 17 in the absence of HER2 gene amplification. Moreover and in 

line with Dal Lago et al26, we did not find increased HER2 mRNA expression by 

quantitative RT-PCR in polysomy 17 cases, not even in those tumors showing up to 

10 HER2 gene copies. Second, we could demonstrate that HER2 gene amplification 

and polysomy 17 have a different clinicopathological impact in breast cancer. While 

HER2 gene amplification was clearly associated with high tumor grade, hormone 

receptor negativity and reduced disease-free survival, polysomy 17 did not show any 

significant association with adverse clinicopathological parameters. Nevertheless, a 

trend toward shorter disease-free survival was observed in polysomy 17 tumors. 

Since polysomy 17 may reflect aneuploidy and increased chromosomal instability, it 

can be expected that tumors harboring this anomaly will behave more aggressively 
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than those without it.30-32 Still, our data suggest that the clinicopathological impact of 

polysomy 17 is not as strong as that of HER2 gene amplification in breast cancer and 

that tumors displaying polysomy 17 in the absence of HER2 gene amplification 

behave more similar to HER2 negative than to HER2 positive tumors.  

 

Our current findings could have important clinical implications. Since polysomy 17 on 

its own is not associated with HER2 overexpression and since it does not have the 

same clinicopathological significance as true HER2 gene amplification, one may 

wonder whether polysomy 17 tumors benefit from HER2-targeted therapy such as 

trastuzumab, which targets the HER2 protein at the tumor cell membrane. Indeed, 

the best therapeutic response rates have been observed in breast cancers showing 

HER2 overexpression by IHC.28,33 Recently, trastuzumab response has been 

reported in two cases showing polysomy 17 in the absence of HER2 gene 

amplification and in one case showing neither polysomy 17 nor HER2 gene 

amplification. Of interest, all 3 cases showed HER2 overexpression on IHC.28 We 

speculate that in such rare cases HER2 overexpression might result from 

deregulated gene transcription. Further phase III trials are needed to elucidate 

whether or not polysomy 17 tumors benefit from HER2-targeted therapy.  

 

It is important to realize that polysomy 17 has a substantial impact on the 

interpretation of HER2 testing results, especially in those cases with an equivocal 

HER2 status on IHC (score 2+). Indeed, in those cases where polysomy 17 results in 

a moderate increase in HER2 gene copy number (4 to 6), HER2 FISH results could 

be interpreted as equivocal if only absolute HER2 copies are counted. As such, we 

found that 37/99 (37.4%) cases with an IHC score 2+ were still considered 

“equivocal” after FISH analysis based on absolute HER2 copy number whereas only 
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1 case (1.0%) remained equivocal based on the HER2/chromosome 17 ratio. Based 

on these data and given that about 15% of newly diagnosed breast cancers show an 

IHC score 2+16, we estimate that 5.6% and 0.15% of breast carcinomas remain 

equivocal after FISH testing, depending on whether or not a control probe for 

chromosome 17 is used. Remarkably, the one case (0.15%) showing an equivocal 

HER2 status on both IHC and FISH, even after correction for chromosome 17 copy 

number, also displayed polysomy 17 with a mean ratio of 10/5 or 2.0. In this 

particular case, quantitative RT-PCR indicated no increase in HER2 mRNA 

expression, suggesting a negative HER2 status after all. In the end, one may wonder 

whether quantitative RT-PCR could be a valuable alternative for HER2 testing in 

routine clinical practice. Still, the need for representative fresh or frozen breast 

cancer tissue for optimal RT-PCR testing results, as well as inevitable dilution of 

invasive tumor cells with normal and stromal cell populations or non-invasive breast 

lesions limits the use of RT-PCR for routine HER2 testing.  

