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Abstract

The development of models is a crucial part of modern science. Our comprehension
of the different phenomenons in all of its fields is directly related to the models we
create. These models allow obtaining new insights and predicting the outcome of new
experiments. This thesis focuses on the development of techniques for the identification
of block-oriented nonlinear (BONL) models. These models have been shown in the
past to be flexible and powerful for describing a multitude of phenomenons and have
received a lot of attention in the scientific community during the last few decades. This
means that the task of finding new and better alternatives than those currently available
is a difficult one. To undertake it, we use Least Squares Support Vector Machines
(LS-SVM) as our base method.

The thesis is divided in four parts and in each one different methods are presented.
Part I focuses on merging the best linear approximation (BLA) with LS-SVM for the
identification of Hammerstein and Wiener systems. Each of these techniques is used
where it excels: BLA is used for the identification of the linear blocks while LS-SVM
is used for modeling the static nonlinearities. In this part three methods are presented:
The first offers a way to use the inversion of a (previously) identified linear block
for the identification of Hammerstein systems in the presence of measurement noise.
The other two methods are for the identification of Hammerstein and Wiener systems
respectively and offer a reformulation of LS-SVM where information of the system,
given by the BLA, is incorporated.

In Part II a new approach for the identification of Hammerstein and Wiener systems
is presented. This approach relies on the extraction of information from the system
based on its behavior during steady state. A method for identifying Single-Input
Single-Output (SISO) Hammerstein systems is presented and then extended to the
Multiple-Input Multiple-Output (MIMO) case. A third method is presented for the
identification of SISO Wiener systems. This method offers three different alternatives
for such identification (i.e. two parametric and one non-parametric).

In Part III a new methodology for the identification of Hammerstein systems is offered.
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The method takes advantage of the Hammerstein system structure as the impulse
response of such systems allows the identification of their dynamic blocks. First the
SISO case is presented and then it is extended to the MIMO one.

Finally, in Part IV two methods focusing on machine learning are presented. The first
of these methods focuses on the complexity reduction of fixed size schemes for black
box modeling. The second method introduces a way to include frequency domain
information into the LS-SVM model. It is shown that this methodology can offer better
results for the modeling of dynamical systems than NARX LS-SVM.



Abstract

Het ontwerpen van modellen is een cruciaal onderdeel van de moderne wetenschappen.
Ons begrip van de verschillende fenomenen in all de gebieden, is sterk gerelateerd
aan de modellen die we creëren. Deze modellen kunnen nieuwe inzichten omtrent
het fenomeen brengen en het resultaat van nieuwe experimenten voorspellen. Deze
thesis focust op de ontwikkeling van nieuwe technieken voor de identificatie van
bloksgewijze non-lineaire (BONL) modellen. Deze modellen hebben in het verleden
reeds aangetoond flexibel en krachtig te zijn voor het omschrijven van meerdere
fenomenen en hebben reeds veel aandacht gekregen in de wetenschappelijke wereld
in de laatste decennia, waardoor er al krachtige technieken voor identificatie bestaan.
Dit betekent dat het vinden van nieuwe en betere alternatieven dan de reeds bestaande
technieken geen gemakkelijk taak is. Om deze taak aan te pakken hebben we gebruik
gemaakt van krachtige technieken uit de machine learning wereld. Meer bepaald
gebruiken we least squares support vector machines (LS-SVM) als onze basis methode.

Deze thesis is onderverdeeld in vier delen, waarin in elk deel een verschillende methode
wordt voorgesteld. Deel I focust op het samenbrengen van de best linear approximation
(BLA) methode met LS-SVM voor het identificeren van Hammerstein en Wiener
systemen. Elk van deze technieken wordt gebruikt waar ze het best functioneren:
BLA wordt gebruikt voor de identificatie van de lineaire blokken, terwijl LS-SVM
gebruikt wordt voor het modelleren van de statische non-lineaire delen. In dit deel
worden drie methoden voorgesteld: de eerste presenteert een manier om de inversie
van een (eerder) geïdentificeerd lineair blok te gebruiken voor het identificeren van een
Hammerstein systeem in het geval van ruis. De andere twee methoden zijn ontworpen
voor het identificeren van Hammerstein en Weiner systemen respectievelijk, en bieden
een herformulering van LS-SVM aan waarbij informatie over het systeem, gegeven
door de BLA, is geïncorporeerd.

In deel II wordt een nieuwe manier voor het identificeren van Hammerstein of Wiener
systemen voorgesteld. Deze aanpak komt voort uit de extractie van informatie van het
systeem, vanuit het gedrag van dat systeem tijdens een stabiele status. Een methode
voor het identificeren van Single-Input Single-Output (SISO) Hammerstein systemen is
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voorgesteld en dan uitgebreid naar het Multiple-Input Multiple-Output (MIMO) geval.
Een derde methode is voorgesteld voor de identificatie van SISO Wiener systemen.
Deze methode biedt drie verschillende alternatieven aan voor de identificatie (namelijk,
twee parametrische en één niet-parametrische).

In deel III een nieuwe methodologie voor het identificeren van Hammerstein systemen
is voorgesteld. Deze methode gebruikt de Hammerstein structuur, aangezien het impuls
resultaat dit systeem de identificatie van de dynamische blokken toelaat. Eerst wordt
het SISO geval besproken en dit wordt daarna uitgebreid naar het MIMO geval.

Uiteindelijk stelt deel IV twee methoden die focussen op machine learning voor. De
eerste methode focust op de complexiteit reductie van vaste grootte schema’s voor black
box modelleren. De tweede methode introduceert een manier om het frequentie domein
te introduceren in het LS-SVM model. Er wordt aangetoond dat deze methodologie
betere resultaten voor het modelleren van dynamische systemen kan bekomen dan het
NARX LS-SVM model.
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xii ABBREVIATIONS

Abbreviations

%MAE Normalized mean absolute error
ARX Auto regressive model with exogenous inputs
BLA Best linear approximation
BONL Block oriented nonlinear
CSA Coupled simulated annealing
DFT Discrete Fourier transform
EDF Effective degrees of freedom
EMF Electromotive force
FD-LSSVM Frequency division least squares support vector

machines
FIR Finite impulse response
FRF Frequency response function
FS-LSSVM Fixed size least squares support vector machines
FS-OLS Fixed size ordinary least squares
FS-RR Fixed size ridge regression
GA Genetic algorithm
GP Gaussian process
KKT Karush–Kuhn–Tucker
LS Least squares
LS-SVM Least squares support vector machines
LTI Linear time invariant
LTV Linear time varying
MAE Mean absolute error
MIMO Multiple-input multiple-output
MLPRS Multi level pseudo random signal
NARMAX Nonlinear autoregressive moving average model with

exogenous inputs
NARX Nonlinear autoregressive exogenous model
OE Output error
PEM Prediction error method
PISPO Period in same period out
PRBS Pseudo random binary signal
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QP Quadratic programing
RBF Radial basis function
RKHS Reproducing kernel Hilbert space
RMS Root mean square
RMSE Root mean square error
RR Ridge regression
SA Simulated annealing
SISO Single-input single-output
SNR Signal to noise ratio
SURE Stein’s unbiased risk estimate
SVD Singular value decomposition
SVM Support vector machine





Nomenclature

ϕ(·) Mapping function to a feature space (feature map)
x Scalar
x Vector
X Matrix
x(t) Time domain signal
X(k) Frequency domain signal
X> Transpose of the matrixX
xi ith element of the vector x
Xij ijth element of the matrixX
f(·) Function
1N Column vector of ones of length N
min
x
f(x) Minimization over x. The minimum of f(x) is returned

arg min
x
f(x) Minimization over x. Optimal x is returned

|·| Absolute value
‖·‖ L2 norm
ω Angular frequency
φ Phase
δ(t) Kronecker delta function
E {·} Expectation operator
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Chapter 1

Introduction

1.1 Research motivation

The development and analysis of models occupies an important role at the very core
of modern science. From physics to engineering, almost all fields of science require
representations of different phenomenons. These representations are commonly known
as models and they allow to obtain new insights concerning the modeled phenomenon
and to predict the outcome of experiments involving it (Eskinat, Johnson, & Luyben,
1991). It is the case that nonlinear models, even simple ones, often result in better
approximations to process dynamics than linear ones. A considerable amount of
research has been carried out in the last decades in the field of nonlinear system
identification. A popular approach is to employ one of the block structured nonlinear
models introduced in the literature where systems are represented as interconnected
linear and nonlinear blocks (Billings & Fakhouri, 1982).

In computer science, machine learning is a subfield aiming to give computers the
ability to learn without being explicitly programmed. Having evolved from the study of
pattern recognition, it deals with algorithms that can learn from (and make predictions
on) data (Ron & Foster, 1998) and in this sense can make data-driven predictions or
decisions. In the field of machine learning, kernel methods are a class of algorithms
for pattern analysis where the most iconic characteristic is the use of kernel functions
allowing a cheap operation of the algorithms in high dimensional spaces. This in turn
allows nonlinear problems to be solved using linear formulations. In this thesis the
base for most of the presented methods will be Least Squares Support Vector Machines
(LS-SVM) (Suykens et al., 2002).

It is interesting to note that there are many different model structures in the system

1
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identification literature e.g. ARX, Output-Error methods, Box-Jenkins, state space,
block oriented models, etc. In addition, different parametrizations can be used e.g.
linear, polynomial, piecewise linear, etc. For nonlinear system identification, support
vector machines and kernel methods have been successfully applied in the past for
certain classes of model structures. In general, the different options for model structure
and parametrization can be used when implementing kernel methods in their primal
representation. However, the situation changes when working in the dual as the
resulting models are no longer parametric. Therefore, it is challenging to incorporate
prior knowledge about the structure of the system within a primal-dual optimization
setting of kernel methods. Given this difficulty, and considering the intrinsic advantages
of the dual representation, it becomes clear that this is an important and interesting
challenge. The aim of this research is to advance in this area which is at the interface
between nonlinear system identification and machine learning by combining and
integrating the best of both paradigms and employing both parametric and kernel-based
approaches with suitable regularization schemes.

1.2 Research objectives

In this section we outline the general objectives of this research.

Propose new techniques for incorporating prior knowledge about the
structure of the system into black-box modeling schemes

Methods like LS-SVM are inherently of a black box nature, which means that the
models produced are employed without reference to a physical background. Sometimes,
however, in addition to the input and output data some additional information about
the underlying system is available. An example of this in the identification of block
structured nonlinear dynamical systems is when information about the underlying
structure of the system is available. Even though not using such additional information
is a waste, when using black box methods that is what happens as normally there is
no way to include it into the model. Clearly then, finding ways to incorporate this
prior knowledge into the model constitutes a natural improvement for methods that
otherwise would ignore this information.

Apply and compare the methods in system identification benchmarks and
novel applications

System identification is a mature branch of science that has received a lot of attention
in the last decades. This means that many powerful methods for system identification
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are currently available. Despite this, new methodologies keep appearing on a daily
basis indicating that there is still room for improvement. Additionally, several data sets
exist in the system identification community allowing a fair comparison.

Go beyond the existing class of model structures in nonlinear system
identification that can be currently handled with kernel methods

Single-input single output (SISO) block structured nonlinear systems like the Wiener or
the Hammerstein systems have been thoroughly studied in the literature. However, their
multiple input multiple output (MIMO) counterparts have received much less attention
due to their inherently more complicated nature. However, systems like these represent
a very important part of the applications where system identification techniques would
be useful. This means that techniques that can deal with this type of problems (e.g.
MIMO structures) should receive more attention to improve the reach of the system
identification community.

1.3 System Identification

In system identification the aim is to build mathematical models based on observed
data from the system. Clearly this puts system identification at the core of the scientific
method. Loosely defined, a system is an entity which can be affected by external stimuli
and through the interaction of different variables, observable signals are produced (i.e.
outputs). The external stimuli that can be separated in two categories: Those that
can be manipulated by the observer are called inputs while those that cannot are
called disturbances. Also disturbances can be separated into those that can be directly
measured and those that are only noticed indirectly through their effect in the output.

When interacting with a system, an idea of how its variables relate to each other is
called a model of the system. Note that the use of mathematical models is common to
all fields of engineering and physics. Models are constructed from observed data and
to do so there are two main possibilities, namely modeling and system identification.
In modeling the system is split into subsystems with well understood properties relying
on earlier empirical work. These subsystems are then merged mathematically to obtain
a model of the whole system. System identification, on the other hand, is directly
based on experimentation where inputs and outputs are measured and subjected to data
analysis in order to infer a model (Ljung, 1999). The latter is the central topic of this
thesis and in particular, the focus will be on block oriented nonlinear (BONL) system
identification.
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1.4 Block Structured System Identification

Block oriented nonlinear (BONL) models consist of the interaction of linear time-
invariant (LTI) dynamical blocks and static nonlinear elements that can be connected
in many different ways (e.g. series, parallel, feedback,etc.). The blocks themselves
can be represented in different forms. For instance the LTI blocks can be parametric
(e.g. transfer functions or state space representations) or non parametric (e.g. impulse
response or frequency response). Similarly, the nonlinear blocks can be parametric,
nonparametric, with memory or memoryless. All these different available options point
towards the high flexibility of BONL models which allows the capture of a wide variety
class of complex and nonlinear systems. This in part explains why BONL has received
so much attention in the last decades (Giri & Bai, 2010).

Note that even though the BONL models are powerful tools for representing
nonlinear dynamical systems, the blocks used do not generally correspond to physical
components. This means that the intermediate variables between them are generally
artificial and usually cannot be physically measured. It is only natural then that
the combination of the dynamics, nonlinearities and the impossibility to measure
intermediate variables renders the problem of estimating such models into a difficult
one. This also explains why the main focus of attention in the research of BONL
models is mainly on simpler structures.

Even though commonly the dynamics of the system can be approximated by a
linear system, often it is the case that there are static nonlinearities at the input or
output. Although many different structures exist, in this thesis the focus is on specific
BONL structures, namely the Hammerstein and Wiener systems. These structures are
composed by two blocks in series as shown in Figs. 1.1 and 1.2 respectively. Typical
examples are actuators being nonlinear or sensors having nonlinear characteristics. It is
usually considered that Hammerstein systems contain static nonlinearities at its input
and, similarly, Wiener systems have static nonlinearities at its output (Ljung, 1999).

In this work, the q-notation, which is frequently used in system identification literature
and software, will be employed. The operator q is a time shift operator of the form
q−1x(t) = x(t− 1).

1.4.1 Hammerstein Systems

Hammerstein systems were introduced by the German mathematician A. Hammerstein
in 1930 (Hammerstein, 1930). As shown in Fig. 1.1 the input of the system first goes
through a static nonlinear block and the resulting output passes then through an LTI
block. In the first block, all the nonlinearities of the system are accounted for, while the
second block describes all the dynamics of the system. Commonly, the Hammerstein
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Figure 1.1: A Hammerstein system. G0(q) is a linear dynamical system and f(u(t)) is
a static nonlinearity and v(t) represents the measurement noise.

structure is used to model systems where the static nonlinear is at the input of the
system.

Although it is a simple structure, Hammerstein systems can accurately describe many
nonlinear systems and has been used in areas like control (Fruzzetti, Palazoglu,
& McDonald, 1997), biological processes (Hunter & Korenberg, 1986), signal
processing (Stapleton & Bass, 1985), chemical processes (Eskinat et al., 1991),
electrically stimulated muscles (Hunt, Munih, Donaldson, & Barr, 1998), power
amplifiers (Kim & Konstantinou, 2001), electrical drives (Balestrino, Landi, Ould-
Zmirli, & Sani, 2001), thermal microsystems (Sung, 2002), physiological systems
(Dempsey & Westwick, 2004), sticky control valves (Srinivasan, Rengaswamy,
Narasimhan, & Miller, 2005), solid oxide fuel cells (Jurado, 2006), and magneto-
rheological dampers (J. Wang, Sano, Chen, & Huang, 2009).

There are many methods for Hammerstein system identification in the literature. With
so many approaches available, it is natural that many different ways of classifying them
exist. Some of these possible classifications are (M. Schoukens & Tiels, 2016): Kernel-
based and mixed parametric-nonparametric identification algorithms (Hasiewicz, Mzyk,
Śliwiński, & Wachel, 2012; Mzyk, 2014; Risuleo, Bottegal, & Hjalmarsson, 2015),
parametric approaches (Chang & Luus, 1971; Crama & Schoukens, 2004; J. Schoukens,
Widanage, Godfrey, & Pintelon, 2007), overparametrization (Bai, 1998; Falck, Suykens,
Schoukens, & De Moor, 2010; Risuleo et al., 2015), blind identification (Bai, 2002;
Vanbeylen, Pintelon, & Schoukens, 2008). Some methods for MIMO Hammerstein
system identification are presented in Goethals, Pelckmans, Suykens, and De Moor
(2005); Gomez and Baeyens (2004); Jeng and Huang (2008); Lee, Sung, Park, and
Park (2004); Verhaegen and Westwick (1996) and Al-Duwaish and Karim (1997).
Hammerstein structures containing dynamic backlask or hysteresis are considered in
Giri, Rochdi, Brouri, and Chaoui (2011) and Z. Wang, Zhang, Mao, and Zhou (2012).
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Figure 1.2: A Wiener system. G0(q) is a linear dynamical system, f(x(t)) is a static
nonlinearity and v(t) represents the measurement noise.

1.4.2 Wiener Systems

In 1958 N. Wiener studied a model where the input went through an LTI block and the
resulting output then went through a nonlinear block (Wiener, 1958). This is known
as the Wiener system and it is shown in Fig. 1.2. In Wiener systems, the nonlinear
block can represent for instance sensor nonlinearities or nonlinear effects at the output
of the system. Examples of this include overflow valves and limit switch devices in
mechanical systems.

Wiener models are known to be able to approximate a general class of nonlinear systems
with an arbitrarily high accuracy under the assumption of fading memory (Boyd &
Chua, 1985), a theoretical fact checked in practice in many practical applications like
chemical processes (Kalafatis, Wang, & Cluett, 2005; Zhu, 1999), biological systems
(Hunter & Korenberg, 1986) and others.

As in the Hammerstein case, many different classifications exist for Wiener systems
according to their properties (M. Schoukens & Tiels, 2016): Nonparametric or semi-
parametric (Greblicki, 1992, 1997; Hasiewicz et al., 2012; Lindsten, Schön, & Jordan,
2013; Mzyk, 2007, 2014; Wachel & Mzyk, 2016), parametric approaches (Billings
& Fakhouri, 1977; Crama & Schoukens, 2001a; Hunter & Korenberg, 1986;
D. T. Westwick & Kearney, 2003; Wigren, 1993), minimal Lipschitz (Pelckmans,
2011), (orthogonal) basis function expansion (Aljamaan, Westwick, & Foley, 2014;
Lacy & Bernstein, 2003), blind identification algorithms (Vanbeylen, Pintelon, &
Schoukens, 2009), recursive approach (Greblicki, 2001; Wigren, 1993) separable least-
squares (Bruls, Chou, Haverkamp, & Verhaegen, 1999), subspace-based methods
(D. Westwick & Verhaegen, 1996). The MIMO Wiener system case is considered
in Janczak (2007) and D. Westwick and Verhaegen (1996). In Giri, Radouane, Brouri,
and Chaoui (2014) systems that contain backslash nonlinearities are considered.

Most of the methodologies in the literature consider that the noise source is present
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Figure 1.3: A Hammerstein-Wiener system. NL1 and NL2 are static nonlinearities
while L is a linear dynamical system. v(t) represents the measurement noise.

Figure 1.4: A Wiener-Hammerstein system. L1 and L2 are linear dynamical systems
while NL is a static nonlinearity. v(t) represents the measurement noise.

at the output of the system only. However, some methods allow for process noise
between the linear and nonlinear blocks (Hagenblad, Ljung, & Wills, 2008; Lindsten et
al., 2013; Wahlberg, Welsh, & Ljung, 2014, 2015).

1.4.3 Others

When a Hammerstein model is followed in series by a Wiener one a new model structure
called the Hammerstein-Wiener system arises (see Fig. 1.3). In a similar way, when a
Wiener system is followed by a Hammerstein one the resulting system is referred to
as a Wiener–Hammerstein structure (see Fig. 1.4). These new structures offer higher
modeling capabilities. For example the Hammerstein–Wiener model is more convenient
when both actuator and sensor nonlinearities are present. Also, it has been successfully
applied in the modeling of several physical processes like polymerase reactors (Lee
et al., 2004), ionospheric processes (Palanthandalam-Madapusi, Ridley, & Bernstein,
2005), PH processes (Park, Sung, & Lee, 2006), etc. When feedback phenomena
are involved, closed-loop model structures can also be used and when modeling
multichannel topology systems like electric power distribution, communication nets,
multi-cell parallel power converters, etc. parallel block oriented models are useful.
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1.5 Experiment Design

The construction of a model consists of three stages: first a data set is constructed from
observed data, second a set of candidate models is selected (i.e. a model structure),
finally a rule to assess the models is chosen (Ljung, 1999):

• Sometimes the data are recorded during a specifically designed identification
experiment where the user determines the signals to measure, when to measure
and even the input signals. The objective of the experiment design is then to
make these choices so that the data obtained is maximally informative. The vast
majority of the methods presented in this thesis fall into this category. In other
occasions the user must work with data from the normal operation of the system.