 

In conclusion, polysomy 17 is a major cause of equivocal HER2 testing results by 

FISH. We provide evidence that polysomy 17 and HER2 gene amplification have a 

distinct impact on the clinicopathological parameters in breast cancer and that 

polysomy 17 tumors should be regarded HER2 negative. Indeed, HER2 gene 

amplification usually results in excessive HER2 expression levels and defines a 

distinct clinicopathological breast cancer entity characterized by high tumor grade, 

reduced hormone receptor expression and a poor prognosis. By contrast, polysomy 

17 is not related to HER2 overexpression or adverse clinicopathological features but 

may rather reflect increased chromosomal instability in breast cancer. These findings 

underscore the importance of using dual-color systems for HER2 (F)ISH testing and 
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urge the need for clinical trials to investigate whether or not polysomy 17 tumors 

benefit from HER2-targeted therapy.  
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General discussion and
perspectives

1 Computational methods for gene prioritization and
cis-regulatory module detection

In this work, we developed two novel computational methods: Endeavour and
ModuleMiner. ModuleMiner detects similar cis-regulatory modules in a set of
co-regulated or co-expressed genes, while the purpose of Endeavour is candidate
gene prioritization. We validated both methods extensively in silico and we
performed an integrated case-study combining cis-regulatory module detection
and gene prioritization.

1.1 ModuleMiner: cis-regulatory module detection

In the general introduction to this work, we divided the available cis-regulatory
module detection algorithms into three classes: (i) methods that detect CRMs
as clusters of binding sites for a user-defined set of PWMs (Type I CRM de-
tection algorithms), (ii) methods that detect similar CRMs in co-regulated
genes (Type II CRM detection methods) and (iii) methods that detect CRMs
genome-wide using no prior combination of PWMs. Type I algorithms are
the best performing of the three, but the paucity of available data limits their
practical applicability. Type II algorithms show an intermediate performance,
and are more generally applicable, as sets of co-regulated or co-expressed genes
can easily be obtained, e.g. from microarray experiments. Type III algorithms
tackle a considerably more difficult problem than Type I or Type II algorithms,
resulting in lower performance. However, they can easily be applied in a high-
throughput manner to find CRMs in the complete genome.

We reasoned Type II CRM detection algorithms show a favorable balance
between general applicability and performance limitations. Furthermore, only
a limited number of “first-generation” methods pre-existed for this subtype,
allowing opportunities for improvement. For these reasons, we aimed to de-
velop a novel Type II CRM algorithm, ModuleMiner. Contrary to the existing
approaches, ModuleMiner specifically looks for the combination of PWMs that
shows maximum specificity for the given set of co-regulated genes, compared
to all other genes in the genome. This whole genome optimization procedure
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allows the elimination of a number of critical parameters of the existing algo-
rithms. Indeed, most of the existing algorithms require the definition of the
length of the CRMs and the number of PWMs involved (tables 3 and 5 in
the General introduction), while ModuleMiner’s whole genome optimization
procedure allows an optimization over these parameters as well.

ModuleMiner can be considered a wrapper algorithm around ModuleScan-
ner, a Type I CRM detection algorithm (tables 1 and 2 in the General intro-
duction). Given a Transcriptional Regulatory Model (TRM, a combination of
PWMs, supplemented by a number of parameters), ModuleScanner scans the
genome for CRMs that fit this TRM. ModuleMiner uses the best CRM predic-
tion near each gene to rank all genes in the genome. By combining the ranks
of the given co-regulated genes (i.e. the input to the algorithm), ModuleMiner
can assign a “fitness score” to that TRM. By varying these TRMs and re-
peating this ModuleScanner-centered procedure a large number of times (in a
genetic algorithm-based optimization strategy), ModuleMiner obtains the opti-
mal TRM for that given set of co-regulated genes. The choice of ModuleScanner
as the Type I CRM detection algorithm was determined mainly by reasons of
computational complexity: as for each TRM the complete genome needs to be
scanned, and typically about 50000 TRMs are evaluated in the optimization
process, the speed (and as a consequence also the limited complexity) of the
underlying Type I algorithm is of paramount importance. It would be interest-
ing to evaluate to what extent ModuleMiner’s performance can be increased by
replacing ModuleScanner by more advanced Type I algorithms, most particu-
larly methods based on hidden Markov models (e.g. Ahab (Rajewsky et al.,
2002), Stubb (Sinha et al., 2003, 2004), table 1 in the introductory chapter)
and the recent Enhancer Element Locator algorithm which aligns sequences in
the motif domain (Hallikas et al., 2006). However, in practice, this will likely
only be possible in a few years time, when more computational power becomes
available.

We validated ModuleMiner by direct comparison with other state-of-the-
art Type II CRM detection algorithms on benchmark data, and we observed
a consistent higher performance of our novel algorithm. We also evaluated the
sensitivity of ModuleMiner to noise in its input genes, leading to the conclusion
that provided a “critical mass” of co-regulated genes is available, ModuleMiner
is highly insensitive to additional non-co-regulated genes.

We applied ModuleMiner on a larger scale, to (i) sets of genes involved
in specific embryonic development processes and (ii) microarray clusters con-
taining genes co-expressed in specific adult tissues. In most of these gene
sets, ModuleMiner was able to identify similar CRMs, as confirmed by five-
fold cross-validation and/or leave-one-out cross-validation. In total, 209 CRMs
were identified in 9 (of 10) presented microarray clusters, and 48 CRMs were
identified in 5 (of 5) custom-build embryonic development gene sets.

When we regarded the positions of both sets of CRMs, we noticed a pro-
nounced difference. CRMs predicted to direct expression in terminally differ-
entiated tissues are highly enriched close to the transcription start site, while
CRMs predicted to direct expression during embryonic development are more
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evenly distributed and may even be depleted in the proximal promotor region.
Indeed, 63 % of the “adult tissue” CRMs, and only 8 % of the “embryonic
development” CRMs are within 200 base pairs of the transcription start site.
This led us to hypothesize that transcription regulation in adult tissue expres-
sion is mostly exerted by proximal promotors, while transcription regulation
during embryonic development is mostly controlled by more distal enhancers.

The recently developed Type I (and Type III) CRM detection algorithm
Enhancer Element Locator (Hallikas et al., 2006) is based on the novel principle
of aligning predicted transcription factor binding sites (not sequences), and
shows good performance. It would be interesting to apply this same principle
in a Type II CRM detection algorithm.

One long term goal of these CRM detection methods is a complete annota-
tion of all transcriptional regulatory elements in the human genome. Because of
the reasons mentioned above, we believe Type II CRM detection algorithms are
the most likely to deliver major contributions to this in the near and mid-term
future. We expect that the protein binding microarray technique (Mukherjee
et al., 2004) will make PWMs available for a large part of the human transcrip-
tion factor repertoire, and that this will have a strong positive effect on the
performance of Type II(a) CRM detection methods.

1.2 Endeavour: gene prioritization by genomic data fusion

In the field of computational gene prioritization, three novel well performing
systems biology methods have recently been developed: Prioritizer (Franke
et al., 2006), the method by Lage et al. (2007), and our own method En-
deavour (this work; Aerts et al. (2006)). While the former two are network-
based methods integrating multiple data sources into one network, Endeavour
is not: it uses each data source separately to prioritize the candidate genes,
and then fuses the obtained individual prioritizations into one global priori-
tization. An advantage of both network-based prioritization methods is the
biologically attractive representation of the underlying data. However, the En-
deavour framework is more modular and able to handle more heterogeneous
data sources. Indeed, data sources that cannot easily be converted into net-
works (e.g. literature data, microarray data and sequence similarity) represent
challenges for these network-based methods. Although often these challenges
can be overcome, converting these data into networks will likely result in a loss
of information and a drop in performance.

Endeavour now integrates data from more than 10 different data sources: (i)
text mining, (ii) Gene Ontology annotations, (iii) protein domains (InterPro),
(iv) pathway information (the Kyoto Encyclopedia of Genes and Genomes,
KEGG), (v) anatomical EST expression data, (vi) microarray gene expression
data, (vii) cis-regulatory motif data, (viii) cis-regulatory modules (Module-
Searcher, Aerts et al. (2004)), (ix) sequence similarity (BLAST), (x) protein-
protein interactions (the Biomolecular Interaction Network Database, BIND)
and (xi) general disease probabilities (Lopez-Bigas and Ouzounis, 2004; Adie
et al., 2005). Each of these data sources is used separately to prioritize the
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candidate genes, based on similarities with a given set of training genes. Fi-
nally, order statistics are used to integrate these prioritizations into one overall
prioritization.