• The a priori knowledge about the system plays a crucial role for selecting the
set of models from which one will be finally chosen. Models that are employed
without reference to physical background (i.e. the parameters do not reflect
physical considerations in the system) are called black box models. When the
models mix adjustable parameters with physical interpretable ones they are called
gray box models.

• To determine the best model of the selected set is the task of the identification
method. Usually, to assess the quality of a model, metrics based on how well the
model can reproduce measured data are used.

After performing the steps mentioned above the model should be validated, if the
model turns out to be deficient, it is then rejected and the process must re-start. A
representation of this process can be found in Fig. 1.5.

1.6 Kernel methods

Kernel methods, as used in the area of support vector machines, usually can be described
in two steps. First there is a mapping of the inputs into a higher dimensional feature
space. This is, images of the inputs are obtained into the higher dimensional space.
Second, there is a learning algorithm in charge of discovering linear patterns in that
space. Bear in mind that the research in statistics and machine learning about detecting
linear relations has been going on for decades. This means that the knowledge in this
area is robust and well understood. Also, it is possible to represent linear patterns
efficiently in high dimensional spaces through the use of kernel functions.

A Mercer kernel is a function k that for all x, z ∈ X , with X ∈ Rn, satisfies
k(x, z) = 〈ϕ(x), ϕ(z)〉 where ϕ(·) is a mapping fromX to an (inner product) feature
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Figure 1.5: System identification loop (Ljung, 1999).
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Figure 1.6: The function ϕ takes the input data into a feature space where the nonlinear
(separation) pattern appears linear.

space F (Shawe-Taylor & Cristianini, 2004):

ϕ : x→ ϕ(x) ∈ F. (1.1)

The embedding of the data into the vector space called the feature space is fundamental
in kernel methods. In this space linear relations are sought among the images of the
data. Interestingly the coordinates of the embedded points are not necessary, only their
pairwise inner products are required thanks to the way the algorithms are implemented.
Also, the pairwise inner products can be computed directly from the original data items
in an efficient way by using a kernel function. All of these elements guarantee that
even though the used algorithms are meant for linear functions, nonlinear relations in
data can be discovered through the use of nonlinear embedding mappings.

In Fig. 1.6 an illustration of these concepts is presented where two classes that cannot
be linearly separated in the original input space are shown. However, when ϕ is used,
the data is taken to a higher dimensional space where they can be clearly separated by
a plane.

Several kernel methods have been introduced in the literature. In the following sections
some of the most commonly used methods will be briefly revised.

1.6.1 Kernel Ridge Regression

Let us consider the problem of finding a function y = g(x) = w>x that best
interpolates a given training set S such that (x1, y1), . . . , (xN , yN ) with N the number
of samples, xi ∈ Rn, yi ∈ R, w ∈ Rn and i = 1, . . . , N . This task is commonly
known as linear interpolation (i.e. fitting a hyperplane through the given n-dimensional
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points). It is usually the case that solutions that minimize the error while keeping the
norm of w small are preferred (Shawe-Taylor & Cristianini, 2004).

Let us define ξi = yi − g(xi) and therefore ξ = y −Xw with ξ = [ξ1, . . . , ξN ]> ∈
RN , y = [y1, . . . , yN ]> ∈ RN , X = [x1, . . . ,xN ]> ∈ RN×n and w =
[w1, . . . , wn]> ∈ Rn. A loss function can be then defined as

J(w,S) = ‖ξ‖22 = (y −Xw)>(y −Xw). (1.2)

This finally leads to an estimation of w as

ŵ = (X>X)−1X>y. (1.3)

This is commonly known as the primal representation of least squares. If the inverse of
X>X exists, ŵ can also be expressed as

ŵ = (X>X)−1X>y = (X>X)(X>X)−2X>y = X>α, (1.4)

which is known as the dual representation (Shawe-Taylor & Cristianini, 2004). Note
that in the dual representation ŵ appears as a linear combination of the training points,
i.e. ŵ =

∑N
i=1 αixi.

It is possible to look for a tradeoff between the size of the norm of ŵ and the error
ξ. This is what is known as ridge regression. Ridge regression modifies then Least
Squares by restating the objective function as

J(w,S) = λ ‖w‖2 +
N∑
i=1

(yi −w>xi)2, (1.5)

with λ a fixed positive constant. Note that λ = 0 is allowed and this means that Least
Squares is a special case of Ridge Regression (Saunders, Gammerman, & Vovk, 1998).

Similarly as in the least squares case, ridge regression can be expressed either in the
primal with

ŵ = (X>X + λI)−1X>y, (1.6)

or the dual with
ŵ = X>α, (1.7)

and
α = (XX> + λI)−1y. (1.8)

It is fundamental to note that in the dual, the information from the training examples
is given by the inner products between pairs of training points. The matrix XX>

is usually referred to as the Gram matrix. Also, note that the derivations of the dual
correspond to the introduction of Lagrange multipliers in a constrained optimization
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problem, i.e. the minimization of J(w,S) such that y = Xw + ξ (Saunders et al.,
1998).

So far only the linear case has been considered for Ridge Regression. If a linear
regression is desired in some feature map, first the mapping from the original space to
a higher dimensional space F has to be chosen, i.e. ϕ : X → F. To apply this, it is
possible to define a kernel function k corresponding to the dot product ϕ(xi)>ϕ(xj)
with ϕ(x) ∈ Rnh . With this, it is not necessary to explicitly know ϕ(·) as long as
k(xi,xj) = ϕ(xi)>ϕ(xj) is known. The choosing of k(·, ·) can be done thanks to
Mercer’s theorem and is addressed in V. N. Vapnik (1998).

Note that with the use of k(·, ·), in the dual formulation the estimation of the output for
new pointsX∗ becomes

ŷ = Kα, (1.9)

withKij = k(x∗,i,xj).

1.6.2 Reproducing Kernel Hilbert Spaces

The general theory of Reproducing Kernel Hilbert Spaces (RKHS) was established in
Aronszajn (1950) although its origins can be traced back to Szegő (1921) and Bergmann
(1922).

Let H be a Hilbert space of real functions f defined on an index set X . Then H is
called a RKHS with an inner product 〈· |· 〉H and norm ‖f‖H =

√
〈f |f 〉H if there is a

function k : X × X → R such that for every x, k(x, z) as a function of z belongs to
H, and k complies with the reproducing property 〈f(·), k(·,x)〉H = f(x) (Rasmussen
& Williams, 2006).

The Moore-Aronszajn theorem in Aronszajn (1950) shows that to every RKHS H
corresponds a unique positive definite function k(x, z) of two variables in X called
the reproducing kernel of H. In other words the RKHS uniquely determines k, and
vice versa.

Interestingly, the function k behaves inH as the delta function does in L2, and in partic-
ular 〈k(x, ·), k(·, z))〉H = k(x, z). Now, for a set of functions f(x) =

∑∞
i=1 ciϕi(x)

this Hilbert space is a RKHS as 〈f(z), k(z,x)〉H =
∑∞
i=1

ciλiϕi(x)
λi

= f(x) where
the scalar product between two functions f(x) =

∑∞
i=1 ciϕi(x) and g(x) =∑∞

i=1 diϕi(x) is defined as 〈f(x), g(x)〉H = 〈
∑∞
i=1 ciϕi(x),

∑∞
i=1 diϕi(x)〉H =∑∞

i=1
cidi
λi

with kernel k(x, z) =
∑∞
i=1 λiϕi(x)ϕi(z) where a sequence of positive

numbers λi and linearly independent basis functions ϕi(x) are assumed and the series
converges (Suykens et al., 2002).
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From Girosi (1998) the following problem is stated:

min
f∈H

H |f | = γ

N∑
j=1

L(yj − f(xj)) + 1
2 ‖f‖

2
k (1.10)

with H a RKHS with kernel k and L a loss function. This implies that functions in
H have a unique expansion of the form f(x) =

∑∞
i=1 ciϕi(x) with norm ‖f‖2k =∑∞

i=1 c
2
i /λi. Definining αj = γL′(yj − f(xj)) with L′ the derivative of the loss

function w.r.t. ci we get ci = λi
∑N
j=1 αjϕi(xj) and therefore

f(x) =
∞∑
i=1

ciϕi(x) =
N∑
j=1

αjk(x,xj). (1.11)

Note that independently of the choice of L the solution to the problem is always a
linear superposition of kernel functions.

The coefficients αj are calculated as αj = γL′(yj −
∑∞
l=1 αlk(xj ,xl)) with j =

1, . . . , N . When the least squares loss function is used this corresponds to the linear
system

α = (Ω + I/λ)−1y, (1.12)

with Ωij = k(xi,xj).

1.6.3 Regularization Networks

Regularization networks were introduced in Poggio and Girosi (1990). The rationale
behind this comes from the fact that almost all approximation schemes can be mapped
into some kind of network that can be called also a neural network. In this context a
network is a function composed by many basic functions.

The measure of the quality of an approximation can be defined by a distance function
g[f(X), f̂(W ,X)] with f(X) the actual function and f̂(W ,X) the approximation.
It is common to use norms as the distance functions (e.g. the L2 norm).

Note that approximation functions f̂(W ,X) : Rn → R can be seen as corresponding
to multilayer networks. For instance f̂(W ,X) = w>x withw,x ∈ Rn corresponds
to a network without hidden units. When a feature map is introduced, i.e. f̂(W ,X) =∑N
i=1w

>
i ϕi(x), the approximation corresponds to a network with a layer of hidden

units. It is known that this type of networks can approximate arbitrarily well any
continuous multivariate function (Funahashi, 1989).

The combination of this network view with regularization is what gives birth to
Regularization Networks. For a dataset S = {(xi, yi) ∈ Rn × R |i = 1, . . . , N}
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that is meant to be approximated by a function f the regularization approach determines
the function f through

∑N
i=1(yi − f(xi))2 + λ ‖Pf‖2 with P a constraint operator

including the a priori information on the solution, ‖·‖ a norm function on the
space to which Pf belongs and λ the regularization parameter. This leads to
f(x) = 1

λ

∑N
i=1(yi − f(xi))G(x,xi) implying that the solution of the regularization

problem lies in an N-dimensional subspace of the space of smooth functions. A basis
for this subspace is given by the N functions G(x,xi) (i.e. a Green’s function). Let us
now define αi = (yi − f(xi))/λ which leads to the expression

α = (G+ λI)−1y, (1.13)

withGij = G(xi,xj). Finally then, we get that

f(x) =
N∑
i=1

αiG(x,xi). (1.14)

In Wahba (1990) a similar result is derived through reproducing kernels.

1.6.4 Gaussian Processes

A way to understand Gaussian processes (GP) is as a generalization of Gaussian
probability distributions. This means that an stochastic process governs the properties
of functions in the same way as a probability distribution describes random variables
(i.e. scalars or vectors). In loose terms a function can be seen as a very long vector
where each entry in the vector specifies the function value f(x) at a particular input x.
This simplistic interpretation leads to an interesting concept: if the properties of the
function at a finite number of points are wanted, inference in the Gaussian process will
return the same answer if the infinitely many other points are ignored as if they had
been taken into account. Furthermore, these answers are consistent with answers to any
other finite queries for such function. In summary: A Gaussian process is a collection
of random variables, any finite number of which have a joint Gaussian distribution
(Rasmussen & Williams, 2006).

Another way to interpret GP models is that they are constructed from classical statistical
models by replacing latent functions of parametric form by random processes with
Gaussian prior (Seeger, 2004).

Let us have a training set S = {(xi, yi)} with i = 1, . . . , N where x ∈ Rn are inputs
and y ∈ R are outputs. The matrix X ∈ RN×n is simply the aggregation of the
different xi, while the vector y is the equivalent for the outputs.

For a linear case, let us have f(x) = x>w and y = f(x) + e with x the input vector,
w a vector of weights of the linear model, f the function value, y the observed target
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value and e additive noise with an i.i.d. Gaussian distribution such that x ∼ N (0, σ2
n).

The model and the noise together give the likelihood p(y | X,w) = N (Xw, σ2
nI).

For the prior a zero mean Gaussian can be used with covariance matrix Σp on the
weights. Then w ∼ N (0,Σp). Using Bayes rule, the posterior can be calculated as

posterior = likelihood× prior
marginal likelihood

→ p(w | y,X) = p(y |X,w)p(w)
p(y |X) . (1.15)

The marginal likelihood is calculated as

p(y |X) =
∫
p(y |X,w)p(w)dw. (1.16)

The posterior is then in the form

p(w | y,X) ∼ N (w̄,A−1), (1.17)

with w̄ = 1
σ2
n

A−1X>y andA = 1
σ2
n
X>X + Σ−1

p .

Finally, for predictions in a test set an average over all possible parameter values,
weighted by their posterior probability, is carried out. The predictive distribution is
then given by

p(f∗ | x∗,X,y) = N ( 1
σ2
n

x>∗ A
−1X>y,x>∗ A

−1x∗). (1.18)

To extend the previous approach to nonlinear cases a possibility is to first project
the inputs into some high dimensional space through some sort of feature map and
then apply the linear model in such space. Let ϕ(x) be the function mapping the
n-dimensional input to an nh-dimensional (i.e. a higher dimensional space) feature
space and Φ ∈ Rnh×N the aggregation of columns ϕ(x) in the training set. The new
model is then f(x) = ϕ(x)>w where the parameters vectorw ∈ Rnh . The predictive
distribution becomes

f∗ | x∗,X,y ∼ N (ϕ>∗ ΣpΦ(K + σ2
nI)−1y,

ϕ>∗ Σpϕ∗ −ϕ>∗ ΣpΦ(K + σ2
nI)−1Φ>Σpϕ∗),

(1.19)

with ϕ(x∗) = ϕ∗, and K = Φ>ΣpΦ. It can be seen that the feature map always
appears in the form ϕ(x)>Σpϕ(z) with x and z either in the training or test set. Let
us define then

k(x, z) = ϕ(x)Σpϕ(z), (1.20)

a covariance function or kernel which is an inner product w.r.t. Σp. As Σp is positive
definite (Σ1/2

p )2 = Σp and it is possible to define ψ(x) = Σ1/2
p ϕ(x) so that an inner
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product representation is obtained as k(x, z) = ψ(x)ψ(z). With this we can rewrite
the predictive distribution for a new point x∗

f∗ | x∗,X,y ∼ N (k(x∗,x)(k(x,x) + σ2
nI)−1y,

k(x∗,x∗)− k(x∗,x)(k(x,x) + σ2
nI)−1k(x,x∗)).

(1.21)

Finally, by defining
α = (k(x,x) + σ2

nI)−1y, (1.22)

we can rewrite the above equation as

f∗ | x∗,X,y ∼ N (k(x∗,x)α,
k(x∗,x∗)− k(x∗,x)(k(x,x) + σ2

nI)−1k(x,x∗)).
(1.23)

There are several ways to interpret GP. The approach presented above corresponds to
the so-called weight space view. Another (equivalent) approach is the function-space
view (see Rasmussen and Williams (2006)).

1.6.5 Support Vector Machines

SVM usually is structured as follows: first the problem is formulated in the primal
weight space as a constrained optimization problem, then the Lagrangian is formulated
and the conditions for optimality are expressed. Finally the problem is solved in the
dual space of the Lagrange multipliers (i.e. the support values) (Suykens et al., 2002).

Consider a training set {xi, yi}Ni=1 with inputs xi ∈ Rn and outputs yi ∈ R with class
labels yi ∈ {+1,−1} and the linear classifier yi = sign(w>xi + b). In the separable
case yi(w>xi + b) ≥ 1 for i = 1, . . . , N , however, in the non-separable case it is
necessary to tolerate missclassifications. In Cortes and Vapnik (1995) the extension
to the nonseparable case was introduced. To do it slack variables are introduced as
yi(w>xi+b) ≥ 1−ξi for i = 1, . . . , N and ξi > 0. Furthermore, this can be extended
to the nonlinear case (V. N. Vapnik, 1998) through the use of functions ϕ(·) that map
the input to a high dimensional space. Normally, these functions are known as feature
maps. Once such mapping is done, the separating hyperplane can be constructed in the
higher dimensional space.

The SVM theory can be extended to function estimation problems (V. N. Vapnik, 1995).
To do this, the concept of Vapnik’s ε-insensitive loss function is introdiced:

|y − f(x)| =
{

0, if |y − f(x)| ≤ ε
|y − f(x)| − ε, otherwise. (1.24)
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The procedure is similar to that of the classification case. First the primal is formulated:

min
w,b,ξ,ξ∗

JP (w, ξ, ξ∗) = 1
2w
>w + c

N∑
i=1

(ξi + ξ∗i )

such that

 yi −w>ϕ(xi)− b ≤ ε+ ξi for i = 1, . . . , N
w>ϕ(xi) + b− yi ≤ ε+ ξ∗i for i = 1, . . . , N
ξi, ξ

∗
i ≥ 0 for i = 1, . . . , N.

(1.25)

Then, the Lagrangian is stated and from the optimality conditions the dual problem is
obtained:

max
α,α∗

JD(α,α∗) = − 1
2

N∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi,xj)

−ε
N∑
i=1

(αi + α∗i ) +
N∑
i=1

yi(αi − α∗i )

such that
N∑
i=1

(αi − α∗i ) = 0 and αi, α∗i ∈ [0, c]

(1.26)

with c a positive real constant.

The dual representation of the model becomes then

ŷi(x∗) =
N∑
i=1

(αi − α∗i )k(x∗,xi) + b, (1.27)

where αi and α∗i are the solution to the quadratic programming (QP) problem and b
follows from the complementarity Karush–Kuhn–Tucker (KKT) conditions.

1.7 LS-SVM

Support vector machines are introduced in Cortes and Vapnik (1995) to solve
classification problems, but they can also be used for nonlinear function estimation or
regression (V. Vapnik, 1998). Estimation of SVM typically requires the solution of a
convex quadratic program due to the use of the ε-insensitive cost function and inequality
constraints. In contrast to that, least-squares support vector machines (LS-SVM)
(Suykens & Vandewalle, 1999; Suykens et al., 2002) use a formulation with a least-
squares cost function and equality constraints. In that way, the involved computational
complexity is reduced to that of solving a system of linear equations.

Besides classification and regression, SVM and LS-SVM have also been applied in
the modeling of nonlinear dynamical systems (Lu, Sun, & Butts, 2017; Suykens,
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Figure 1.7: The interdisciplinarity of LS-SVM. LS-SVM is closely related to other
kernel methods although its focus is mainly on primal-dual insights from optimization
theory and neural networks (Suykens et al., 2002).

2001). The memory of the system is typically accounted for by adopting a NARX
structure (Sjöberg et al., 1995), where the current output of the system is written as a
nonlinear function of the current input and previous inputs and outputs. The estimation
of the NARX model then boils down to a regression problem, for which SVM and
LS-SVM are excellently suited. Taking into account feedback is less straightforward,
but can be done using recurrent models (Suykens & Vandewalle, 2000). Besides
this black-box NARX approach, also some approaches that incorporate structural
information of the system can be found (see for example Goethals et al. (2005) for
the identification of Hammerstein systems, Falck et al. (2012) for the identification
of Wiener-Hammerstein systems in an LS-SVM context and Tötterman and Toivonen
(2009) for the identification of Wiener systems in an SVM context).
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The use of a least-squares cost function in LS-SVM has potential drawbacks. The least
squares cost function in a linear regression context is optimal for white and/or Gaussian
output noise, but not for correlated non-Gaussian noise. Moreover, in the absence
of regularization, the method can be sensitive to outliers. Variants of the standard
LS-SVM have been introduced to cope with these problems.

Weighted LS-SVM (Suykens, De Brabanter, Lukas, & Vandewalle, 2002) can deal
with non-Gaussian errors by applying a weighted least-squares cost function, i.e. by
associating individual weights to the error variables. The weights are chosen based on
the results of an initial unweighted LS-SVM. This makes the method robust to outliers.

Instead of solving the problem at the level of the cost function, one can also work
at the level of the kernel. RBF kernels are commonly used in LS-SVM models. An
alternative to deal with correlated noise is to tune the kernel based on the noise that
is present in the data. A bandwidth selection procedure based on bimodal kernels is
proposed in De Brabanter, De Brabanter, Suykens, and De Moor (2011b).

In Laurain, Zheng, and Tóth (2011) and Laurain, Tóth, Piga, and Zheng (2015) an
instrumental variable (IV) method in the LS-SVM framework is introduced. It extends
LS-SVM to be consistent in general noise cases while maintaining its computational
efficiency. The method is illustrated for affine NARX models in Laurain et al. (2011)
and for general NARX and NARMAX (Chen & Billings, 1989; Sjöberg et al., 1995)
models in Laurain et al. (2015).

In the framework of System Identification, LS-SVM has been applied before. Examples
on well known benchmark data sets like the Wiener-Hammerstein data set (J. Schoukens
et al., 2009) are available (e.g. De Brabanter et al. (2009) and Espinoza, Pelckmans,
Hoegaerts, Suykens, and De Moor (2004)). Given the black box nature of LS-SVM, a
natural improvement would be the ability to incorporate information about the structure
of the system into the LS-SVM itself. This has been somewhat explored (e.g. Falck et
al. (2012); Falck, Pelckmans, Suykens, and De Moor (2009)).

1.7.1 Function Estimation using Least Squares Support Vec-
tor Machines

Least Squares Support Vector Machines (LS-SVM) has been proposed within the
framework of a primal-dual formulation (Suykens et al., 2002). Having a data set
{xi, yi}Ni=1, the objective is to find a model

ŷ = w>ϕ(x) + b. (1.28)

Here, ϕ(·) : Rn → Rnh is the feature map to a high dimensional (possibly infinite)
feature space,w ∈ Rnh is the weight vector, x ∈ Rn is the input (for an input with n
features), ŷ ∈ R represents the estimated output value, and b is the bias term.
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A constrained optimization problem is then formulated:

min
w,b,ei

1
2w
>w + γ

2

N∑
i=1

e2
i

subject to yi = w>ϕ(xi) + b+ ei, i = 1, ..., N,
(1.29)

with ei the errors and γ the regularization parameter.

From the Lagrangian L(w, b, ei;αi) = 1
2w
>w+γ 1

2
∑N
i=1 e

2
i −
∑N
i=1 αi(w>ϕ(xi)+

b + ei − yi), with αi ∈ R the Lagrange multipliers, the optimality conditions are
derived: 

∂L
∂w = 0→ w =

∑N
i=1 αiϕ(xi)

∂L
∂b = 0→

∑N
i=1 αi = 0

∂L
∂ei

= 0→ αi = γei, i = 1, ..., N
∂L
∂αi

= 0→ yi = w>ϕ(xi) + b+ ei, i = 1, ..., N.

(1.30)

Using Mercer’s theorem Mercer (1909), the kernel matrix Ω can be represented by the
kernel function Ωij = k(xi,xj) = ϕ(xi)>ϕ(xj) with i, j = 1, ..., N . It is important
to note that in this representation ϕ(·) does not have to be explicitly known as it is
implicitly used through the positive definite kernel function. A commonly used kernel
is the radial basis function kernel (i.e. RBF kernel):

k(xi,xj) = exp
(
−‖xi − xj‖22

σ2

)
, (1.31)

where σ is the kernel parameter.

The dual formulation is obtained then from (1.30) by elimination of w and ei:[
0 1TN
1N Ω + γ−1IN

] [
b
α

]
=
[

0
y

]
(1.32)

with y = [y1, ..., yN ]> and α = [α1, ..., αN ]>. The resulting model is then:

ŷ(x) =
N∑
i=1

αik(x,xi) + b. (1.33)

1.7.2 NARX LS-SVM

The standard formulation of LS-SVM given in 1.7.1 can deal with static problems only
in the sense that there are no recursive equations involved. The formulation however
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can be extended to problems including dynamics. To use the previous equations in the
context of dynamical systems a combination with NARX models is required

ŷ(t) = f(z(t)), with
z(t) = [y(t− 1), y(t− 2), . . . , y(t− ra),

x>(t),x>(t− 1), . . . ,x>(t− rb)],
(1.34)

where ŷ(t) ∈ R is the estimated output and y(t− i), with i = 1, . . . , ra are the actual
past outputs. f(·) is a smooth nonlinear mapping and x(t−j) ∈ Rn with j = 0, . . . , rb
are the current and past systems inputs.

With this structure a dynamical system with inputs x(t) ∈ Rn and outputs y(t) ∈ R
can be modeled with discrete time index t. The values of ra and rb represent the delays
of outputs and inputs respectively.

Note that the training input for a system like this will consist of input data vectors
z = [y(t− 1), y(t− 2), . . . , y(t− ra),x>(t),x>(t− 1), . . . ,x>(t− rb)]r+Nt=r+1 with
r = max(ra, rb). Also, the corresponding output values will be {y(t)}r+Nt=r+1.

This formulation is inherently feed forward as the equation is not recursive. However it
is a useful model for one-step-ahead predictions.

1.7.3 Thesis overview

This thesis is divided in four parts. The chapters in each part share similar
methodologies or are based on similar concepts. A summary is presented below
and on Fig. 1.8.

• Part I: In this part the best linear approximation method (BLA) (see Pintelon
and Schoukens (2012) and Appendix A) is used in combination with LS-SVM
for the identification of Hammerstein and Wiener systems. The chapters in this
section are based on:

? Castro-Garcia, R., Tiels, K., Agudelo, O. M., Suykens, J. A. K.
(2017). Hammerstein System Identification through Best Linear Ap-
proximation Inversion and Regularization. International Journal of
Control. doi: 10.1080/00207179.2017.1329550. Available online at
http://www.tandfonline.com/doi/abs/ 10.1080/00207179.2017.1329550.

? Castro-Garcia, R., Tiels, K., Schoukens, J., Suykens, J. A. K. (2015).
Incorporating Best Linear Approximation within LS-SVM-Based Hammer-
stein System Identification. In proceedings of the 54th IEEE Conference on
Decision and Control (CDC 2015), Osaka, Japan. (pp. 7392 - 7397).
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? Castro-Garcia, R., Suykens, J. A. (2016). Wiener System Identification
using Best Linear Approximation within the LS-SVM framework. In
proceedings of the 3rd Latin American Conference on Computational
Intelligence. doi:10.1109/LA-CCI.2016.7885698.

• Part II: In this part system identification methods for Hammerstein and Wiener
systems are offered where the common denominator is the use of the steady state
time response of such systems. The chapters in this section are based on:

? Castro-Garcia, R., Agudelo, O. M., Tiels, K., Suykens, J. A. (2016).
Hammerstein system identification using LS-SVM and steady state time
response. In proceedings of the 15th European Control Conference (pp.
1063 – 1068).

? Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017c). MIMO
Hammerstein System Identification using LS-SVM and Steady State Time
Response. Accepted for publication in the proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI 2017). (Internal
Report 17-23, ESAT-SISTA, KU Leuven. Leuven, Belgium).

? Bottegal, G., Castro-Garcia, R., Suykens, J. A. K. (2017a). On the
identification of Wiener systems with polynomial nonlinearity. Accepted
for publication in the proceedings of the 56th IEEE Conference on Decision
and Control (CDC 2017). (Internal Report 17-55, ESAT-SISTA, KU
Leuven. Leuven, Belgium).

? Bottegal, G., Castro-Garcia, R., Suykens, J. A. K. (2017b). A two-
experiment approach to Wiener system identification. In Internal report
17-38, ESAT-SISTA, KU Leuven (Leuven, Belgium).

• Part III: In this part we take advantage of the Hammerstein structure to extract
information about the dynamics of the system through the estimation of their
impulse response. The chapters in this section are based on:

? Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017b).
Impulse Response Constrained LS-SVM modeling for Hammerstein
System Identification. In proceedings of the 20th world congress of the
International Federation of Automatic Control (IFAC 2017), Toulouse,
France. (pp. 14611 – 14616).

? Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017a). Im-
pulse response constrained LS-SVM modeling for MIMO Hammer-
stein system identification. International Journal of Control. doi:
10.1080/00207179.2017.1373862. Available online at http://www. tandfon-
line.com/doi/abs/10.1080/ 00207179.2017.1373862.

• Part IV: In the final part of the thesis black box approaches are presented. The
chapters in this section are based on:
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Table 1.1: User guidelines for selecting one of the methods presented in this thesis.

Transfer function model Nonlinearity type Inputs and outputs User defined
excitation

signals
Chapter Parametric Non-parametric Known Unknown/

Difficult
SISO MIMO Yes No

Hammerstein

2 x x x x
3 x x x x
5 x x x x
6 x x x x
8 x x x x
9 x x x x

Wiener

4 x x x
7.1 x x x
7.2 x x x
7.3 x x x

General 10 x x x x

? Castro, R., Mehrkanoon, S., Marconato, A., Schoukens, J., Suykens,
J. (2014). SVD truncation schemes for fixed-size kernel models. In
proceedings of the International Joint Conference on Neural Networks.
IJCNN 2014. Beijing, China, Jun. 2014 (pp. 3922-3929).

? Castro-Garcia, R., Tiels, K., Suykens, J. A. K. (2017). Frequency Division
LS-SVM for Nonlinear Modeling. In Internal report 17-24, ESAT-SISTA,
KU Leuven (Leuven, Belgium).

1.8 User guidelines

Many different options are introduced in this thesis for the identification of BONL
systems. In this section, guidelines to choose the best methodology are offered. In
Table 1.1 a summary is presented1.

1.8.1 Hammerstein systems

Chapter 2

If the user has a nonparametric approximation to the transfer function of the underlying
Hammerstein system (or can estimate one), this method can be used straightforwardly

1In Table 1.1, 7.1, 7.2 and 7.3 stand for the parametric, polynomial and non-parametric methods presented
in chapter 7 respectively.
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Figure 1.8: The structure of the thesis and a summarization of its parts and chapters.
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and thus is a good option for Hammerstein system identification. In particular, the
method excels when the class of problem are unknown or of a difficult-to-model nature
thanks to the generalization properties of LS-SVM.

Chapter 3

This methodology is useful when a parametric approximation to the underlying transfer
function is available or can be obtained. This is due to the fact that it shows how to
easily incorporate that information into an LS-SVM formulation.

Chapters 5 and 6

These methodologies are very powerful as they allow a very good and straightforward
modeling of the underlying nonlinearity. The user should be aware, however, that
feeding the system with the required input signals can be difficult to achieve in practice
due to their necessarily long times. For cases where this is not a problem or when a
very good modeling of the underlying nonlinearity is required these methodologies
constitute a very powerful tool for Hammerstein system identification.

Chapters 8 and 9

The type of input signals required for these methods are of a more common nature than
the ones in Chapters 5 and 6 and can be generated in an easier way. Also, the flexibility
of the methods w.r.t. the number of inputs and outputs and easiness of estimation
make them the best of all the offered options in this thesis for Hammerstein system
identification as long as the input signals can be chosen by the user.

1.8.2 Wiener systems

Chapter 4

Similarly to Chapter 3, this methodology is useful when a parametric approximation to
the underlying transfer function is available or can be obtained. In such cases, the use
of this method is straightforward.
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Chapter 7 - Parametric and polynomial approaches

In the case that the user has a clear idea of the type of nonlinearities of the underlying
Wiener system these methods can be very useful. The user should be aware that this
knowledge is not always available and that the system has to be allowed to reach steady
state and this can be a limitation.

Chapter 7 - Non-parametric approach

If the user is not aware of the type of nonlinearities of the underlying Wiener system,
the non-parametric approach presented is a very attractive option as, thanks to the good
generalization properties of LS-SVM, it can deal with different classes of problems.
Once more, however, the system has to reach steady state and this can be a limitation.

1.8.3 General

Chapter 11

The methodologies presented in this chapter are especially appropriate for cases when
the underlying structure of the system is unknown or when the user cannot define
his own input signals. These methodologies show a better performance than the
other powerful methodologies considered in this chapter when operating in similar
conditions.
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In this part, we explore the possibilities offered by using together the Best Linear
Approximation (BLA) (Pintelon & Schoukens, 2012) and LS-SVM for system
identification of block structured models. To this end, we consider Wiener and
Hammerstein systems.

The methods are applied where they excel, that is, the BLA is used to model the linear
parts and LS-SVM is used to model the nonlinear ones. As will be illustrated in the
following chapters, this combination of methods can be done in several ways. The
obtained results demonstrate that the proposed methods have a very good performance
and therefore offer an attractive option.

Function Estimation using LS-SVM was presented in Section 1.7.1 while in Appendix
A the BLA is presented completing the framework necessary for the methods introduced
in the following chapters.

In Chapter 2 a method for Hammerstein system identification is presented. A
novel approach for estimating the intermediate variable is presented allowing a clear
separation of the identification steps. First, a nonparametric approximation to the
linear block is obtained through the BLA of the system. Then an approximation to the
intermediate variable is obtained using the inversion of the estimated linear block and
the known output. Afterward a nonlinear model is calculated through LS-SVM using
the estimated intermediate variable and the known input. To do this the regularization
capabilities of LS-SVM play a crucial role. Finally, a parametric re-estimation of the
linear block is made. This chapter is based on the work presented in Castro-Garcia,
Tiels, Agudelo, and Suykens (2017).

Chapter 3 offers another methodology for Hammerstein system identification. First,
a parametric approximation to the LTI block is obtained through the BLA. Then, the
estimated coefficients of the transfer function from the LTI block are included in a
modified LS-SVM formulation for modeling the system. This chapter is based on the
work presented in Castro-Garcia, Tiels, Schoukens, and Suykens (2015).

Finally, in Chapter 4 a methodology for identifying Wiener systems is introduced
based on the work presented in Castro-Garcia and Suykens (2016). Conceptually,
this method is very similar to the one presented in Chapter 3: First, a parametric
approximation to the LTI block is obtained through the BLA method and then the
estimated coefficients of the transfer function from the LTI block are included in
a modified LS-SVM formulation for modeling the system. However, given the
difference in structures between Wiener and Hammerstein systems, the formulations
and mathematical developments are substantially different.



Chapter 2

Hammerstein System
Identification through Best
Linear Approximation
Inversion and Regularization

2.1 Introduction

In this chapter the Best Linear Approximation technique (BLA) (Pintelon & Schoukens,
2012) is used in order to find an initial estimate of the linear block. With this model the
identification of the nonlinear model can proceed. It is important to use a technique
that includes regularization as will be shown later. For this task we use Least Squares
Support Vector Machines (LS-SVM) (Suykens et al., 2002) given its well known
generalization properties and its incorporated regularization mechanisms. In order to
link these two steps a novel method to obtain an estimation of the intermediate variable
(i.e. x(t) in Fig. 1.1) is propsed. A mix of techniques is used then and they are applied
where they excel, that is, we use the BLA to model the linear part and LS-SVM to
model the nonlinear one.

This chapter is based on:
Castro-Garcia, R., Tiels, K., Agudelo, O. M., Suykens, J. A. K. (2017). Hammerstein System
Identification through Best Linear Approximation Inversion and Regularization. International Journal
of Control. doi: 10.1080/00207179.2017.1329550. Available online at http://www.tandfonline.com/doi/abs/
10.1080/00207179.2017.1329550.

29
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The proposed methodology can be separated in four stages:

• The system’s BLA is calculated and used as an approximation to the linear block.

• The intermediate variable is estimated using the inversion of the approximated
linear block and the known output.

• An LS-SVM model is trained using the known input and the estimated
intermediate variable.

• On an independent data set, the linear block is re-estimated using the result from
applying the input to the estimated model of the nonlinear block (i.e. the newly
estimated intermediate variable) and the known output.

The proposed method uses a backwards approach as defined in Sun, Liu, and Sano
(1999) where the linear dynamic part is identified first, then the intermediate variable
is estimated and finally the nonlinear part is modeled. This type of approach is also
used in other works like Bai and Fu (2002), Bai (1998) and J. Wang et al. (2009). Note
however that our approach differs from the Blind Approach defined in Bai and Fu
(2002) as the linear block is estimated using both input and output signals. Additionally,
in this work we make a final refinement of the estimation of the linear block after
having a model for the nonlinear block.

The idea of using the inversion of the estimated linear block is not new but is in general
regarded as a bad idea. As explained in Crama and Schoukens (2001b), among other
problems, the inversion of the found model implies that at those frequencies where the
amplitude of the transfer function is small, the noise will be amplified. Nevertheless,
the concept has been employed for example in Bai and Fu (2002) and Bai (2004) where
the effect of noise is not explored deeply. In contrast, in the present work the output of
the Hammerstein system is measured in the presence of high levels of white Gaussian
additive noise ny(t) (see Fig. 1.1). Additionally, some common assumptions like a
known order of the linear system are not necessary here.

In addition to the problem posed by the noise, the possibility of the system being
non-minimum phase is a serious concern to this type of approach. In the presented
method, we offer a way to work around these problems.

This chapter is organized as follows: In Section 2.2 the proposed method is presented.
Section 2.3 illustrates the results found when applying the described methodology on
three simulation examples, one of which is based on a real life application. Finally, in
Section 2.4, the conclusions are presented.
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2.2 Proposed Method

2.2.1 Inversion in the frequency domain

When dealing with system identification of Hammerstein systems it would be desirable
to be able to use y(t), the output of the system, and the inverse of the estimated linear
block to obtain an approximation to the intermediate variable i.e. x̂(t). However, it is
often the case that this inversion is not straightforward. For instance, if the identified
linear system is parametric and has zeros outside the unit circle (i.e. for the discrete
time case), when the system is inverted, those zeros would become poles and the
resulting system would be unstable, thus making the operation unfeasible.

Once an approximation to the linear block is obtained through the BLA (i.e. GBLA(k),
see Appendix A), it is possible to use it to obtain an approximation to the intermediate
variable X̂(k). To do this, first GBLA(k) is inverted at each frequency:

G−1
BLA(k) = 1

|GBLA(k)| exp (−ΘGBLA(k)j) (2.1)

with |GBLA(k)| the magnitude and ΘGBLA(k) the phase ofGBLA(k) at each frequency.
From this representation it is clear that the proposed method will be able to invert linear
blocks even if they would result in unstable systems if inverted in the time domain.
This nice property comes from the fact that this inversion is done in the frequency
domain.

In a Bode plot, this would look as the example presented in Fig. 2.1 where the product of
the magnitudes is one and the sum of the phases is zero. The shown system corresponds
to

G0(q) = q6 + 0.8q5 + 0.3q4 + 0.4q3

q6 − 2.789q5 + 4.591q4 − 5.229q3 + 4.392q2 − 2.553q + 0.8679 . (2.2)

Note that the sudden perturbation from 33% of the sampling frequency is nothing more
than an artifact due to the chosen excitation signal employed for computing the BLA.

Once G−1
BLA(k) is obtained, and having Y (k) (i.e. the representation of the known y(t)

in the frequency domain), their product will result in X̂(k):

X̂(k) = |Y (k)|
|GBLA(k)| exp ((ΘY (k) −ΘGBLA(k))j) (2.3)

with |Y (k)| the magnitude and ΘY (k) the phase of Y (k) at each frequency k.

From X̂(k), its corresponding time domain representation x̂(t) can be recovered and
with it, the identification of the nonlinear block, through LS-SVM in this case, can
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Figure 2.1: Example: Bode plot for GBLA(k) (upper left and right) and its
corresponding inverted result G−1

BLA(k) (lower left and right).

proceed. Note that this is possible due to the fact that the input to the nonlinear block
u(t) is known and an approximation to its output x̂(t) is now available.

It is evident from the multiplication in (2.3) that whatever noise is contained in Y (k)
will be propagated into this intermediate variable estimation. Normally this would
be a problem and obviously is an undesired effect. In fact, x̂(t) will be in general
a poor approximation to the actual x(t) since beside the backpropagated noise it is
only estimated in the frequency band where GBLA(k) was obtained. However, it is
of paramount importance to highlight the fact that x̂(t) is used here exclusively to
train the LS-SVM model and that due to the regularization properties of LS-SVM, the
aforementioned issues can be overcome (i.e. see Section 2.2.2 and Figure 2.4).

2.2.2 Role of regularization

To illustrate the effect of the regularization, it will be shown how the changes in the
noise level affect the resulting model.

Given that x̂T (t) (i.e. the estimated intermediate variable of the training data) is defined
as a multiplication in the frequency domain, it can be seen naturally as a convolution
in the time domain. To express this, we will define M

G
−1
BLA

as a Toeplitz matrix
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containing the time domain representation of G−1
BLA(k):

x̂T = M
G

−1
BLA

y. (2.4)

Note that hereM
G

−1
BLA

∈ RN×N and x̂T , y ∈ RN with y the measured output and
x̂T the estimated intermediate variable of the training data (i.e. it comes from Y (k)
and the inversion of GBLA(k)).