We validated Endeavour by a large-scale leave-one-out cross-validation on
627 disease genes from the Online Mendelian Inheritance in Man (OMIM)
database and 76 pathway genes from Gene Ontology, also including sets of
random genes as a control. Our results showed that each data source sepa-
rately performs better than random (both for diseases and for pathways), and
hence information useful for candidate gene prioritization can be extracted
from each data source. In addition, the data fusion of all data sources resulted
in high performance disease and pathway gene prioritization, showing AUC
values of 87 % and 90 % respectively. In addition, case-studies using recently
identified monogenic and polygenic disease genes confirmed a high performance
for prioritizing monogenic disease genes (average rank was 11 out of 200 can-
didate genes) and a better then random performance for prioritizing polygenic
disease genes (average rank 40 of 200 candidate genes). In addition, these anal-
yses showed that our text mining data source can also extract information not
explicitly present in the literature.

Our collaborators applied Endeavour to the search for a gene involved in
a recurrent chromosomal deletion containing 58 candidate genes in DiGeorge
syndrome. Endeavour put forward Ypel1 as a candidate gene, which was sub-
sequently validated by morpholino knockdown studies in zebrafish (Aerts et al.,
2006). Apart from this in-house application of our gene prioritization tool, ex-
ternal researcher have applied Endeavour to search for disease genes as well.
These applications include obesity and Type 2 diabetes (Elbers et al., 2007),
pulmonary fibrosis (Tzouvelekis et al., 2007) and cleft lip and cleft palate (Os-
oegawa et al., 2008). In addition, Adachi et al. (2007) used Endeavour to
study adipocyte biology and Windelinckx et al. (2007) applied Endeavour to
the search for genes involved in muscle strength.

The strengths of Endeavour and the two network-based gene prioritization
methods (Franke et al., 2006; Lage et al., 2007) are at least partly complemen-
tary. While the latter methods can obtain the best performance from data that
can easily be represented as a network, Endeavour obtains a higher performance
from data that is not that suitable for representation as a network (e.g. text
mining, microarray data) and is able to handle more and more heterogeneous
data sources. However, it might be that precisely in some of these network-
based data sources (e.g. protein-protein interactions), more information that is
not explicitly part of the scientific knowledge is present, in contrast to e.g. text-
mining the literature, where mostly (although not exclusively) known data can
be extracted. Therefore, it would be interesting to combine both approaches
to gain increased strength. The modular structure of Endeavour suggests one
natural way to achieve this end.

Endeavour, as well as the other gene prioritization methods, are largely
limited to protein-coding genes. This effectively ignores a growing number of
non-protein-coding genes, such as microRNAs (Bartel, 2004) and other non-
coding RNAs. It is becoming increasingly clear that these genes can also play
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an important role in disease (He et al., 2005; Lu et al., 2005; Calin et al., 2007).
Options for the prioritization of these non-coding RNA genes are currently
limited because of the limited amount of data available regarding these genes,
although specifically for miRNAs this is becoming less of a limitation. Once
more data will become available, it would be instructive to also include non-
coding RNA genes in our gene prioritization framework.

Finally, Endeavour was initially developed as a prioritization method for
human candidate genes and as such all implemented data sources contain in-
formation about human genes. The system would benefit from increased ver-
satility and most likely increased performance as well when information can
also be integrated cross-species.

1.3 Integrated case-study: macrophage differentiation

As an additional validation of Endeavour, we applied the gene prioritization
method in a case-study looking for targets of myeloid differentiation. In this
study, we combined a CRM detection method with Endeavour, and our re-
sults can be used to assess the performance and to identify the limits of both
approaches.

This case-study can be considered in the following broader context: given
the sequence of the potential regulatory regions of a gene, can we determine
how this gene is expressed? This question has been tackled in a landmark study
by Beer and Tavazoie (2004). In this study, the authors confirmed that based
on upstream sequences, the expression of yeast genes can be estimated with
at least partial confidence. However, in the considerably more complex human
genome, this question remains largely unanswered. In this case-study, we tackle
the above question in a simplified form: given only sequence information, can
we predict genes differentially regulated in a given process?

The process we consider is hematopoietic differentiation, and more pre-
cisely the final stages of differentiation of myeloblasts (hematopoietic progenitor
cells, from which macrophages and neutrophils can develop) to macrophages.
We model this process by incubating the leukemic cell line HL-60 (which is
arrested at approximately the myeloblast stage) with phorbol 12-myristate 13-
acetate (PMA, also called TPA), which will induce differentiation towards the
macrophage lineage.