Here, x̂T is used in (1.32) instead of y, therefore, from the LS-SVM formulation, we
have:

x̂T =
(

Ω + I

γ

)
α+ 1Nb, (2.5)

x̃ = Ωα+ 1Nb. (2.6)

Note that x̃ corresponds to the predicted values of the intermediate variable through
the evaluation of the found model on the training data.

From (2.4) and (2.5) into (2.6), we can rewrite x̃ as:

x̃ = x̂T −
α

γ

= x̂T −
1
γ

(
Ω + I

γ

)−1
(x̂T − 1Nb)

= M
G

−1
BLA

y − 1
γ

(
Ω + I

γ

)−1
(M

G
−1
BLA

y − 1N b).

(2.7)

Now, if we want to see how x̃ changes if the measurement noise ny changes, we have:

x̃+ ∆x̃ =M
G

−1
BLA

(y+ ∆ny )− 1
γ

(
Ω + I

γ

)−1
(M

G
−1
BLA

(y+ ∆ny )− 1Nb)

=M
G

−1
BLA

y − 1
γ

(
Ω + I

γ

)−1
(M

G
−1
BLA

y − 1Nb) +M
G

−1
BLA

∆ny

− 1
γ

(
Ω + I

γ

)−1
M
G

−1
BLA

∆ny

=x̃+M
G

−1
BLA

∆ny −
1
γ

(
Ω + I

γ

)−1
M
G

−1
BLA

∆ny .

(2.8)
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From (2.8) we get then:

∆x̃ =
(
I − 1

γ

(
Ω + I

γ

)−1
)
M
G

−1
BLA

∆ny . (2.9)

Now, from (2.9) let us define:

W = I − 1
γ

(
Ω + I

γ

)−1
. (2.10)

Hence
∆x̃ = WM

G
−1
BLA

∆ny . (2.11)

HereW is the matrix determining the effect of the change of the measurement noise
in the model. Note also that it can be rewritten as

W = I − (γΩ + I)−1

= Ω
(
Ω + I

γ

)−1
.

(2.12)

Theorem 1. In (2.11) ∆x̃ is upper bounded as follows ‖∆x̃‖2 ≤
∥∥∥MG

−1
BLA

∆ny

∥∥∥
2

Proof. Let λi be an eigenvalue of Ω which is a symmetric positive semi-definite matrix.
The eigenvalues of γΩ + I are equal to γλi + 1.

As γΩ + I is a square non-singular matrix, the eigenvalues of the matrix (γΩ + I)−1

are 1
(γλi+1) and the eigenvalues ofW = I − (γΩ + I)−1 are then

(
1− 1

(γλi+1)

)
=

γλi
(γλi+1) = λi

(λi+ 1
γ ) .

Given thatW is symmetric,
(

λi
(λi+1)

)2
is an eigenvalue ofW>W .

Note that 0 ≤ λi
(λi+ 1

γ ) ≤ 1 as by definition γ > 0 and λi ≥ 0. Therefore 0 ≤(
λi

(λi+ 1
γ )

)2
≤ 1.

Finally, note that ‖W ‖2 =
√

max
i

(
λi

(λi+ 1
γ )

)2
.

From (2.11) we can write the following inequality: ‖∆x̃‖2 ≤ ‖W ‖2
∥∥∥MG

−1
BLA

∆ny

∥∥∥
2
≤∥∥∥MG

−1
BLA

∆ny

∥∥∥
2

as 0 ≤ ‖W ‖2 ≤ 1
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Note that given the properties of W and the expression in (2.11) we can expect that
the effect of ∆ny will be generally dampened by W . This is very relevant as W is
heavily dependent on the regularization term γ. See Fig. 2.6 in Section 2.3.2 for an
example of the behavior of ‖W ‖2 and the effect of γ on it.

Let us consider the case where γ → 0 while bearing in mind that the values of the
kernel matrix Ωi,j ∈ [0, 1]∀i, j when using the Gaussian RBF kernel, where i and
j denote the row and column evaluated. Note that in this case, the weight given to
the errors between the output of the training data set and the points obtained with the
model is very small (see (1.32)).

W =I − 1
γ

(
Ω + I

γ

)−1

=I − 1
γ

(
γΩ + I

γ

)−1

≈I − 1
γ

(
I

γ

)−1
= 0.

(2.13)

Then:
∆x̃ ≈ 0. (2.14)

Consider now the case where γ →∞. The errors between the training points and the
points obtained with the model are extremely important (again, see (1.29)). In other
words, the estimated model would try to follow the output of the training data set as
well as possible.

W = I − 1
γ

(
Ω + I

γ

)−1
≈ I − Ω−1

γ
≈ I. (2.15)

Then:
∆x̃ ≈MG

−1
BLA

∆ny . (2.16)

This result was to be expected since the model will try to follow the output of the
training data set. Any change in the training points will result in a direct change in the
behavior of the model as there is no regularization at all.

It is important to remember that the Toeplitz matrix M
G

−1
BLA

is used such that a
convolution in the time domain can be represented. If the expression in (2.16) is taken
to the frequency domain, it simply becomes a multiplication:

∆X̃(k) ≈ G−1
BLA(k)∆NY (k). (2.17)
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From (2.17) it is evident that the way ∆NY (k) is going to affect ∆X̃(k), or equivalently
how ∆ny affects ∆x̃, depends directly on the frequency power distributions of
G−1
BLA(k) and ∆NY (k) as there would be no regularization in use. This means that in

the worst case scenario, most of the power of ∆NY (k) would be in the passband of
G−1
BLA(k). In this case, the effect of ∆NY (k) would be amplified. It is possible, on the

other hand, that most of the power of ∆NY (k) is out of the passband of G−1
BLA(k). In

this case, the effect of ∆NY (k) would be dampened.

2.2.3 Method Summary

The proposed method finally consists of four parts. First, the BLA of the system (i.e. a
non-parametric GBLA(k)) is calculated. Second, using GBLA(k)−1 and the frequency
domain representation of y(t) (i.e. Y (k)) an approximation to the intermediate variable
X̂T (k) is obtained and from it, its corresponding time domain representation x̂T (t).
Next, an LS-SVM model is trained using u(t) as input and x̂T (t) as output. Finally, the
linear block is re-estimated using a newly calculated intermediate variable (i.e. the result
from applying a new input to the estimated nonlinear block) and the corresponding
known output. A summary of the method presenting the main steps is shown in
Algorithm 1. Note that for each of the data sets mentioned, several realizations are
used (see Section 2.3.2).

It is important to highlight that in Algorithm 1, steps 1 to 6 correspond to the System
Identification part, while steps 7 to 9 correspond to the evaluation part.

2.3 Experimental Results

In this section a practical illustration of the proposed method is presented through
synthetic examples. First, the specific characteristics of the employed signals will be
described. Then a didactical example will be offered where the steps of the proposed
method described in Algorithm 1 are shown. Afterward, the effects of the noise on the
proposed method is illustrated in the previous example and in a new example which
includes a hard to model nonlinearity. Finally, we offer a third example based on a real
life application and provide a performance comparison with different methods for the
three examples.

Note that the particulars (e.g. amplitudes, frequency bands, sampling frequencies, etc.)
of the signals used were picked for the corresponding examples and are not intended
as general recommendations for the proposed method. Also, in order to be able to
compare between the results of different examples the normalized mean absolute error
(%MAE) is used as defined in Appendix D.
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Algorithm 1 Hammerstein System Identification through BLA inversion and LS-SVM
techniques.
Input: Random phase multisine signal u1(t) and its corresponding output y1(t); Ramp

signal u2(t) and its corresponding output y2(t). Multilevel Pseudo Random Signal
u3(t) and its corresponding output y3(t). Multilevel Pseudo Random Signal
utest(t).

Output: Evaluation of the test output signal ytest(t);
1: Eliminate the first data points in u1(t) and y1(t) to reduce the effect of the

transients.
2: Get the frequency representation of the transient free signals (i.e. U1(k) and
Y1(k)).

3: Obtain GBLA(k) and G−1
BLA(k) from several realizations of U1(k) and Y1(k).

4: Get an approximation to the intermediate variable in the frequency domain:
X̂T (k) = G−1

BLA(k)Y2(k).
5: Get x̂T (t), the time domain representation of X̂T (k), and together with u2(t) train

an LS-SVM model to represent the nonlinearity;
6: Apply u3(t) to the estimated nonlinear model. Using the resulting x̃3(t) and the

known output y3(t), estimate the linear block Gfinal(k);
7: Apply utest(t) to the estimated nonlinear model. From the resulting x̃test(t) obtain

its frequency representation. Apply X̃test(k) to Gfinal(k) to obtain the estimation
of the output in the frequency domain Ŷtest(k).

8: Finally, from Ŷtest(k) obtain the corresponding time domain representation
ŷtest(t);

9: return ŷtest(t);

2.3.1 Signals description

In this section, the signals mentioned in Algorithm 1 are further explained.

Signal u1(t) =
∑F
k=1 |Uk| cos(2πk fsN t+ φk) is a full random-phase multisine with a

random harmonic grid in the excited frequency range {0, 10000}Hz. Note that here, F
stands for the excited frequencies, N is the number of samples and |Uk| denotes the
amplitude used at each frequency. The sampling frequency fs is equal to 78125Hz.
In this case, all |Uk| 6= 0 are chosen equal to each other such that u1(t) has an rms
value of 0.3. The phases φk are uniformly and randomly distributed between 0 and 2π.
A ramp signal with 45 degrees slope was used to generate u2(t). Finally, Multilevel
Pseudo Random Signals with 2% switching probability and amplitude values drawn
from a uniform distribution were used to generate u3(t) and utest(t).

A summary and further details describing the used signals can be found in Table 2.1.
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Name Points used Max. Value Min. Value Description
u1(t) 5000 - - Random Phase Multisine Signal.
u2(t) 1000 15 -15 Ramp signal with 45 degrees slope.
u3(t) 1000 10 -10 Multilevel Pseudo Random Signal.
utest(t) 1000 10 -10 Multilevel Pseudo Random Signal.

Table 2.1: Summary of input signals used.

It is important to note that even though the signals have the number of points noted in
Table 2.1, it is possible to perform an interpolation of such signals to have more points.

2.3.2 Method steps

In this section the proposed methodology was applied to one system in the discrete
time domain. This system is of didactical nature and is used to illustrate the method
steps. It was generated through a nonlinear block:

x(t) = u(t)3 with u(t) ∈ [−15, 15], (2.18)

and a linear block:

y(t) = B1(q)
A1(q)x(t) (2.19)

where

B1(q) = 0.008935q3 − 0.004525q2 − 0.004525q + 0.008935 (2.20)

and

A1(q) = q3 − 2.564q2 + 2.218q − 0.6456. (2.21)

The linear and nonlinear blocks in this example (later on referred to as Example 1) are
depicted in Fig. 2.2. The LTI block was chosen with a sharp zero in order to illustrate
how this affects the method.

White Gaussian noise with zero mean was applied to the output of the system with a
SNR of 10 dB. For each of the stages in the procedure, 2 periods and 5 realizations of
the signals were used.

First, a non-parametric GBLA(k) was estimated as shown in Appendix A through the
use of a random phase multisine input and its corresponding output (see Fig. 2.3 for the
results of this step in the example). Afterward G−1

BLA(k) was calculated as explained
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Figure 2.3: Nonparametric BLA.

in Section 2.2. Next, the estimation of the intermediate variable x̂T (t) was carried out.
Then, the nonlinear block was estimated through the use of LS-SVM using u2(t) as
input and x̂T (t) as output. Note that this u2(t) still corresponds to the same signal used
to estimate x̂T (t). Fig. 2.4 displays the results of this step.

Note that there is a rescaling of the approximated nonlinear block before overlapping
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Figure 2.4: Nonlinear block estimation. Here, c corresponds to a rescaling factor. An
interpolation to increase the number of points was performed and thus the extended
number of points.

it to the actual one. The actual difference in scaling has no effect on the input-output
behavior of the Hammerstein system (i.e. any pair of {f(u(t))/η, ηG(q)} with η 6= 0
would yield identical input and output measurements). Other than this rescaling, it is
evident that the reproduction of the nonlinear block is quite accurate. In fact, in Fig. 2.5,
the comparison between the actual xtest(t) and the estimated x̃test(t) is shown. This
comparison is carried out for illustrative purposes and does not have any role at all in
the procedure. As can be seen, the reconstruction is accurate up to a scaling factor.

In Fig. 2.6, the behavior of ‖W ‖2 is displayed for different values of σ and γ. As can
be seen, ‖W ‖2 is bounded between 0 and 1 as explained in Theorem 1.

Also, in order to show the effect of parameter tuning during the modeling of the
nonlinear block, Figures 2.7 and 2.8 are presented. In these figures, alternatively one
of the parameters (i.e. σ or γ) is fixed while different values for the other are tried at
the training and test set and the resulting %MAE is presented (i.e. see Appendix D).
The fixed values correspond to the selected parameters through Coupled Simulated
Annealing (Xavier-de Souza, Suykens, Vandewalle, & Bollé, 2009) followed by a
Simplex approach for fine tuning under a 10-fold crossvalidation scheme (i.e. see
LS-SVMlab v1.8).

As can be seen, neither of the parameters is selected at the corresponding lowest error
in the training set, however, in the test set these parameters prove to be very effective.
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Figure 2.5: Comparison between the actual xtest(t) and the estimated x̂test(t). Here, c
corresponds to a rescaling factor.

Note that even though it is not possible to guarantee the absolute minimum error in the
test set, a very good result is obtained.

Having performed the previous steps, the last remaining thing to do is to re-estimate
the linear block. To do this, a Least Squares (LS) approach is used. The result can be
seen in Fig. 2.9, and in Fig. 2.10 the final estimation for the test set is shown.

2.3.3 Noise effect analysis

For evaluating how the noise affects the performance of the method, 100 Monte Carlo
simulations were carried out in a test set for each of four different levels of SNR.

The results of the 100 Monte Carlo simulations are summarized in Fig. 2.11. As can be
seen, the performance of the model is consistent independently of the level of noise (i.e.
the medians of the different simulations oscillate in a small range between 2.8101%
and 3.4928%). This phenomenon can be explained by the particular shape of the linear
block in this system. As can be seen in Figs. 2.3 and 2.9, the zero at 8926Hz is not
modeled properly due to the high level of noise present. In Fig. 2.12, the same modeling
is shown for different SNR levels. It is clear that as the level of noise decreases, the
modeling of the zero improves. This better modeling has a drawback for the proposed
methodology: When the model is inverted, a pole will appear at the same frequency
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where the original zero was. In other words there is a tradeoff in this example: on one
hand the higher the noise the more difficult it is to obtain a good modeling. On the
other hand, the lower the noise, the more problematic the zero at 8926Hz becomes.
Surprisingly, the noise itself acts as a sort of protection when modeling systems with
this type of zeros.

In order to offer another perspective on the way the proposed methodology works, the
following example (i.e. Example 2) was used with nonlinear block:

x(t) = u(t) cos (u(t)) with u(t) ∈ [−15, 15], (2.22)

and linear block:

y(t) = B2(q)
A2(q)x(t) (2.23)
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Figure 2.9: Estimated Parametric BLA.

0 1000 2000 3000 4000 5000 6000 7000 8000
−1000

−500

0

500

1000

Samples

A
m

p
lit

u
d

e

Output variable behaviour (means extracted)

 

 

ytest(t)
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Figure 2.11: Normalized Mean Absolute Error (%MAE) for a 100 Monte Carlo
simulation for different levels of noise in Example 1.

where

B2(q) = 0.004728q3 + 0.01418q2 + 0.01418q + 0.004728 (2.24)

and

A2(q) = q3 − 2.458q2 + 2.262q − 0.7654. (2.25)

The linear and nonlinear blocks of Example 2 are depicted in Fig. 2.13. Notice that
the nonlinearity in this example is particularly difficult to model with polynomial basis
functions approaches.

For this example, again 100 Monte Carlo simulations were run and the corresponding
results are presented in Fig. 2.14. It can be seen that the results here are more intuitive
in the sense that as the SNR increases, the Normalized MAE decreases.

2.3.4 Methods comparison

In order to compare the current method four additional methodologies were considered.
The compared methods include:

• Inversion + LS-SVM (i.e. the presented method).

• NARX LS-SVM (Suykens et al., 2002) with 10 lags of input and 10 lags of
output.
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Figure 2.12: Nonparametric BLA for different noise levels: (Top) SNR = 20dB. (Center)
SNR = 40dB. (Bottom) SNR = 80dB.

−10 0 10
−15

−10

−5

0

5

10

15

Input

Ou
tpu

t

Nonlinear block

0 0.1 0.2 0.3 0.4

−200

−150

−100

−50

0

Normalized frequency

Am
pli

tud
e(

dB
)

Linear system

Figure 2.13: (Left) Linear system in normalized frequency and dB. (Right) Nonlinear
block.



EXPERIMENTAL RESULTS 47

10 dB 20 dB 40 dB 80 dB
0

0.5

1

1.5

2

MC Ex2 Results of %MAE for Normal LS-SVM (100 Montecarlo simulations)

SNR

Figure 2.14: Normalized Mean Absolute Error (%MAE) for a 100 Monte Carlo
simulation for different levels of noise in Example 2.

• The Hammerstein and Wiener Identification procedure (in this chapter denoted
by WHIP) presented in M. Schoukens (2015).

• The iterative method (in this chapter denoted by IM) presented in Bai and Li
(2010).

• The State-Dependent Parameter (SDP) method in combination with the RIVBJ
routine contained in the CAPTAIN toolbox (P. Young (2000); P. C. Young,
McKenna, and Bruun (2001)). This will be referred to as the Captain method.

To carry out the comparison, a third example of a more realistic nature is introduced
(from now on referred to as Example 3). This example models a push-pull type B
amplifier as depicted in Fig. 2.15. To model the speaker, its electrical and mechanical
dynamics were considered. The way the speaker is modeled is represented in Fig. 2.16
where the input is the voltage from the amplifier (i.e. v(t)) and the output is the
displacement of the cone of the speaker xd(t). For this example the number of
realizations used was 50.

The system is represented as shown in Fig. 2.17 where the nonlinear block is a piecewise
function with saturations given by the positive and negative supply rails (i.e. see
Fig. 2.15) and a deadzone between −0.55V and 0.55V generated by the transistors.
The speaker on the other hand is modeled through a transfer function (in continuous
time) as shown in (2.26) (Ravaud, Lemarquand, & Roussel, 2009):

Xd(s)
V (s) = km

(Ls+R)(ms2 + bs+ k)− kvkms
, (2.26)
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Figure 2.15: Example 3. Push-pull type B amplifier.

where km = 3.14N/A is the constant from the Lorentz force, kv = 3.14Vs/m is the
constant of the electromotive force (i.e. EMF), k = 20000N/m is the spring constant,
b = 50N/m/s is the dampener constant, m = 0.004Kg is the mass of the cone and
the coil, R = 5Ω is the resistance and L = 50µH the inductance of the speaker. The
transfer function was then discretized with the zero order hold method with a sampling
time Ts = 0.0004s producing finally:

xd(t) = 0.003639q2 + 0.0009408q + 9.87× 10−08

q3 − 0.8595q2 + 0.005371q − 4.302× 10−20 v(t). (2.27)

For Examples 1 and 2 the inputs of the test set range between -10 and 10. For Example
3, the test set range of the inputs goes from -20 to 20.

To train the NARX LS-SVM method, uniformly distributed white noise inputs were
used. In Examples 1 and 2, uNARX(t) covers at least [−15, 15] while in Example 3, the
amplitude of the input uNARX(t) covered [−20, 20].

For the training of the Captain method, uniformly distributed white noise inputs were
used. In Example 2, uCAP(t) was scaled so that it covered at least [−15, 15] while in
Example 3, the amplitude of the input uCAP(t) covered [−20, 20]. Linear model orders
between 2 and 4 were scanned and nonlinear degrees between 3 and 25 for the first and
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Figure 2.16: Example 3. Speaker modeling. (Left) Electrical dynamics. (Rigth)
Mechanical dynamics.
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second examples and between 3 and 15 for the third one were scanned. The specific
functions employed were sdp and rivbj.

To train the IM method, Gaussian noise inputs were used. In the first example, uIM(t)
had an RMS value of 0.3. In the second example, the amplitude of the Gaussian noise
input uIM(t) was rescaled so that it covers at least [−15, 15]. Similarly, in Example
3 uIM(t) covers at least [−20, 20]. This was done to avoid extrapolation issues as the
nonlinearity in (2.22) is not in the polynomial model class. These signals were used to
estimate iteratively the linear and the nonlinear blocks. Linear model orders between
2 and 4 were scanned. Also, nonlinear degrees between 3 and 5 for the first example,
between 3 and 25 for the second one and between 3 and 21 for Example 3 were
scanned. The linear model order and the nonlinear degree are chosen simultaneously
using cross-validation with the Multilevel Pseudo Random validation signal u3(t).

For the training of the WHIP case, for Example 1 multisine signals with an RMS value
of 0.3 were used as inputs. For Example 2 uWHIP(t) covered at least [−10, 10]. For
Example 3, uWHIP(t) covered [−20, 20]. Two steady-state periods of four out of the
five phase realizations of the multisine were used for estimation of the linear and the
nonlinear blocks. One steady-state period of the fifth realization of the multisine was
used for model order selection of the linear block (i.e. the model order was chosen
between 2/2, 2/3, 2/4, 3/3, 3/4, and 4/4). A Multilevel Pseudo Random Validation
signal u3(t) was used for selecting the nonlinear degree (i.e. between 3 and 5 for the
first example and between 3 and 25 for the second and third ones). After following the
steps above, the obtained model was optimized using the four phase realizations of the
multisine that were used earlier to estimate the linear and the nonlinear block.

In Table 2.3.4 the results of the comparison in Normalized MAE form are presented.
Each of the presented results corresponds to an average over 10 runs.

Example 1 Example 2 Example 3
SNR (dB) 10 20 10 20 10 20

Inversion + LS-SVM 4.3331 4.3735 0.89992 0.76626 0.82356 0.31645
NARX LS-SVM 6.2704 11.8499 20.8274 27.0158 3.9029 2.4138

IM 6.6991 6.7313 5.6814 6.1720 1.8026 2.6827
WHIP 0.0676 0.0516 5.0310 4.9834 1.5271 1.5004

Captain 3.8758 3.4821 12.815 12.1707 26.1013 25.4655

Table 2.2: Results comparison in Normalized MAE.

The IM method seems to be very sensitive to the application of noise. Given that
the selected examples contain a low SNR, the performance of the method is severely
affected. However, this method obtains better results if the noise is much smaller (e.g.
for 80dB SNR a Normalized MAE of 0.00063% is obtained in Example 1).
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The IM, Captain and WHIP methods assume that the nonlinearity can be represented in
a basis function expansion form with known basis functions. Note that the nonlinearities
in (2.22) and Fig. 2.13 and in Fig. 2.17 are hard to model by a polynomial of reasonable
degree for the input ranges used (i.e. see Table 2.1). Nevertheless, polynomials were
used for these methods.

Given how sharp the zero at 8926Hz is in the linear block of Example 1, it is clear
that this is a particularly challenging problem for the proposed methodology due to
the inversion step. Nonetheless as can be seen, the proposed method performs well in
the three examples. Even more, for the second and third examples it achieves a better
performance than the other methods. The results presented suggest that the proposed
method is robust against the amount of noise used and also has a great generalization
capability when using different model classes, which clearly is a nice advantage.

It is important to highlight that in simpler cases, like the one presented in Example 1,
even though the proposed method works well other methods could be better specially
when they belong to the model class. For cases where the nonlinearity becomes
challenging (i.e. hard nonlinearities), the proposed method becomes an attractive
option due to its flexibility and good performance.

2.4 Conclusions

The described method in this chapter presents a combination of techniques, namely the
BLA and LS-SVM, for the identification of Hammerstein systems.

It is shown that the inversion of the estimated linear block can be used to make a
preliminary estimation of the intermediate variable even in the presence of measurement
noise. With this preliminary estimation and the known input the nonlinear block can
be modeled. This is, as long as there is a mechanism to counter the influence of the
back-propagated noise. In this chapter, the regularization provided by the LS-SVM
methodology provides such a tool. Once this modeling is done, the intermediate
variable can be re-estimated straightforwardly.

In Hammerstein systems the estimated intermediate variable, in combination with
the known input, is enough to model the nonlinear block. Similarly, the intermediate
variable in combination with the output variable can be used to model the linear block.
Given this, the proposed method allows us to obtain a model for each of the composing
blocks of the Hammerstein system (up to a certain scaling factor) that can reproduce
the input-output dynamics in an accurate way. This allows a deeper insight into the
inner workings of the studied Hammerstein systems.

The method offered in this chapter offers high flexibility with regard to the model class
of the nonlinearity it can handle. Furthermore, when dealing with hard nonlinearities
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the presented method tends to perform better than other state of the art methods thanks
to the generalization and regularization capabilities of LS-SVM.

Further extensions of the methodology could be achieved through its application to the
MIMO case of Hammerstein systems and to Wiener-Hammerstein systems.



Chapter 3

Incorporating Best Linear
Approximation within
LS-SVM-Based Hammerstein
System Identification

3.1 Introduction

The objective of this chapter is to incorporate the techniques of the Best Linear
Approximation (BLA) (Pintelon & Schoukens, 2012) within Least Squares Support
Vector Machines (LS-SVM) (Suykens et al., 2002). In the proposed method it is
possible to clearly separate the steps for identification of the linear and nonlinear parts.

Under the proposed methodology, it will be shown that the solution of the model
follows from solving a linear system of equations. By itself, this already constitutes an
advantage over other methods like overparametrization in the sense that the proposed
method is much more simple and easy to implement.

Incorporating information of the system’s structure into a LS-SVM model can be
difficult. To do that, in this chapter we use the BLA approach to model the linear block

This chapter is based on:
Castro-Garcia, R., Tiels, K., Schoukens, J., Suykens, J. A. K. (2015). Incorporating Best Linear
Approximation within LS-SVM-Based Hammerstein System Identification. In proceedings of the 54th
IEEE Conference on Decision and Control (CDC 2015), Osaka, Japan. (pp. 7392 - 7397).

53
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and use the results to help LS-SVM modeling the nonlinear part. To achieve this, the
primal formulation of LS-SVM is modified to include the information of the structure
of the system and the approximation to the linear block obtained through the BLA.

The proposed methodology can be separated in two stages:

• The system’s BLA is calculated and used as an approximation to the linear block.

• A modified LS-SVM model is trained including the information given by the
BLA of the system.

Note then that the full Hammerstein model consists of a nonlinear block given by the
resulting LS-SVM model and a linear part coming from the BLA.

The proposed method is applied to two simulation examples and the results are
presented. There, the output of the Hammerstein system is measured in the presence of
white Gaussian additive noise (i.e. v(t) in Fig. 1.1).

It will be shown that in the presence of noise, the method can very effectively calculate
an approximation to the nonlinear model (up to a scaling factor) and to the system as a
whole. It is important to highlight that this scaling factor is not identifiable (Boyd &
Chua, 1983).

This chapter is organized as follows: In Section 3.2 the problem statement is offered.
The proposed method is presented in Section 3.3 where it is explained how the BLA and
LS-SVM were used together. Section 3.4 illustrates the results found when applying
the described methodology on two simulation examples. Finally, in Section 3.5, the
conclusions and ideas for future work are presented.

3.2 Problem Statement

To represent a linear dynamic block, an ARX model can be used (Ljung, 1999):

ŷ(t) =
m∑
j=0

bju(t− j)−
n∑
i=1

aiy(t− i). (3.1)

Here, ŷ(t) is the currently estimated value of the output, while y(t− i) are past outputs
and u(t− j) represents the past and present inputs. Note that bj and ai represent the
coefficients of the numerator and denominator of the linear block respectively.
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In the Hammerstein case, the input u(t) goes trough a nonlinear block first. This
nonlinear block is represented as f(u(t)) in Fig. 1.1, therefore, the model is expressed
as:

y(t) =
m∑
j=0

bjf(u(t− j))−
n∑
i=1

aiy(t− i) + e(t). (3.2)

To obtain an approximation to the coefficients ai and bj , the BLA approach will be
used and to obtain a representation of f(u(t)), LS-SVM will be employed.

3.3 Proposed Method

Given that an approximation to the ai and bj coefficients of the transfer function
can be estimated from the BLA (i.e. see Appendix A), the aim is to incorporate this
approximation in the formulation of LS-SVM to exploit the knowledge of the structure
of the system. This gives the following model to be identified:

y(t) =
m∑
j=0

bj(w>ϕ(u(t− j)) + d0)−
n∑
i=1

aiy(t− i) + e(t). (3.3)

For this model, one formulates the following constrained optimization problem:

min
w,d0,e

J = 1
2w
>w + γ

2

N∑
t=r

e(t)2 (3.4)

s.t. eq. (3.3) holds for all t = r, ..., N . Here r = max(n,m) + 1.

Given these elements, one has the following Lagrangian:

L(w, d0, e,α) =J −
N∑
t=r

αt

 m∑
j=0

bj(w>ϕ(u(t− j)) + d0)

−
n∑
i=1

aiy(t− i) + e(t)− y(t)
)
.

(3.5)



56 INCORPORATING BLA WITHIN LS-SVM-BASED HAMMERSTEIN SYSTEM IDENTIFICATION

The optimality conditions become:

∂L
∂w = 0 → w =

∑N
t=r αt

∑m
j=0 bjϕ(u(t− j))

∂L
∂d0

= 0 →
∑N
t=r αt

∑m
j=0 bj = 0

∂L
∂et

= 0 → αt = γet for t = r, ..., N

∂L
∂αt

= 0 → y(t) =
∑m
j=0 bj(w>ϕ(u(t− j)) + d0)

−
∑n
i=1 aiy(t− i) + e(t) for t = r, ..., N.

(3.6)

By replacing the first and third conditions (i.e. ∂L
∂w = 0 and ∂L

∂et
= 0) into the last one

(i.e. ∂L
∂αt

= 0) one gets for t = r, ..., N :

y(t) =
∑m
j=0 bj

((∑N
q=r αq

∑m
p=0 bpϕ(u(q − p))

)>
ϕ(u(t− j)) + d0)−

∑n
i=1 aiy(t− i) + αt

γ

=
∑m
j=0

∑N
q=r

∑m
p=0 bjbpαqϕ(u(q − p))>ϕ(u(t− j))

+
∑m
j=0 bjd0 −

∑n
i=1 aiy(t− i) + αt

γ .

(3.7)

Let us define:
η = N − r + 1 (3.8)

b̃ =
m∑
j=0

bj (3.9)

α =
[
αr · · · αN

]> ∈ Rη (3.10)

a = −
[
a1 · · · an

]> ∈ Rn (3.11)

yf =
[
yr · · · yN

]> ∈ Rη (3.12)

Ωk,l = ϕ(uk)>ϕ(ul) for k, l = 1, ..., N (3.13)

Mq,t =
m∑
j=0

m∑
p=0

bjbp(Ω(q−p,t−j)) for t, q = r, ..., N (3.14)

Yp =


yr−1 yr · · · yN−1
yr−2 yr−1 · · · yN−2

...
...

. . .
...

yr−n yr−n+1 · · · yN−n

 ∈ Rn×η (3.15)
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From ∂L
∂d0

= 0 one gets
N∑
t=r

αtb̃ = b̃1>α = 0 (3.16)

and from ∂L
∂αt

= 0:

yf =
m∑
j=0

m∑
p=0

bjbpΩ(q−p,t−j)α+ Y >p a+ b̃1>d0 + γ−1Iα

= Mα+ Y >p a+ b̃1>d0 + γ−1Iα,

(3.17)

with t, q = r, ..., N .

The obtained linear system can now be written as:[
0 b̃1>η
b̃1η (M + I

γ )

] [
d0
α

]
=
[

0
yf − Yp>a

]
. (3.18)

Under this representation, the model is linear in the unknowns and therefore it can be
solved directly.

Note that once α and d0 are known, it is possible to directly apply the model to new
data points.

3.4 Results

The proposed methodology was applied to two systems in the discrete time framework.
In order to be able to compare between the results of different examples the normalized
mean absolute error (%MAE) is used as defined in Appendix D. The first system was
generated through a nonlinear block:

x(t) = u(t)3 (3.19)

and a linear block:

y(t) = 0.004728q3 + 0.01418q2 + 0.01418q + 0.004728
q3 − 2.458q2 + 2.262q − 0.7654 x(t). (3.20)

The second system was generated through a nonlinear block:

x(t) = −0.5u(t)3 + 5u(t)2 + u(t), (3.21)
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Table 3.1: Selected Parameters

σ γ
Ex. 1 102.4343 42.4872
Ex. 2 398.7231 3.9057× 104

and a linear block:

y(t) = 0.1129q4 − 0.2128q3 + 0.283q2 − 0.2128q + 0.1129
q4 − 2.485q3 + 2.528q2 − 1.184q + 0.2245 x(t). (3.22)

For the first system a ramp signal from {−15, 15} and slope of 45 degrees was used
for training. In example 2 this same ramp was used but its values were shuffled. For
the test set of both systems a Multi Level Pseudo Random Signals (MLPRS) with an
amplitude ∈ {−10, 10} and a switching probability of 2% was used. For the tuning of
the LS-SVM parameters (i.e. σ and γ) a coupled simulated annealing (CSA) Xavier-de
Souza et al. (2009) followed by simplex Nelder and Mead (1965) was used under a
10-fold crossvalidation scheme. For the first example, the training data set consisted of
2000 points, while the test set consisted of 2500 data points. For the second example
1000 points were used for both training and testing. The corresponding selected values
are shown in Table 3.1 for 40dB of signal to noise ratio (SNR).

The results for the first example can be seen in Figs. 3.1 and 3.2 while the results for
the second example are shown in Figs. 3.3 and 3.4. In Figs. 3.1 and 3.3 the mean
values of y(t) and ŷ(t) were extracted and their Normalized Mean Absolute Error
(%MAE) was calculated. Figs. 3.2 and 3.4 show the comparison between the estimated
nonlinearities and the real ones. It is evident that even though they have very different
magnitudes, their shape is quite similar. Note that this difference in scaling points to a
factor appearing between the two blocks of the system.

Both systems were affected with white Gaussian noise. Here however, unlike the BLA
on the estimation, only a single realization was used.

The method was able to retrieve good approximations despite the noise. Figs. 3.5
and 3.6 show the evolution of the distributions of deviations from the actual output as
the SNR changes.

As can be seen, the distribution of deviations from the actual output broadens as the
SNR decreases. However, even with a large presence of noise, smaller deviations are
more frequent which is in line with the type and magnitude of the noise introduced in
the measurements.
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Actual matching
Perfect matching

Figure 3.1: Example 1: Overlapping of the actual output variable y and the estimation
ŷ. Means extracted, %MAE = 0.33792%

Table 3.2: %MAE comparison for Example 1

SNR 10 20 30 40
BLA+LS-SVM 0.9167 0.3496 0.3345 0.3379
NARX LS-SVM 3.2058 1.7367 0.8899 0.4410

Given that the proposed method takes the underlying structure of the system into
account, it should better model the system than purely black box methods. Tables 3.2
and 3.3 show the results of the comparison between the proposed method and a NARX
LS-SVM model in the test set. These results were obtained when applying different
SNR values to examples 1 and 2 respectively. It can be seen that the proposed method
clearly outperforms the purely black box approach of NARX LS-SVM. For the NARX
LS-SVM 2000 training points were used for the first example and 1000 for the second.
Also, 10 lags of input and 10 lags of output were employed.
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Figure 3.2: Example 1: Comparison between the actual nonlinear system and the
estimated model

Table 3.3: %MAE comparison for Example 2

SNR 10 20 30 40
BLA+LS-SVM 8.1497 1.9835 0.5015 0.0926
NARX LS-SVM 6.5407 5.0459 1.8062 1.8882
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Actual matching
Perfect matching

Figure 3.3: Example 2: Overlapping of the actual output variable y and the estimation
ŷ. Means extracted, %MAE = 0.092553

3.5 Conclusions

The method presented in this chapter combines two powerful techniques, namely LS-
SVM and BLA, which when used in combination turn out to be quite effective for the
identification of Hammerstein systems. In particular, the estimation of the linear block
from BLA was used in the formulation of the dual representation for estimating the
LS-SVM model.

The results presented indicate that the method is very effective in the presence of
zero mean, white Gaussian noise. For this method, the kernel parameter σ and the
regularization parameter γ have to be tuned. However, once the model is learned, it
can be easily applied. It is important to highlight that the estimated nonlinear model is
very close to the original one up to a scaling factor, which allows great insight into the
behavior of the system studied.

The solution of the model follows from solving a linear system of equations, which
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Figure 3.4: Example 2: Comparison between the actual nonlinear system and the
estimated model

constitutes an advantage over other methods like the overparametrization presented
in Goethals et al. (2005). This is, in the sense of how easy it is to solve these equations
and afterwards to apply the found model.

Future work for the presented method could includes the extension of the method
to other block oriented structures like Wiener-Hammerstein systems where, after
the identification of the estimated input and output linear blocks, the method could
be applied. To separate these blocks, for example the phase coupled multisine
approach (J. Schoukens, Tiels, & Schoukens, 2014) could be used.

Generalizing this method to express the cost function in the frequency domain would
allow one to focus the fit of the model in a specifically needed part of the frequency
band.
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ŷ
te
s
t

Noise analysis Example 1

Figure 3.5: Example 1: evolution of the distributions of deviations from the actual
output as the SNR changes.
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Figure 3.6: Example 2: evolution of the distributions of deviations from the actual
output as the SNR changes.



Chapter 4

Wiener System Identification
using Best Linear
Approximation within the
LS-SVM framework

4.1 Introduction

The objective in this chapter is to incorporate the techniques of the Best Linear
Approximation (BLA) (Pintelon & Schoukens, 2012) within Least Squares Support
Vector Machines (LS-SVM) (Suykens et al., 2002) for the identification of Wiener
Systems. It will be assumed that the intermediate variable between the two blocks is
unknown, this is: only the input and output can be sampled.

The incorporation of additional information regarding the structure of the system
into an LS-SVM model can be difficult. In this chapter the BLA approach is used
to model the linear block and these results are used to help LS-SVM modeling the
nonlinear part. For the proposed method it will be shown that the solution of the model
follows from solving a linear system of equations. By itself, this already constitutes

This chapter is based on:
Castro-Garcia, R., Suykens, J. A. (2016). Wiener System Identification using Best Linear Approximation
within the LS-SVM framework. In proceedings of the 3rd Latin American Conference on Computational
Intelligence. doi:10.1109/LA-CCI.2016.7885698.
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an advantage over other methods like overparametrization given the simplicity and
easiness of implementation while offering a very good performance.

The proposed methodology can be separated in four stages:

• The system’s BLA is calculated.

• A parametric version of the BLA is estimated and used as an approximation to
the linear block.

• An approximation to the intermediate variable x̂(t) is obtained using the
parametric BLA and the known input u(t).

• An LS-SVM model is trained using x̂(t) and the known y(t).

Note then that the full Wiener model consists of a linear part coming from the BLA
and a nonlinear block given by the resulting LS-SVM model.

In this chapter, the method is applied to two simulation examples and the results are
presented. In the examples, the output of the Wiener system is measured in the presence
of white Gaussian additive noise (i.e. v(t) in Fig. 1.2). It is shown that also in the
presence of noise, the method can very effectively calculate an approximation to the
system as a whole.

This chapter is organized as follows: In Section 4.2 the problem statement is offered.
The proposed method is presented in Section 4.3 where it is explained how the BLA and
LS-SVM were used together. Section 4.4 illustrates the results found when applying
the described methodology on two simulation examples. Finally, in Section 4.5, the
conclusions and ideas for future work are presented.

4.2 Problem Statement

In the Wiener case, the input u(t) goes through a linear block first. To represent a linear
dynamic block, an ARX model can be used (Ljung, 1999):

x(t) =
m∑
j=0

bju(t− j)−
n∑
i=1

aix(t− i). (4.1)

Here x(t) is the intermediate variable at time t, while x(t− i) are past outputs of such
model and u(t− j) the past and present inputs.
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After this, the intermediate variable goes through a nonlinear block. This block is
represented as f(x(t)) in Fig. 1.2, therefore, the output ŷ(t) can be represented as:

ŷ(t) = f(x(t)) = f

 m∑
j=0

bju(t− j)−
n∑
i=1

aix(t− i)

 . (4.2)

To obtain a representation of the coefficients ai and bj , the BLA approach will be used
and to obtain an approximation to f(x(t)), LS-SVM will be employed.