As shown in figure 1, we first used the Type II CRM detection method
ModuleSearcher (Aerts et al., 2003b, 2004) to construct a transcriptional regu-
latory model of 18 genes known to be up-regulated during HL-60 differentiation
(Tamayo et al., 1999). Subsequently, we applied the Type I CRM detection
method ModuleScanner (Aerts et al., 2003b) to scan the human genome for
target genes of the TRM. As candidate targets of the TRM, we selected the
100 best scoring putative cis-regulatory modules. Of these 100, nine were lo-
cated near genes used for building the TRM, while 91 were located near 90
distinct new target genes (near one new target genes, two high scoring CRMs
were predicted).

We evaluated the predictive accuracy of this approach by measuring the
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Figure 1: Overview of the procedure integrating computational cis-regulatory module detection
and Endeavour, to predict genes differentially regulated during HL-60 differentiation.

expression difference in differentiated versus undifferentiated HL-60 cells, for
the 20 best scoring new target genes by real-time quantitative RT-PCR. The
expression of Eya1, the gene showing two high scoring CRMs, was assayed as
well.

By non-quantitative PCR, we could confirm expression of 16 of the 20 genes
in differentiated HL-60 cells (data not shown). Although reliable data about
the number of genes expressed in a specific cell type is difficult to obtain,
available data suggests that less than 50 % of the genes in the genome is
expressed in macrophages or HL-60 cells (Velculescu et al., 1999; Tamayo et al.,
1999; Stegmaier et al., 2004). As the TRM was trained using genes expressed
in differentiated HL-60 cells, this enrichment of expressed genes among the
predicted new target genes suggests that our procedure was at least partly
successful in predicting additional genes expressed in differentiated HL-60 cells.

The results of our quantitative measurement of the relative expression levels
in differentiated versus undifferentiated HL-60 cells (figure 1) indicate that
7 of the 14 genes that could be measured quantitatively were found to be
differentially expressed (up- or down-regulated). Together with the data from
Tamayo et al. (1999), which indicates that about 15 % of the genes on their
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microarray chip are differentially expressed in this system, this shows that
our predicted new target genes are indeed enriched in differentially expressed
genes. This is further strengthened by the observation that Eya1, the one
gene for which two CRMs were predicted, was found to be up-regulated 29.9
fold. Although these results indicate that the transcriptional regulation of
the predicted new target genes show similarities to that of the genes used for
training the model, there are still clear differences. Most notably, while all
of the training genes were measured by real-time quantitative PCR were up-
regulated at least 3-fold, only 2 of the measured new target genes showed a
higher than 3 fold difference (figure 1).

Aiming to increase the performance of new target gene selection, we used
our Endeavour gene prioritization method to prioritize the predicted new target
genes (figure 1). We then measured the expression difference of the 20 genes at
the top of the prioritized list, by real-time quantitative RT-PCR. Our results
showed that of the 16 genes that could be measured quantitatively, 8 were found
to be differentially expressed by more than 3 fold (figure 1). This suggests that
among the predicted new target genes, a number of genes with an expression
pattern similar to the genes used for constructing the TRM can be found, and
that Endeavour is able to select these correct targets.

2 Towards a better stratification and understanding of
cancer

Systems biology methods, among which prominently microarray expression
profiling and associated analysis methods, have contributed significantly to
the stratification and outcome prediction of cancer, and to the understanding
of the mechanisms underlying cancer (Perou et al., 2000; Yeoh et al., 2002;
Rosenwald et al., 2002; Lamb et al., 2003; Dave et al., 2004; Carrasco et al.,
2006; Pujana et al., 2007). In this work, we used microarray expression profiling
and associated systems biology analysis methods to gain insight into the role of
the microenvironment in two specific subtypes of lymphoma. In another study
regarding breast cancer, we investigated the effect of polysomy 17 on methods
for testing HER2 amplification, and we correlated this with clinicopathological
parameters. Although the methods we applied here were primarily statistical
(instead of systems biology methods), the goal is similar: to gain a better
understanding of cancer.