4.3 Proposed Method

The goal of this chapter is to incorporate the coefficients estimated through the BLA
(i.e. âi and b̂j) into an LS-SVM model to exploit the knowledge of the structure of
the system. With these coefficients, obtaining an approximation to the intermediate
variable x̂(t) is straightforward:

x̂(t) =
m∑
j=0

b̂ju(t− j)−
n∑
i=1

âix̂(t− i). (4.3)

Replacing (4.3) into (4.2) we get ŷ(t) = f(x̂(t)) and using (1.28) to model the
nonlinear block, we can estimate an approximation to the output signal ŷ(t):

ŷ(t) = w>ϕ(x̂(t)) + d. (4.4)

For this model, one formulates the following constrained optimization problem:

min
w,d0,e

J = 1
2w
>w + γ

2

N∑
t=1

e2(t) (4.5)

s.t. eq. (4.4) holds for all t = 1, ..., N .

Given these elements, one has the following Lagrangian:

L(w, d, e,α) = 1
2w
>w+ γ

2

N∑
t=1

e2(t)−
N∑
t=r

αt(w>ϕ(x̂(t))+d+e(t)−y(t)). (4.6)

From here, it is evident that the formulation becomes exactly as described in
Section 1.7.1. This is very convenient as the problem becomes then a standard LS-SVM
one after we obtain the coefficients âi and b̂i.
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Note that the order of the transfer function representing the linear block is unknown,
this means that different order values have to be tried until a fitting combination is
found.

It is important to note that there is a scaling factor that differentiates the actual G0(q)
and the actual GBLA(q). This scaling difference implies that the nonlinear model will
have to compensate for the difference so it has no effect on the input-output behavior of
the estimated Wiener model (i.e. any pair of {G(q)/η, ηf(x(t))} with η 6= 0 would
yield identical input and output measurements). However, this factor between the
blocks is unidentifiable (Boyd & Chua, 1983).

The accuracy of the method will depend then on how well the parameters of the linear
block are estimated as will be shown in Section 4.4.2.

4.4 Simulation Results

4.4.1 Examples

The proposed methodology was applied to two systems in the discrete time framework.
In order to be able to compare between the results of different examples the normalized
mean absolute error (%MAE) is used as defined in Appendix D. The first system was
generated through a nonlinear block:

y(t) = x(t)3 (4.7)

and a linear block:

x(t) = B1(q)
A1(q)u(t) (4.8)

where
B1(q) = 0.0089q3 − 0.0045q2 − 0.0045q + 0.0089
A1(q) = q3 − 2.5641q2 + 2.2185q − 0.6456. (4.9)

The second system was generated through a nonlinear block:

y(t) = sinc(x(t))x(t)2 (4.10)

and a linear block:

x(t) = B2(q)
A2(q)u(t) (4.11)

where
B2(q) = 0.0047q3 + 0.0142q2 + 0.0142q1 + 0.0047
A2(q) = q3 − 2.458q2 + 2.262q − 0.7654 (4.12)
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Figure 4.1: Example 1. (Left) Linear system. (Right) Nonlinear system.

Figures 4.1 and 4.2 illustrate examples 1 and 2 respectively. Both systems were trained
using a ramp signal from −15 to 15 (45 degrees slope). Also, in both cases the test sets
were Multi Level Pseudo Random Signals (MLPRS) with an amplitude ∈ {−10, 10}.
A Coupled Simulated Annealing algorithm was used to tune the parameters (i.e. σ and
γ) using a 10-fold Cross-Validation scheme (e.g. LS-SVMlab v1.8). The training set
for the nonlinear block and the test data set consisted each of 1000 points.

For the estimation of the orders of the transfer function, values from n ∈ {1, 5} and
m ∈ {1, 5} with n ≥ m were tried (i.e. see (4.1)). At each iteration, the combination
of n and m giving the best accuracy was selected.

Results for Example 1 can be seen in Figs. 4.3, 4.4 and 4.5 and results for Example 2
are shown in Figs. 4.6, 4.7 and 4.8. The systems corresponding to both examples were
affected with white Gaussian noise (i.e. A Signal to Noise Rartio of 40dB was used in
Figures 4.3 to 4.8).

Figures 4.3 and 4.6 show the estimated model of the linear blocks from the BLA for
both examples. Note that the perturbation in the non-paranetric GBLA after 33% of
the frequency is due to the lack of excitation from the used signals. Figures 4.4 and 4.7
show the behavior of the estimated model of the nonlinear block for the training set of
both examples. Finally, Figures 4.5 and 4.8 show the behavior of the estimated model
of the whole system in the test set for each example.

Note that even though the models of the linear an nonlinear parts have different



70 WIENER SYSTEM IDENTIFICATION USING BLA WITHIN THE LS-SVM FRAMEWORK

Figure 4.2: Example 2. (Left) Linear system. (Right) Nonlinear system.

Figure 4.3: Example 1. Linear block estimation.

magnitudes than their corresponding actual blocks, their shape is very similar. The
difference in scaling in the linear and nonlinear blocks points to a factor appearing
between the two blocks of the system. This factor is unidentifiable and can be
distributed between the two blocks as mentioned in Section 4.3.
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Figure 4.4: Example 1. Non-Linear block behavior in the training set. Horizontal axes
are the samples. Vertical axes are amplitude. (Top) Actual training output. (Middle)
Estimated train output. (Bottom) Difference between actual and estimated outputs.

For the estimation of the BLA multiple realizations were used (i.e. 5000 realizations of
1000 points each for each example). This diminishes the effect of the noise considerably
in the linear block modeling. Further study of the impact of the number of points used
during the BLA estimation and the effect of different levels of noise will be considered
next.

4.4.2 Impact of number of realizations for the BLA

In order to determine the effect of the number of realizations and the number of points
per realization for the estimation of the BLA and subsequently for the accuracy of the
model, a series of Monte Carlo simulations were run. For every different number of
realizations and points per realizations used, 20 Monte Carlo simulations were carried
out and the average of their Normalized MAEs is presented in Table 4.1. Three different
levels of Signal to Noise Ratio were used to offer a view of how the relevance of this
options vary with the level of noise present.
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Figure 4.5: Example 1. Model behavior in the test set. (Top) Overlapping of actual
ytest(t) and ŷtest(t). (Bottom) Scatterplot comparing the ideal and actual outputs.

Figure 4.6: Example 2. Linear block estimation.
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Figure 4.7: Example 2. Non-Linear block behavior in the training set. Horizontal axes
are the samples. Vertical axes are amplitude. (Top) Actual training output. (Middle)
Estimated train output. (Bottom) Difference between actual and estimated outputs.

Example 1 Example 2
Realizations Realizations

SNR Points 10 100 1000 5000 10 100 1000 5000

Inf

100 24.1393 6.8191 0.24781 0.22055 74.3324 13.1627 5.0186 0.71159
500 102.4168 0.34096 0.067456 0.046364 15.0309 4.3071 0.35229 0.15282

1000 63.2599 0.41402 0.041593 0.028606 15.5399 0.91661 0.20108 0.080908
2000 376.8908 0.4435 0.036867 0.01633 8.1452 0.45106 0.11077 0.037773

40dB

100 134.3097 14.6472 0.2178 0.22376 20.3352 12.2842 3.0184 0.57317
500 18.8368 0.44293 0.081862 0.062664 15.0489 3.6523 0.31716 0.19719

1000 48.1492 0.46629 0.07963 0.059179 15.3069 0.95028 0.18943 0.089143
2000 240.6889 0.50775 0.077693 0.049547 5.7503 0.50761 0.12734 0.089663

10dB

100 1627.2739 1785.4266 1.8413 1.3841 124.9963 11.6749 3.7194 2.599
500 13.4591 2.4265 1.3931 1.2077 13.3474 4.464 2.1215 1.7422

1000 12.4578 2.4247 1.241 1.0101 12.8389 2.821 1.7309 1.7859
2000 11.8653 2.3946 1.1708 1.0846 11.9016 2.1782 1.7085 1.6505

Table 4.1: Effect of the number of points used in the BLA estimation over the %MAE
of the resulting model. Each value reflects the mean of the %MAE over 20 Monte
Carlo Simulations.
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Figure 4.8: Example 2. Model behavior in the test set. (Top) Overlapping of actual
ytest(t) and ŷtest(t). (Bottom) Scatterplot comparing the ideal and actual outputs.

It is clear that the more points used for the estimation of the BLA, the more accurate
the final result of the model will be. This is not particularly surprising, however, it
is interesting to note, that even when not using the maximum number of points, the
results can still be very good as long as enough points are used as shown in Table 4.1.
This means that a tradeoff between the number of points used and the desired accuracy
is present in the method and is particularly relevant for the BLA part.

4.4.3 Noise impact and methods comparison

Once more, in order to consider the effect of noise in the results given by the method, a
series of Monte Carlo simulations were run. In Fig. 4.9 the results of 100 Monte Carlo
simulations are presented for examples 1 and 2. For each of the examples, different
levels of noise were considered. Other than the noise, the same type of signals of
Section 4.4.1 were used. In addition, in Fig. 4.10 an equivalent series of Monte Carlo
simulations were run using the NARX-LSSVM approach (Suykens et al., 2002). These
results allow a comparison between the proposed method and a black box approach to
take place. For the NARX-LSSVM cases, the same number of realizations as used in
the proposed method were averaged, thus diminishing the effective noise considerably.
Note that in the proposed case this is only done for the linear block estimation.
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Figure 4.9: Monte Carlo simulations for the proposed method.

Figure 4.10: Monte Carlo simulations for NARX-LSSVM.
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SNR (dB)
10 40 Inf

BLA + LS-SVM EX 1 1.1675 0.062029 0.031687
EX 2 1.8979 0.11666 0.082519

NARX-LSSVM EX 1 3.3492 4.2889 0.74061
EX 2 7.944 7.1879 7.4343

Table 4.2: Summary of medians for the Monte Carlo simulations of Figs. 4.9 and 4.10

In addition, in Table 4.2, the corresponding medians of Figs. 4.9 and 4.10 are
summarized for clarity. As can be seen, the proposed method outperforms the NARX-
LSSVM approach at both examples with all the levels of noise used. This was to be
expected as in the new method more information about the system is being included.

4.5 Conclusions

The proposed method in this chapter uses powerful techniques from two different fields.
On one hand the BLA from the System Identification field and on the other, LS-SVM.
When put together, these techniques are shown to be very effective for the identification
of Wiener systems.

In this chapter the LS-SVM formulation was modified to include further information
from the system with the help of the BLA. The results presented indicate that the
method is very effective in the presence of zero mean, white Gaussian noise as long as
enough samples can be measured. Indeed it can outperform powerful methods for black
box modeling like NARX-LSSVM were the structure of the system is not considered.

Once all the parameters of the method (i.e. âi, b̂j , σ and γ) are estimated, new points
can be easily evaluated. Also, the method can provide insight into the studied system
as it allows to obtain models of the linear and nonlinear blocks that resemble the actual
system quite accurately though in a rescaled manner. Finally, being able to draw the
solution of the model from a linear system of equations is by itself an advantage over
other methods like overparametrization.

An interesting extension to this method would be combining the present work with
the phase coupled multisine approach proposed in J. Schoukens et al. (2014) and the
Hammerstein System Identification presented in Chapter 3. Such combination would
be a natural extension for the identification of Wiener-Hammerstein systems. This
would be possible thanks to the capabilities of the phase coupled multisine approach to
give an estimation of each of the linear blocks of such a system.



Part II

Steady State Time Response
System Identification
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In this part, novel methods for block oriented nonlinear system identification are offered
where the common denominator is the use of the Steady State Time Response of the
systems.

The methods presented in this part can be very accurate and allow a clear separation of
the identified blocks.

In Chapter 5 the work presented in Castro-Garcia, Agudelo, Tiels, and Suykens (2016)
is introduced. There, a straightforward estimation of the nonlinear block through
the use of LS-SVM is done by making use of the behavior of SISO Hammerstein
systems in steady state. Using the estimated nonlinear block, the intermediate variable
is calculated. Finally using the latter and the known output, the linear block can be
estimated.

The approach of Chapter 5 is extended in Chapter 6 where the MIMO case is considered.
The method presented consists of two stages. In the first stage LS-SVM is used to
model the nonlinear block of the Hammerstein system from its steady-state response.
In the second stage, the intermediate variables are computed by using the previously
estimated nonlinear block. Then, the linear block is estimated from the latter and the
known outputs by using subspace identification methods. The presented methodology is
very flexible concerning the class of problems it can handle and no previous knowledge
about the underlying non-linearities is required except for very mild assumptions. It
is particularly effective when dealing with hard to model nonlinearities where other
methods often fail. Also, it can handle different numbers of inputs/outputs and performs
well in the presence of white Gaussian noise. This chapter is based on the work
presented in Castro-Garcia, Agudelo, and Suykens (2017c).

Finallly in Chapter 7 we propose a new methodology for identifying Wiener systems
using the data acquired from two separate experiments. In the first experiment, we feed
the system with a sinusoid at a prescribed frequency and use the steady state response
of the system to estimate the static nonlinearity. In the second experiment, the estimated
nonlinearity is used to identify a model of the linear block feeding the system with a
persistently exciting input. We discuss both parametric and nonparametric approaches
to estimate the static nonlinearity. In the parametric case, we show that modeling the
static nonlinearity as a polynomial results into a fast least-squares based estimation
procedure. In the nonparametric case, LS-SVM are employed to obtain a flexible
model. This chapter is based on the works presented in Bottegal, Castro-Garcia, and
Suykens (2017a, 2017b).



Chapter 5

Hammerstein System
Identification using LS-SVM
and Steady State Time
Response

5.1 Introduction

In this chapter the q-notation will be used. The operator q is a time shift operator of
the form q−1x(t) = x(t− 1).

The idea in this chapter is to use Least Squares Support Vector Machines (LS-
SVM) Suykens et al. (2002) while making use of the characteristic behavior of
Hammerstein systems under steady state. The resulting methodology turns out to
be easily implementable while giving good results. Also, it allows to separate the
identification of the linear and nonlinear parts.

Although previous works in the system identification literature have used LS-SVM (e.g.
see Falck et al. (2012, 2009); Goethals et al. (2005)), none of them have attempted a
straightforward calculation of the nonlinear block using LS-SVM.

This chapter is based on:
Castro-Garcia, R., Agudelo, O. M., Tiels, K., Suykens, J. A. (2016). Hammerstein system identification
using LS-SVM and steady state time response. In proceedings of the 15th European Control Conference (pp.
1063 – 1068).
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The proposed method is based on applying a multilevel input signal in which the
duration of the steps is longer than the settling time of the system. It uses a forward
approach as defined in Sun et al. (1999) where the nonlinear block is identified first,
and the linear block is modeled afterwards. More precisely, the method consists of the
following steps:

• The system’s settling time is estimated through the application of a step signal.

• A multilevel input signal is created based on the calculated settling time.

• An LS-SVM model is trained using the levels of the multilevel signal as inputs
and their corresponding output values in steady state as outputs.

• An additional experiment is carried out in order to identify the linear block. Here
the applied input is evaluated using the obtained nonlinearity in order to estimate
the intermediate variable. With the intermediate variable and the known output,
the linear block is estimated through least squares.

A somewhat similar approach was proposed in Ikhouane and Giri (2014). However,
there it is assumed that the nonlinearity is a linear combination of known functions
and that it is locally invertible. In this work, those assumptions are not necessary.
Additionally, in this chapter a way for identifying Hammerstein systems for which the
linear block is a high pass filter is offered. This is not possible with the method offered
in Ikhouane and Giri (2014).

The proposed method provides an easy way to directly use standard LS-SVM for
the identification of Hammerstein systems while bearing in mind the structure of
such systems. It allows to estimate the nonlinear block in a straightforward manner
independently of the linear block and does not require any particularly complex set of
inputs-outputs. This is important as it implies that the method can be applied to a wide
set of problems. Also, given the way it works, it can give very good approximations to
the intermediate variable (up to a scaling factor) even in the presence of heavy white
Gaussian zero mean noise.

The chapter is organized as follows: In Section 5.2, the proposed methodology is
presented. Section 5.3 illustrates the results found when applying the described
methodology on two simulation examples. Finally, in Section 5.4, the conclusions are
presented.
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5.2 Proposed Method

In this method, the first step is to construct a data set where the input u1(t) is a
multilevel signal in which each step lasts a constant amount of time TC defined as:

TC = TS + ∆T , (5.1)

where TS is the settling time of the system and ∆T is an arbitrary additional time. This
way of constructing u1(t) guarantees that during each step of the input signal some
samples will be taken after the system has reached steady state (i.e. those taken during
∆T after TS). The input signal u1(t) can then be described as:

u1(t) = rk, for kTC ≤ t < (k + 1)TC . (5.2)

For each of the steps k ∈ N, u1(t) has a constant value rk.

The settling time of the system TS is estimated by applying a step signal to the system
and determining the time it takes for the corresponding output to stay within a certain
range.

It is assumed that the linear block is stable (i.e. all the poles are inside the unit circle).
Also, it is assumed for now that the step response of the system does not tend to zero
as time tends to infinity, that is:

lim
t→∞

y(t) 6= 0, (5.3)

for

x(t) =
{

0, t < 0
r, 0 ≤ t <∞. with r 6= 0 (5.4)

In Section 5.3.5 a way for overcoming this limitation is presented.

The samples of the output y1(t) taken during kTC +TS ≤ t < (k+ 1)TC are averaged
for each k in order to minimize the effect of the measurement noise during each step.

In Fig. 5.1 an excerpt of a training signal is shown to illustrate the samples taken after
the settling time at each step of the signal. The red boxes indicate the values of the
output signal that are averaged for each step.

Let us define ũ1(k) = rk, a signal containing the amplitude level of each step of
the input signal. Also, let us define ỹ(k), a signal containing the output averages
corresponding to the inputs during kTC + TS ≤ t < (k + 1)TC . Using ũ(k) as input
and ỹ(k) as output, an LS-SVM model can be trained. For the example shown in
Fig. 5.1, the corresponding extracted values ũ(k) and ỹ(k) are presented in Fig. 5.2.

In this chapter, LS-SVM is used under a 10-fold cross validation setting to obtain the
estimation of the nonlinear block. Once this is done, another experiment is carried
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Figure 5.1: Example of a training signal. (Top) Input signal u1(t). (Bottom) Output
signal y1(t).

out, where a new input signal u2(t) is generated and its corresponding output y2(t) is
obtained. This input signal is then evaluated using the estimated nonlinearity to obtain
an approximation to the intermediate variable x2(t) (i.e. x̂2(t)).

The linear block is a discrete-time rational transfer function of the form

ŷ(t) =
m∑
j=0

bjx(t− j)−
n∑
i=1

aiy(t− i), (5.5)

and so, y2(t) =
∑m
j=0 b̂j x̂2(t− j)−

∑n
i=1 âiy2(t− i). The coefficients b̂j and âi are

estimated here using standard least squares to find an approximation of the linear block.
This is done using x̂2(t) and the known output y2(t). During this step, several orders
for the numerator and denominator are tried out.

In Fig. 5.3, a simplified summary of the method is presented.
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Figure 5.2: Corresponding training points for the example of Fig. 5.1. (Top-Left) rk
values. (Bottom-Left) Averaged y1(t) values. (Right) ũ(k) vs ỹ(k) and the rescaled
nonlinearity.

5.3 Results

5.3.1 Example

The proposed methodology was applied to a system in the discrete time domain. In
order to be able to compare between the results of different examples the normalized
mean absolute error (%MAE) is used as defined in Appendix D. The system was
generated through a nonlinear block:

x(t) = u(t)2 sin(πu(t))
πu(t) (5.6)
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Figure 5.3: Summary of the method.

and a linear block:

y(t) = 0.1129q4 − 0.2128q3 + 0.283q2 − 0.2128q + 0.1129
q4 − 2.485q3 + 2.528q2 − 1.184q + 0.2245 x(t). (5.7)

The system is shown in Fig. 5.4.

5.3.2 Signals description

To construct u1(t), the settling time TS was established first by exciting the system
with a step of amplitude 10. In this example TS = 191 samples. Afterward, the signal
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Figure 5.4: (Left) Linear block representation in the frequency domain (normalized
frequency). (Right) Nonlinear block representation in the time domain.

was constructed by adding 40 extra samples at each step to those required to achieve
steady state (i.e. ∆T ). The amplitudes of the steps in this signal (i.e. rk) were randomly
drawn from a uniform distribution ranging between -10 and 10.

From the resulting y1(t) the values corresponding to the output of the last ∆T samples
at each step were retrieved and averaged (i.e. ỹ(k)). In order to estimate the nonlinear
block, 500 input-output pairs were used.

In Fig. 5.5 the resulting nonlinear block of the example is compared with the actual one
for a run with a Signal to Noise Ratio (SNR) of 40dB. Note that a rescaling constant
is present there. If both, the linear and nonlinear, blocks are considered, there will
be a gain factor of the combined blocks. However, this gain could be distributed in
any way between the two blocks Boyd and Chua (1983). The actual difference in
scaling has no effect on the input-output behavior of the Hammerstein system (i.e.
any pair of {f(u(t))/η, ηG(q)} with η 6= 0 would yield identical input and output
measurements). Up to this scaling factor, it is clear that the estimated nonlinear block
is a good representation of the actual one.

To estimate the linear block, a new data set of 5000 points was generated. u2(t), the
input to generate this data set, is a multilevel signal where each step has a duration
TC = 10 samples. The amplitudes at each level were drawn from a uniform distribution
ranging between -10 and 10.

Using u2(t) and the estimated nonlinear block, an estimation of the intermediate
variable x̂2(t) is calculated. Using x̂2(t) and the known output y2(t), the linear block
is estimated through least squares. Orders ranging between 1 and 10 were tried out for
numerator and denominator. Note that in order to fulfill the made assumptions, given a
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linear block defined as in (5.5), only cases where m ≤ n can be considered.

Finally, the system was tested in a third data set. The input for generating this set,
utest(t), is a multilevel signal where each step has a duration TC = 10 samples. The
amplitudes at each level were drawn from a uniform distribution ranging between -10
and 10. This data set consists of 5000 points.

In Fig. 5.6 the estimated output is compared with the actual one for the same run used
in Fig. 5.5.

Note that white Gaussian noise with zero mean was applied to the output of each data
set. In Section 5.3.3 the effect of noise in the method is explained.

5.3.3 Noise effect analysis

In order to evaluate how the noise affects the performance of the proposed method,
100 Monte Carlo simulations were carried out for each of four different SNRs varying
between 10dB and 80dB.
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Figure 5.6: (Top) Overlapping of the actual and estimated output variables. (Bottom)
Scatter plot illustrating the behavior of the overlapped plots.

In Fig. 5.7 the results of the Monte Carlo simulations are presented. As can be seen,
the performance of the proposed method dramatically changes as the level of the noise
varies.

It is important to highlight that the impact of noise can be further reduced if more
points are considered in the data set employed for estimating the nonlinear block. To
illustrate this, in Fig 5.8 it is shown how the performance of the method changes for
the example when using a SNR of 10dB.

5.3.4 Methods comparison

The proposed method was compared with:

• A NARX LS-SVM (Suykens et al., 2002) with 10 lags of input and 10 lags of
output.
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• The Hammerstein and Wiener Identification procedure (in this chapter denoted
by WHIP) presented in M. Schoukens (2015).

• The iterative method (in this chapter denoted by IM) presented in Bai and Li
(2010).

The proposed method was implemented using a RBF kernel for the LS-SVM part.
This kernel requires the tuning of a kernel parameter σ and a regularization parameter
γ (Suykens et al., 2002).

For the IM method a Gaussian noise input was used. This signal had a standard
deviation as large as the standard deviation of the concatenation of the input signals
u1(t) and u2(t) as described in Section 5.3.2. The models were estimated using 115500
samples, while 5000 samples were used to look for the best model order (i.e. scan over
orders 2, 3, 4, 5, and 6). To model the nonlinearity a piecewise linear function with
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Figure 5.8: Evolution of the normalized MAE of the output of the model as the number
of training points changes. The corresponding median values appear next to each box.

50 breakpoints was used. It is important to note that the choice for the input signal of
the IM method is such that as many samples and as much total energy is used for the
identification of the system as for the proposed method.

For the WHIP method a random-phase multisine was employed. Again, this signal
had the same standard deviation as the concatenation of signals u1(t) and u2(t). Seven
phase realizations and 2 periods (plus an additional period to reduce the effect of
transients) of the multisine with 5000 samples per period were used to estimate the
models. One period (no transient removal) of an additional realization was used to look
for the best model order with the same order scanning used for the IM method.

In Table 5.1 the results of the comparison in Normalized MAE form are presented.
Each of the presented results corresponds to an average over 10 runs.

The results indicate that the proposed method obtains better results as the noise is
reduced. For the NARX LS-SVM the results seem to stay almost the same as the noise
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Table 5.1: Results comparison in Normalized MAE on test data.
SNR (dB)

10 20
Proposed method 1.5259 0.6925
NARX LS-SVM 9.9266 9.9314

IM 8.8621 9.3660
WHIP 5.6204 8.3097

is increased. For WHIP and IM, the results are better when the noise is increased. This
result is explained by the presence of outliers in the results, which indicates that these
methods are sensitive to local minima.

The IM and WHIP methods assume that the nonlinearity can be represented in a basis
function expansion form with known basis functions. Note that the nonlinearity in (5.6)
is hard to model by a polynomial of reasonable degree and in consequence, piecewise
linear basis functions were used. Since a finite number of breakpoints is used, the true
nonlinearity is not in the model class. This can be an explanation for the poor results of
the last two methods in the example.

As can be seen, the proposed method performs very well in the example. This behavior
suggests that it is robust against the amount of noise used.

5.3.5 High pass filter case

The proposed methodology gives good results in the established framework. However,
as it is presented, the method is unable to deal with situations where the assumption
introduced in Eqs. (5.3) and (5.4) is violated. A clear illustration of this occurs when
the linear block is a high pass filter. In this particular situation:

lim
t→∞

y(t) = 0, (5.8)

for

x(t) =
{

0, t < 0
r, 0 ≤ t <∞. with r 6= 0. (5.9)

In this case, for training the LS-SVM model, the corresponding output points would
always be zero or very close to zero:

ỹ(k) = 0 ∀k. (5.10)

In order for the method to be able to work in these situations, the addition of one or
several integrators to the output signal is proposed, this is represented in Fig. 5.9. Note
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Figure 5.9: Hammerstein system with an added integrator at the output for estimation
of the nonlinear block.

that this has to be done only in the first stage of the method, that is, for the estimation
of the nonlinear block. The number of integrators required depends directly on the
linear block. However, it can be easily established through direct observation. If more
integrators than needed are added, the system will become unstable.

To illustrate the high pass filter case, an example is presented where the nonlinear block
has the form

x(t) = u(t) + 5u(t)2 − u(t)3

2 (5.11)

and the linear block is given by:

y(t) = q2 − 1.8q + 0.8
q2 − 1.5q + 0.7225x(t). (5.12)

This system is illustrated in Fig. 5.10. In this example, the signals used are very similar
to those described in Section 5.3.2, however, 100 {ũ(k), ỹ(k)} pairs were used instead
of 500. Also, the second data set (i.e. {u2(t), y2(t)}) and the test set consisted of 1000
samples.

Once the linear block is estimated as explained in Section 5.2, the model of the system is
tested with an independent data set. The resulting output variable behavior is presented
in Fig. 5.11.

In Fig. 5.12 the results of a Monte Carlo simulation of 10 runs for different levels
of noise is shown. It shows how the normalized MAE evolves as the level of noise
changes in the example represented by Eqs. (5.11) and (5.12).

Note that this approach can be sensitive to cases with zeros very close to 1 but not
exactly at 1 in the unit circle. In those cases, using the proposed method with both the
non-integrated or the integrated output might yield unsatisfactory results.
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Figure 5.10: High pass filter example: (Left) Linear block representation in the
frequency domain (normalized frequency). (Right) Nonlinear block representation in
the time domain.
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ŷtest

-150 -100 -50 0 50 100 150

ytest

-150

-100

-50

0

50

100

150

ŷ
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5.4 Conclusions

The method presented in this chapter offers a simple way for accurate Hammerstein
system identification. This is done mainly by making use of the behavior of the system
in steady state. In this work, this was done through LS-SVM which allows a good
generalization when using different model classes.

The main strength of the proposed method lies in the identification of the nonlinear
block of Hammerstein systems. The presented results indicate that the method is very
effective in the presence of zero mean, white Gaussian noise.

Once the nonlinear model is learned, it can be easily applied. It is shown that even with
a small amount of training points, the results are already quite accurate. In practice,
this means that the calculation of the model can also be done very quickly. It is also
possible to improve the performance of the method by using more training points for
modeling the nonlinearity.
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The estimated nonlinear model is very close to the original one (up to a scaling factor).
This allows insight into the behavior of the studied system as it is possible to visualize
the way the nonlinear block will respond to the inputs. Naturally, this allows as well a
good estimation of the intermediate variable.

The way u1(t) is constructed is quite simple and given its shape, it allows the application
of the method in many fields. However, a possible drawback of the methodology
lies in the fact that depending on the evaluated system, constructing the initial input
signal u1(t) could require a long time. Nevertheless, the central idea of this work
can be used in the identification of Wiener and Wiener-Hammerstein systems as the
working concepts would be basically the same. Though not as straightforward as in
the Hammerstein case, full models of these structures could be estimated after the
nonlinearity is modeled. Also, more complex cases like MIMO Hammerstein (see
Chapter 6), Wiener (see Chapter 7) and Wiener-Hammerstein can also be considered
though they will not be as easily adapted.



Chapter 6

MIMO Hammerstein System
Identification using LS-SVM
and Steady State Time
Response

6.1 Introduction

Most of the works regarding Hammerstein System Identification are focused on the
Single-Input Single-Output (SISO) case while the Multiple-Input Multiple-Output
(MIMO) case has received much less attention. Methods dealing with the MIMO case
include for instance: In Gomez and Baeyens (2004) basis functions are used to represent
both the linear and nonlinear parts of Hammerstein models; in Jeng and Huang (2008),
through the use of specially designed signals, the impulse response of the system is
estimated and through least squares the intermediate variables are computed. Using
this approximation and the known input, a mapping of the nonlinearity is done through
the fitting of a polynomial; an overparametrization approach is proposed in Goethals
et al. (2005) in combination with a reformulated version of LS-SVM, although the
MIMO case is not actually tested. Other methods for MIMO Hammerstein system

This chapter is based on:
Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017c). MIMO Hammerstein System Identification
using LS-SVM and Steady State Time Response. Accepted for publication in the proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI 2017). (Internal Report 17-23, ESAT-SISTA, KU
Leuven. Leuven, Belgium).

95
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identification can be found in Lee et al. (2004); Verhaegen and Westwick (1996) and
Al-Duwaish and Karim (1997).

The method proposed in this chapter consists of two stages. In the first one multilevel
input signals with a step duration longer than the system’s settling time are applied to
the process. Next, the levels of the input signals are paired with the steady-state values
of each of the outputs. The scalar functions that are part of the nonlinear block (here, it
is assumed that the number of intermediate variables is equal to the number of inputs)
are approximated from the previously found input-output mappings using LS-SVM. In
the second stage, an additional experiment is carried out in order to identify the linear
part. Here the input signals are evaluated in the obtained nonlinear scalar functions
in order to estimate the intermediate variables. With these estimations and the known
outputs of the system, the linear block is identified using subspace methods (i.e., N4SID
Van Overschee and De Moor (1996)).

Due to the use of LS-SVM to model the nonlinear part, the proposed method is very
flexible regarding the class of systems that can be modeled. For instance, whereas the
work in Lee et al. (2004) is applicable only to the case where the nonlinearities are
in terms of a polynomial, or in Gomez and Baeyens (2004) specific basis functions
have to be chosen beforehand, the methodology presented in this work is free of these
limitations thanks to the good generalization properties of LS-SVM.

The proposed method was tested in two examples through several Monte Carlo
simulations. It will be illustrated how the measurement noise (white Gaussian noise
with zero mean) affects its behavior and also how its accuracy compares with other
state of the art methodologies.

This chapter is organized as follows. In Section 6.2, the proposed method is presented.
Section 6.3 shows the results found when applying the described methodology on two
simulation examples. Finally, in Section 6.4, the conclusions are exposed.

6.2 Proposed Method

The proposed methodology is an extension of the work in Chapter 5, where a method
for SISO Hammerstein identification using steady state information is offered.

In this chapter it is assumed that the system will have as many intermediate variables
as inputs. Additionally, for a system with p inputs it is assumed that fi(0p) = 0 for
i = 1, . . . , p.

For the sake of clarity and without loss of generality, let us consider a system with 2
inputs u1(t) and u2(t), and 2 outputs y1(t) and y2(t), as the one shown in Fig. 6.1.
In order to estimate f1(·) and f2(·), we first excite the system with multilevel signals
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Figure 6.1: MIMO Hammerstein system with 2 inputs and 2 outputs.

u1(t) and u2(t) defined as follows:

u1(t) = rk, for kTC,1 ≤ t < (k + 1)TC,1
u2(t) = wi, for iTC,2 ≤ t < (i+ 1)TC,2.

(6.1)

This means that for each of the steps k and i ∈ N, u1(t) has a constant value rk and
u2(t) has a constant value wi. TC,1 and TC,2 are the amount of time that u1(t) and
u2(t) are kept constant and are defined as follows:

TC,1 = TS + ∆T

TC,2 = NsTC,1.
(6.2)

Here, TS is the settling time of the system, ∆T is an arbitrary additional time and
Ns is the number of levels of u1(t) to be tried out per level of u2(t). This way of
constructing u1(t) and u2(t) allows a proper sweep of the possible combinations of
the inputs. Figure 6.2 shows an example of how these signals look like. ∆T guarantees
that during each step of u1(t) some samples will be taken after the system has reached
steady state (i.e. those taken during ∆T after TS).
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Figure 6.2: Multilevel input signals for a system with 2 inputs.

Now, let us define the vectors ũ1 ∈ RN1N2 and ũ2 ∈ RN1N2 containing the amplitude
levels of the input signals

ũ1 =



r0
r1
...

rN1−1
r0
r1
...

rN1−1
...
r0
...

rN1−1



, ũ2 =



w0
w0
...
w0
w1
w1
...
w1
...

wN2−1
...

wN2−1



, (6.3)
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where N1 and N2 are the number of levels of u1(t) and u2(t) respectively. Also, let
us define the vectors ỹ1 ∈ RN1N2 , and ỹ2 ∈ RN1N2 where the samples of the outputs
y1(t) and y2(t) taken during kTC,1 + TS < t < (k + 1)TC,1 are averaged for each k
in order to minimize the effect of the measurement noise during each step

ỹ1,k = 1
N∆T

kTC,1+TS+∆T∑
t=kTC,1+TS

y1(t),

ỹ2,k = 1
N∆T

kTC,1+TS+∆T∑
t=kTC,1+TS

y2(t),

(6.4)

for k = 1, . . . , N1N2 and with N∆T
the number of samples taken during ∆T .

Using ũ1 and ũ2 as inputs and ỹ1 as an output, an LS-SVM model can be trained
to approximate the first nonlinearity f̂1(·) of the system. In a similar fashion, using
ũ1 and ũ2 as inputs and ỹ2 as an output, another LS-SVM model can be trained to
approximate the second nonlinearity of the system f̂2(·) (See Fig. 6.3).

Notice that

f̂1(·) = k11f1(·) + k12f2(·)

f̂2(·) = k21f1(·) + k22f2(·),
(6.5)

where k11, k12, k21 and k22 are the steady state gains of G11(q), G12(q), G21(q) and
G22(q) respectively.

With models corresponding to the nonlinear part available (i.e. f̂1(·) and f̂2(·)), the
second stage of the method can take place. On this stage, an independent experiment is
performed where the system is fed with inputs ul,1(t) and ul,2(t) and the corresponding
outputs yl,1(t) and yl,2(t) are measured. Then, the intermediate variables x̂l,1(t) =
f̂1(ul,1(t), ul,2(t)) and x̂l,2(t) = f̂2(ul,1(t), ul,2(t)) are computed. With x̂l,1(t) and
x̂l,2(t) and the known outputs yl,1(t) and yl,2(t), subspace methods can be used to
obtain a model of the linear block. Note that the number of intermediate variables
estimated in this way will be equal to the number of outputs. For non-square systems
this implies that the estimated model will have a different internal structure than the
actual one.

In Fig. 6.4, a summary of the method is presented.
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Figure 6.3: Modeling of the nonlinear block of a system with two inputs and two
outputs. (Red) Nonlinearity corresponding to the output y1(t). (Blue) Nonlinearity
corresponding to the output y2(t).



PROPOSED METHOD 101

Generate multilevel
input signals

u1(t), u2(t), . . . , up(t)
as described in

(6.1) and obtain the
corresponding outputs
y1(t), y2(t), . . . , yr(t).

Start

Using the amplitude
levels of the inputs

ui(t) with i = 1, . . . , p
generate a matrix

Ũ = [ũ1, ũ2, . . . , ũp]
(see (6.3)).

From the outputs yi(t)
with i = 1, . . . , r

average the samples
acquired during

∆T at each step as
shown in (6.4) (i.e.

obtain ỹ1, ỹ2, . . . , ỹr).

Apply the input signals
of an independent

data set (i.e. ûl,j(t)
with j = 1, . . . , p)

to the estimated
nonlinearies to estimate
intermediate variables
x̂l,i(t) with i = 1, . . . , r.

Through LS-SVM
use Ũ and ỹi (for
i = 1, . . . , r) to

estimate r nonlinearties.

Use x̂l,i(t) and the
known outputs yl,i(t)
(for i = 1, . . . , r) to

obtain a model of the
linear block using
Subspace Methods.

Stop

Figure 6.4: Summary of the method for a system with p inputs and r outputs.
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Figure 6.5: Nonlinear functions for Example 1. (Left) f1(u1(t), u2(t)) and (Right)
f2(u1(t), u2(t)).

6.3 Experimental results and comparisons

The proposed method is applied to two examples. Each example has two inputs and
two outputs and consists of two nonlinear functions and four Linear Time Invariant
(LTI) blocks as illustrated in Fig. 6.1. Note that in order to be able to compare between
the results of different examples the normalized mean absolute error (%MAE) is used
as defined in Appendix D. The corresponding nonlinear functions of Example 1 are
given in (6.6) and plotted in Fig. 6.5:

f1(u1, u2) = u3
1

80 + 0.9u2
2

8 (6.6a)

f2(u1, u2) =

 (|u1 − 2| sin (3(u2 − 2))) + d, for u1 ≤ 2

d, for u1 > 2,
(6.6b)

with d = −0.5588.

The transfer functions of Example 1 are presented in (6.7) and the magnitude of their
frequency response is shown in Fig. 6.6:

G11(q) = 1.813
q − 0.8187 (6.7a)
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Figure 6.6: Magnitude of the frequency response of the LTI blocks for Example 1. (Up
and left) G11(q), (Up and right) G12(q), (Down and left) G21(q) and (Down and right)
G22(q).

G12(q) = 0.3929q + 0.3308
q2 − 0.8828q + 0.6065 (6.7b)

G21(q) = −0.045244(q + 1.668)(q − 1.646)(q + 0.2122)
(q − 0.7408)2(q2 + 0.5048q + 0.3679) (6.7c)

G22(q) = 0.79928(q + 0.8185)
(q2 − 1.452q + 0.5488) . (6.7d)

For Example 2 the corresponding nonlinear functions are presented in (6.8) and plotted
in Fig. 6.7:

f1(u1, u2) = u3
1

5 + sin(u2)u2
2 (6.8a)

f2(u1, u2) = 10 sin(u1) + u2
2. (6.8b)

The transfer functions of Example 2 are given in (6.9) and the magnitude of their
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Figure 6.7: Nonlinear functions for Example 2. (Left) f1(u1(t), u2(t)) and (Right)
f2(u1(t), u2(t)).

frequency response is shown in Fig. 6.8:

G11(q) = 100q3 + 300q2 + 300q + 100
q3 − 2.458q2 + 2.262q − 0.7654 (6.9a)

G12(q) = 18000q2 − 32400q + 14400
q2 − 1.5q + 0.7225 (6.9b)

G21(q) = 1000 q4 − 1.884q3 + 2.506q2 − 1.884q + 1
q4 − 2.485q3 + 2.528q2 − 1.184q + 0.2245 (6.9c)

G22(q) = 100q3 − 50.64q2 − 50.64q + 100
q3 − 2.564q2 + 2.218q − 0.6456 . (6.9d)

The results of 100 Monte Carlo simulations of the proposed method for different
Signal to Noise Ratios (SNR) are presented in Figs. 6.9 and 6.10 for Examples 1 and 2
respectively.

The proposed method, from now on referred to as MIMO-H-STST, is compared with 3
other state of the art methods, namely:

• NARX LS-SVM (Suykens et al., 2002).
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Figure 6.8: Magnitude of the frequency response of the LTI blocks for Example 2. (Up
and left) G11(q), (Up and right) G12(q), (Down and left) G21(q) and (Down and right)
G22(q).

• The method in Jeng and Huang (2008) where an approximation to the impulse
response of the system is obtained and with it and the known outputs an
estimation of the intermediate variables is found. Using this approximation
and the known inputs, a mapping of the nonlinear block is done through the
fitting of multivariate polynomials. From now on, this method will be referred to
as IR H-MIMO.