2.1 Microarray expression profiling to gain insight into the
lymphoma microenvironment

We performed microarray expression profiling, comparing two lymphoma en-
tities with a prominent microenvironment and a markedly different prognosis:
the indolent nodular lymphocyte predominant Hodgkin’s lymphoma (NLPHL)
and the aggressive T cell/histiocyte rich B cell lymphoma (THRLBCL). Our
results confirmed clearly different expression profiles of both lymphomas. The
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NLPHL expression profile contained mainly B cell genes, consistent with the
B cell rich composition of the lymph node derived stroma in this lymphoma.
In the THRLBCL expression profile, genes related to macrophages/histiocytes
were prominently present. Genes related to T cells were nearly completely
absent in both expression profiles, most likely because our samples of both
lymphomas contained an approximately equal T cell component.

Comparing the gene expression signatures to those obtained in other stud-
ies, we found that the THRLBCL signature shows statistically significant over-
lap with the signature Monti et al. (2005) found to be related to the host
response in a subgroup of diffuse large B cell lymphoma, enriched in THRL-
BCL cases. In addition, this THRLBCL signature showed similarities to the
signature of an unfavorable immune response Dave et al. (2004) observed in a
subset of follicular lymphomas.

Detailed analysis of the THRLBCL signature revealed up-regulation of IFN-
γ and genes up-regulated by IFN-γ in macrophages, in particular CCL8 and
IDO, as well as VSIG4 and multiple toll-like receptors and scavenger recep-
tors. Correlating this THRLBCL signature with literature, we hypothesize
that the activation IFN-γ leads to the recruitment of histiocytes/macrophages
in THRLBCL, which are subsequently activated by CCL8. These macrophages
(along with possibly additional immune cells) produce (i) IDO and VSIG4
which drastically increases tumour tolerance and (ii) toll-like receptors, scav-
enger receptors and VSIG4, indicative of innate immunity. Altogether, the
THRLBCL gene expression signature reflects the recruitment and activation
of histiocytes/macrophages, innate immune responses and a tumour tolero-
genic microenvironment. These particular characteristics may explain the bad
prognosis of these lymphoma patients.

Our expression profiling experiment provided mechanistic hypotheses re-
garding the microenvironment in the aggressive THRLBCL. Similar approaches
may be useful as well in elucidating the pathogenetic mechanisms of other can-
cer entities. However, these analyses are often complicated by heterogeneity,
even in very specific cancers entities. Indeed, we believe that precisely the
choice of two very specific (but also rare), carefully selected, relatively ho-
mogeneous lymphoma entities has potentiated these mechanistic insights. We
therefore hypothesize that after detailed stratification of more heterogeneous
cancer entities, and careful selection of specific subentities, similar systems
biology analyses may lead to additional mechanistic insights.

2.2 Stratification of breast cancer by HER2 amplification
status and presence of polysomy 17

We studied the effect of polysomy 17 on the interpretation of different HER2
testing methods in breast cancer, and we investigated whether polysomy 17
breast cancers share biological characteristics with HER2 amplified breast can-
cers. We found that all cases with an equivocal HER2 result by FISH (absolute
HER2 copy number of the HER2/chromosome 17 ratio) are polysomic for chro-
mosome 17. Polysomy 17 can occur on its own or in combination with HER2
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gene amplification. Polysomy 17 without HER2 amplification was not associ-
ated with HER2 overexpression, neither on the mRNA level nor on the protein
level. In addition, in contrast to HER2 amplification, polysomy 17 was not
associated with high tumour grade, hormone receptor negativity or reduced
disease-free survival. Based on these results, we state that tumours showing
polysomy 17 without HER2 amplification are more similar to HER2 negative
than HER2 positive tumours.

2.3 Clinicopathological implications

The findings of our breast cancer study could have important clinical implica-
tions. As polysomy 17 is clinicopathologically distinct from true HER2 gene
amplification, it may not be likely that specific HER2-targeted therapies such as
trastuzumab will be effective in these tumours. Indeed, polysomy 17 tumours
without HER2 amplification do not show HER2 overexpression by immuno-
histochemistry, while it is in these tumours with HER2 overexpression that
the best therapeutic response rates have been obtained (Seidman et al., 2001;
Hofmann et al., 2008). Whether or not polysomy 17 tumours benefit from
HER2-targeted therapy should be further investigated by phase III trials.

The tumour tolerogenic immune response we observed in the expression
signature of THRLBCL may offer potential targets for therapy. Specifically,
blocking the production and/or the function of CCL8, IFN-γ, and in partic-
ular IDO and VSIG4 may abrogate the induction of tumour tolerance. It is
encouraging that inhibitors to target IDO and IFN-γ are available (Muller and
Scherle, 2006; Sigidin et al., 2001).

By selecting the three most significantly differentially expressed genes from
our THRLBCL and NLPHL expression signatures, we constructed a real-time
quantitative RT-PCR classifier that can discriminate between both lymphomas
in a set of additional cases. In a small pilot study, we applied this classifier to
diffuse large B cell lymphoma (DLBCL) cases (data not shown). Our results
indicate that most DLBCL cases could be discriminated from THRLBCL, but a
subgroup of DLBCL showed a similar (three-gene) profile to THRLBCL. Upon
morphological revision, these DLBCL cases also appeared to show a T cell and
histiocyte rich microenvironment (although contrary to real THRLBCL cases,
the clonal tumor cells still represent the majority of the tumor cell mass in
these cases). It would therefore be interesting to further explore if this subset
of DLBCL also shows a similar tolerogenic immune response, and hence might
also be targeted by IDO or IFN-γ inhibitors.

3 Long term perspectives

3.1 Systems biology methods for the identification of
regulatory regions

The large-scale detection of cis-regulatory modules in the human genome is a
complex and largely unsolved question. Although we expect a high boost in
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performance once protein binding microarrays (Mukherjee et al., 2004) identify
position weight matrices for most human transcription factors, we still ques-
tion if this will be sufficient to decisively unravel the gene regulatory code. We
believe the large-scale identification of transcriptional regulatory sequences will
remain a major challenge for at least the coming decade. It is unclear to us
whether the solution to this problem will eventually come from the computa-
tional or the experimental field, although we would hazard to predict that both
field will contribute synergistically.

3.2 Systems biology methods for disease gene identification

Gene prioritization methods such as Endeavour and both network-based meth-
ods (Franke et al., 2006; Lage et al., 2007) are well performing systems biology
methods that make effective use of the plethora of data in the public domain.
As such, we believe these data-fusion methods represent a breakthrough com-
pared to earlier gene prioritization methods based on only one or two data
sources. As discussed above, increased data integration, as well as cross-species
data integration will likely deliver another boost in performance. In addition,
the quantity as well as the diversity of available data will continue to rise
exponentially, again increasing the power of gene prioritization methods.

Finally, we believe the combination of the CGH-array technique to identify
candidate genes, and gene prioritization methods to prioritize those candidate
genes, will prove to be a powerful method to identify novel disease genes, both
for inheritable disorders and for cancer.

3.3 Systems biology methods for disease mechanism
elucidation

For the identification of disease causing mechanisms, multiple systems biology
methods exist. However, there is little consensus on how to tackle this prob-
lem. Microarray gene expression profiling has received a lot of attention in
this regards, yet after the initial successes, many scientist have become more
sceptical, given the difficulties associated with extracting the real information
from the overflow of data generated by this technique. However, we believe
that microarrays still have a great potential for the understanding of disease
mechanisms, when experiments are carefully designed. Firstly, focussing to
very specific disease subtypes or carefully stratified cancer entities allows ask-
ing very specific questions and may hence deliver useful answers. Secondly,
we believe the combination of microarrays with other (computational or wet
lab) systems biology approaches will prove very powerful. In this regard it is
instructive to mention the Connectivity Map (Lamb et al., 2006), as well as
gene prioritization methods. Intelligent integration with other data, at e.g. the
DNA level (array-CGH, SNP microarrays) and with expert knowledge may be
the key to success here as well.
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3.4 Data-driven identification of disease genes and
mechanisms

In the previous sections as well as throughout this work, we discussed the iden-
tification of disease genes and disease mechanisms as a question-drive process.
Here, we used both generated and public domain data to answer specific ques-
tions. The exponential rise in high throughput data may also make it possible
to address these issues in general through a data-driven process. E.g. because
of advances in sequencing technology, it is not unthinkable that the complete
genome sequence of millions of individuals will become available within the
next few decades. Datamining this information is expected to be very instruc-
tive in linking phenotypes to genotypes. We believe that (in analogy with
microarrays) the efficient extraction of information may prove to be the key
challenge.
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