• Using orthonormal bases for the identification of block oriented nonlinear
systems is proposed in Gomez and Baeyens (2004). This method will be referred
to as ONBF.

The results of 100 Monte Carlo simulations are summarized in Table 6.1 where for
each of the methods mentioned above, the median is presented for different Signal to
Noise Ratios.

In the proposed method for estimating the nonlinear part 900 points were used. To
obtain those points, the length of the steps with the shortest duration for Example 1
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Figure 6.9: Results of 100 Monte Carlo simulations of the proposed method in Example
1. (Left) Output 1. (Right) Output 2.
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Figure 6.10: Results of 100 Monte Carlo simulations of the proposed method in
Example 2. (Left) Output 1. (Right) Output 2.
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Table 6.1: %MAE Comparison for the different methods tested. Medians are offered
for 100 Monte Carlo simulations for each case.

Example 1 Example 2
y1 y2 y1 y2

SNR 10dB

MIMO-H-STST 2.0431 0.62828 2.9171 1.3187
NARX LS-SVM 9.2493 3.4636 14.0744 5.9171

IR H-MIMO 13.1221 20.7751 15.5643 20.2475
ONBF 12.2418 12.4902 2.954 6.8069

SNR 20dB

MIMO-H-STST 1.8017 0.22772 1.3635 0.71816
NARX LS-SVM 5.6842 1.7901 13.6958 3.3421

IR H-MIMO 10.4575 16.9498 3.1664 7.2392
ONBF 10.9409 12.363 1.5856 4.3417

SNR InfdB

MIMO-H-STST 0.008942 0.017892 0.1428 0.24264
NARX LS-SVM 4.1052 0.9849 13.6734 2.5123

IR H-MIMO 9.6007 13.8155 0.23985 0.98531
ONBF 10.7441 12.3495 1.3339 3.8984

was set to 50 samples, meaning that the whole time series used consisted of 45000
samples. For Example 2 the length of the steps with the shortest duration was fixed
to 90 samples, thus the time series consisted of 81000 samples. In both examples ∆T

was set to 10 samples. The linear part was identified from a dataset with 4500 samples
generated by applying Pseudo Random Multilevel Signals to the system and using the
subspace method N4SID (Van Overschee & De Moor, 1996). The model order was
selected by looking at the plot of the singular values of the Hankel matrices of the
impulse response for different orders (from 1 to 10).

For the NARX LS-SVM approach a training set was generated using the combination
of the amplitudes in the input signals used for the proposed method (i.e. Ũ ). This
means that 900 points were used for training the model. For the parameter tuning,
Coupled Simulating Annealing Xavier-de Souza et al. (2009) followed by a Simplex
approach was used under a 10 fold cross validation scheme. 10 lags of input and 10
lags of output were employed.

Pseudo Random Binary Signals (PRBS) of 800 samples were created in order to
identify the linear part when using the IR H-MIMO method. In a first stage u1(t) was
a PRBS and u2(t) was kept at 0. Then, in a second stage u1(t) was 0 and u2(t) was a
PRBS. After the impulse responses were estimated, the nonlinear part was modeled. To
do this, signals of 980 points were used of which the last 80 where included to make the
corresponding linear system overdetermined. The initial 900 points where generated
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guaranteeing that all combinations of 30 points drawn from a uniform distribution
between −5 and 5 were included. With these signals the nonlinearities were estimated
by fitting two-dimensional polynomials with degrees 3 and 7 for Examples 1 and 2
respectively.

Polynomial basis functions were used for identifying the nonlinearity for the ONBF
method. For Example 1 until degree 3 and for Example 2 until degree 5. It was
found empirically that the use of simpler basis functions yielded better results for the
modelling of the linear part, consequently q−n was used. The number of bases used
for Example 1 was 10 while for Example 2 was 40. These values were set by trial and
error and were the ones that offered a good trade-off between complexity and accuracy.
The number of data points used was 1600 for the first example and 3600 for the second
one.

For the examples presented, the proposed method clearly outperforms the other methods
considered. It is important to highlight that the nonlinearities in the examples used are
very difficult to model using polynomial basis functions as they do not belong to the
problem class. For the proposed method, which does not require previous knowledge
about the problem class, this is not a problem at all.

It can be seen that the proposed method is robust against the type of noise employed,
as the results remain good even when adding high levels of noise.

6.4 Conclusions

A new methodology for identifying MIMO Hammerstein systems is presented in
this chapter. This method exploits the steady-state behavior of the system in order
to approximate the nonlinear part. To do this the method profits from the good
generalization capabilities of LS-SVM which allow it to deal with hard nonlinearities.

The proposed method is very flexible with respect to the number of inputs and outputs it
can handle. However, for non-square systems the estimated model will have a different
internal structure than the actual one.

The used examples show that the method has very good generalization capabilities and
can work with different problem classes including systems with hard nonlinearities.
This constitutes a nice advantage when the class of problem is unknown or is difficult
to model with certain basis functions.

It is shown that the proposed method is robust against the type of noise employed as
even in the presence of high levels of noise it has a good performance. In fact, for the
examples presented it performed better than the other state of the art methods compared
in this chapter.



Chapter 7

A two-experiment approach
to Wiener system
identification

7.1 Introduction

In this chapter, we discuss a novel method for Wiener systems that separates the
estimation of the nonlinearity from the identification of the LTI block, facilitating
the identification process and reducing the computational burden of maximum
likelihood/prediction error techniques. To do so, it is required that the user has the
freedom to design two separate experiments, each consisting of feeding the system
with a specific input.

In the first experiment, the system is driven by a simple sinusoidal signal with prefixed
frequency and phase. Using this signal, we show that we can easily reconstruct the static
nonlinearity as a function of the unknown phase delay introduced by the LTI block.
We discuss three possible modeling approaches for the nonlinearity. Depending on the
adopted approach, we show how to fully recover the nonlinear function (up to a scaling
factor), that is, how to remove the ambiguity introduced by the unknown phase delay.

This chapter is based on:
Bottegal, G., Castro-Garcia, R., Suykens, J. A. K. (2017a). On the identification of Wiener systems with
polynomial nonlinearity. Accepted for publication in the proceedings of the 56th IEEE Conference on
Decision and Control (CDC 2017). (Internal Report 17-55, ESAT-SISTA, KU Leuven. Leuven, Belgium).
Bottegal, G., Castro-Garcia, R., Suykens, J. A. K. (2017b). A two-experiment approach to Wiener system
identification. In Internal report 17-38, ESAT-SISTA, KU Leuven (Leuven, Belgium).

109



110 A TWO-EXPERIMENT APPROACH TO WIENER SYSTEM IDENTIFICATION

The first modeling approach relies on a parametric description of the nonlinearity as a
linear combination of a number of basis functions. Here, the phase delay is recovered
using a special instance of separable least-squares. The second approach is a special
case of the first, where the basis functions are monomials. In this case, the function
can be fully estimated via a simple procedure involving least-squares estimation. The
third approach is a nonparametric one; it relies on the least squares support vector
machines (LS-SVM) framework (Suykens et al., 2002), under the assumption that the
nonlinearity is a smooth function. In this case, the phase delay is estimated along
with the hyperparameters characterizing the kernel used in the LS-SVM estimation
procedure.

Using the estimated model of the static nonlinearity, we perform a second experiment
where the system is fed with a persistently exciting input. In this way, we can identify
the LTI block by means of a modified version of the standard prediction error method
(PEM) for linear output-error (OE) systems (Ljung, 1999). The computational burden
of this second step reduces essentially to the one of PEM for OE systems.

The proposed framework is tested via numerical experiments showing its effectiveness
compared to other identification techniques for Wiener systems.

The chapter is organized as follows: In Section 7.2 we define the problem under
study. Section 7.3 describes the proposed method including its parametric and
nonparametric versions. Section 7.4 illustrates the results found when applying the
described methodology on two simulation examples and compares the obtained results
with other methods in the literature. Finally, in Section 7.5 some conclusions are
presented.

7.2 Wiener system identification using a two exper-
iment approach

We consider the following SISO system, also called a Wiener system (see Fig. 1.2 for
a schematic representation):

x(t) = G(q−1)u(t)

y(t) = f(x(t)) + e(t) . (7.1)

In the former equation, G(q−1) represents the transfer function of a causal LTI
subsystem, driven by the input u(t). In the latter equation, y(t) is the result of a
static nonlinear transformation, denoted by f(·), of the signal x(t), and e(t) is white
noise with unknown variance σ2. The problem under study is to estimate the LTI
subsystem and the nonlinear function from a set of input and output measurements.
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We assume that the user has the freedom to design the input signal u(t). In particular,
we assume that the user has the possibility to run two separate experiments, each
having a particular signal u(t) as an input. The goal of this chapter is to describe an
identification technique for the system (7.1) that is linked to a particular choice of these
experiments. It consists of the two following steps:

1. Feed the system with a sinusoid at a prescribed frequency. Use the steady-state
data to estimate the nonlinear function f(·).

2. Feed a system with a persistently exciting input signal and identify the LTI
subsystem using the information gathered on the first step regarding the static
nonlinearity.

Let us first briefly discuss the second step of the proposed procedure. Let

G(q−1) = b0 + b1q
−1 + . . .+ bmq

−m

1 + a1q−1 + . . .+ anq−n
, (7.2)

so that the LTI subsystem is completely characterized by the parameter vector
θ :=

[
b0 b1 . . . bm a1 . . . an

]
. Then, assuming that an estimate of the

nonlinearity say, f̂(·), is available after the first step of the procedure, we can set up a
PEM-based identification criterion as follows

θ̂ = arg min
θ

1
N2

N2∑
t=1

(
y(t)− f̂(G(q−1)u(t))

)2
, (7.3)

where N2 is the number of samples collected during the second experiment. Note
that this is a mild generalization of the standard PEM, requiring only to account, in
the optimization process, for the nonlinear transformation induced by f̂(·). This
does not make the solution of (7.3) harder than a standard PEM applied to an
output-error model, because in both cases we have to face a nonlinear optimization
problem, and in both cases gradient-based methods can be easily applied (Ljung, 1999).
Moreover, it has been shown in Wigren (1994) that recursive PEM schemes for Wiener
system identification with known nonlinearity are guaranteed to converge under mild
assumptions.

As opposed to the aforementioned second step, the first step can be more involved and
requires a more thorough analysis. We shall focus on this step in the remainder of the
chapter.

Remark 1. The method can be easily extended to the case where the additive noise is
colored. In that case, the parameters of the noise shaping filter can be estimated either
in the first or in the second phase of the proposed procedure.
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7.3 Three approaches to estimate the nonlinearity

In this section we discuss the first step of the procedure, proposing three estimation
approaches for the static nonlinearity.

We consider the following input signal

u(t) = sin(ωt+ φ0) ,

where ω is an user-prescribed frequency and φ0 is a known phase delay. Then, after
the transient effect of G(q−1) has vanished, we have that

x(t) = Aω sin(ωt+ φ0 + φω) ,

where Aω and φω are the gain and the phase delay of the LTI subsystem G(q−1) at the
frequency ω (Ljung, 1999, Ch. 2). Due to the structural non-identifiability of Wiener
systems, Aω can not be determined (see Remark 2 below). We thus drop it and define a
new signal

x̄(t) = sin(ωt+ φ0 + φω) ,

which is parameterized by the unknown quantity φω . Accordingly, we write the output
of the system as

y(t) = f(sin(ωt+ φ0 + φω)) + e(t) . (7.4)

Then, the problem under study, that is to estimate f(·), is coupled with the problem
of estimating φω. In the following, we describe three approaches to this problem,
assuming that the number of collected samples of y(t) (at its steady state) is equal to
N1.

Remark 2. Since we are estimating the static nonlinearity using the signal x̄(t) instead
of x(t), we are obtaining a scaled (in the x-axis) version of f(·), that is, we are
estimating f(x/Aω) instead of f(x). This scaling effect is compensated in the second
stage of the method; in fact (7.3) will return the estimate AωG(q−1) instead of G(q−1).
Then, we need additional information (e.g., on the LTI system gain, see Bai (1998)) to
uniquely recover G(q−1) and f(·); this lack of identifiability is a well known issue in
block oriented system identification. However, if the focus is on output prediction (as
is in the experiments of Section 7.4), rescaling of the two blocks is not required.

7.3.1 Parametric approach

We assume that there exist a set of known basis functions h0(·), h1(·), . . . , hp(·) such
that

f(x) =
p∑
i=0

cihi(x) , ∀x ∈ R .
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Then, the problem of estimating f(·) reduces to determining the coefficients c0, . . . , cp.
We rewrite (7.4) as

y(t) =
p∑
i=0

cihi(sin(ωt+ φ0 + φω)) + e(t) . (7.5)

LetH(φω) ∈ RN1×p+1 be a matrix such that

H(φω)t,i = hi(sin(ωt+ φ0 + φω)) .

Then we have the following regression model

y = H(φω)c+ e , (7.6)

where

y =

 y1
...

yN1

 , e =

 e1
...
eN1

 , c =

c0...
cp

 . (7.7)

Because φω is unknown, we treat it as an unknown parameter to be determined together
with c; for sake of clarity we rewrite the regression model (7.6) replacing φω with a
generic φ:

y = H(φ)c+ e . (7.8)

An unbiased estimate of c can be obtained via least-squares (recall that e is white
noise). This estimate is function of the unknown phase delay introduced by the LTI
block, and corresponds to

ˆc(φ) =
(
H>(φ)H(φ)

)−1
H>(φ)y . (7.9)

To estimate φ (and hence c), we introduce the following criterion:

φ̂ω = arg min
φ∈I

1
N1
‖y − f̂φ‖2 , (7.10)

where f̂φ = H(φ)ĉ(φ) is the estimate of f(·), evaluated at x̄(t), t = 1, . . . , N1 and
in vector notation, and I is a suitable subset of the negative real semi-axis (recall that
the phase delay is always negative for causal systems). The question is under which
conditions (7.10) admits an unique solution. To this end we introduce the following
concept.

Definition 1. A function h(·) is phase-indistinguishable in the set I if there exist φ1
and φ2 in I and a ∈ R such that

h(sin(ωt+ φ1)) = ah(sin(ωt+ φ2)) , (7.11)

for all t ∈ N.
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Therefore, if f(·) is parameterized through a set of phase-indistinguishable basis
functions, criterion (7.10) may not admit a unique minimum. Quite fortunately,
the following lemma clarifies that, with a suitable definition of I, the set of phase-
indistinguishable functions becomes trivial (the proof is direct and thus it is skipped).

Lemma 1. Condition (7.11) is satisfied if and only if φ2 = φ1 + kπ, k ∈ Z, (and
a = (−1)k) or h is constant (and a = 1).

Therefore, we have to restrict our phase search in the interval I = (−π, 0]. Using the
lemma, we can prove the following result:

Proposition 1. Let I = (−π, 0]. It holds that

φω = arg min
φ∈I

E‖y − f̂φ‖2 .

Similarly, we show that the phase estimation is consistent.

Proposition 2. Let e(t) be a stochastic stationary ergodic process with finite variance.
Then the asymptotic (in N1) solution of the problem (7.10) is equal to φω .

Proof. We have

E‖y−f̂φ‖2 = E‖y −H(φ)ĉ(φ)‖2

= E
∥∥∥y −H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)y

∥∥∥2

= E
∥∥∥(I −H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)
y
∥∥∥2

= E
∥∥∥(I −H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)
× (H(φω)c+ e)

∥∥∥2

=
∥∥∥(I−H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)
H(φω)c

∥∥∥2

+ σ2tr
[(
I−H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)2
]
.

Now, it is easy to see that, since(
I −H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)
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is a projection matrix, its trace is constant (and equal to its rank), independently of the
value assumed by φ. Hence, it does not affect the value of E‖y− f̂φ‖2. As for the first
term of the above equality, we have∥∥∥(I −H(φ)

(
H>(φ)H(φ)

)−1
H>(φ)

)
H(φω)c

∥∥∥2
≥ 0 . (7.12)

Equality to 0 holds only whenH(φ) = H(φω), because in [0, π) there always exist
at least one of the basis functions that is not phase-indistinguishable. This concludes
the proof of Proposition 1. By multiplying the objective function of (7.10) by 1/N1,
and letting N1 →∞ we have

1
N1

N1∑
t=1

(y(t)− f̂φ(x(t)))2 → E‖y(t)− f̂φ(x(t))‖2 , (7.13)

where the expectation is taken with respect to the distribution of e(t). The result of
Proposition 2 follows as a special case of Proposition 1.

Algorithm 2 summarizes the first step of the proposed procedure, under a parametric
modeling assumption of the static nonlinearity. Albeit (7.10) is still a nonlinear problem,
it requires to search for the optimum of a scalar variable within a bounded interval.
Therefore, it can be solved quickly by using e.g. a grid search over I.

Algorithm 2 Parametric static nonlinearity estimation

Input: {y(t)}N1
t=1, ω, φ0

Output: ĉ0, . . . , ĉp
1: Select a subset of values φ ∈ I.
2: For every φ solve (7.9) and evaluate ‖y − f̂φ‖2
3: Choose ĉ(φ) associated with φ solving (7.10)

7.3.2 Polynomial nonlinearity

We now discuss the case where the nonlinear function f(·) can be expressed as a
polynomial of known order, namely

f(x) = c0 + c1x+ . . .+ cpx
p . (7.14)

For ease of exposition, we assume that p is even (the case p odd runs along the same
lines of reasoning). We recall that (see e.g. Beyer (1978), Novak, Simon, Kadlec, and
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Lotton (2010)), for i ∈ N,

sin2i(x) = 1
22i

(
2i
i

)
+ (−1)i

22i−1

i−1∑
k=0

(−1)k
(

2i
k

)
cos(2(i− k)x) ,

sin2i+1(x) = (−1)i

4i
i∑

k=0
(−1)k

(
2i+ 1
k

)
sin((2i+ 1− 2k)x) ,

and that, for any r ∈ Z,

sin(r(wt+ φ0 + φω)) = cos(rφω) sin(r(wt+ φ0)) + sin(rφω) cos(r(wt+ φ0))

cos(r(wt+ φ0 + φω)) = − sin(rφω) sin(r(wt+ φ0)) + cos(rφω) cos(r(wt+ φ0)) .

Then, we can rewrite the nonlinear function as

f(x̄(t)) =
p/2∑
i=0

c2i

[ 1
22i

(
2i
i

)
+ (−1)i

22i−1

i−1∑
k=0

(−1)k
(

2i
k

)
× [cos(2(i− k)φω) cos(2(i− k)(wt+ φ0))

− sin(2(i− k)φω) sin(2(i− k)(wt+ φ0))]
]

+
p/2−1∑
i=0

c2i+1
(−1)i

4i
i∑

k=0
(−1)k

(
2i+ 1
k

)
× [cos((2i+1−2k)φω) sin((2i+1−2k)(wt+φ0))

+ sin((2i+1−2k)φω) cos((2i+1−2k)(wt+φ0))] . (7.15)

This equation is particularly interesting because it permits to express f(x̄(t)) as a linear
combination of sines and cosines with frequency rω(t) and known phase delay rφ0,
where r = 0, . . . , p. The coefficients of this linear combination are also a function of
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sines and cosines of the unknown phase delay φω . Let

k0 :=
p/2∑
i=0

c2i
1

22i

(
2i
i

)

ks,r :=
p/2∑
i=r/2

c2i
1

22i−1

(
2i

i− r/2

)
sin(rφω) (r even)

kc,r := −
p/2∑
i=r/2

c2i
1

22i−1

(
2i

i− r/2

)
cos(rφω) (r even)

ks,r := (−1)2i−(r−1)/2
p/2−1∑

i=(r−1)/2

c2i+1
1
4i

(
2i+ 1

i− (r − 1)/2

)
cos(rφω) (r odd)

kc,r := (−1)2i−(r−1)/2
p/2−1∑

i=(r−1)/2

c2i+1
1
4i

(
2i+ 1

i− (r − 1)/2

)
sin(rφω) (r odd)

Let also, for r = 1, . . . , p,

kr =
p/2∑
i=r/2

c2i
1

22i−1

(
2i

i− r/2

)
, (r even)

kr =
p/2−1∑

i=(r−1)/2

c2i+1
1
4i

(
2i+ 1

i− (r − 1)/2

)
, (r odd)

so that there exists a matrixM ∈ Rp+1×p+1 such that

k = Mc , k :=
[
k0 . . . kp

]>
. (7.16)

Then we can write

k̄ =



k0
ks,1
kc,1

...
ks,p
kc,p


=



γ0k0
γs, 1k1 sin(φω)
γc, 1k1 cos(φω)

...
γs, pkp sin(pφω)
γc, pkp cos(pφω)


, (7.17)
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where γ0 and the γs,i, γc,i, i = 1, . . . , p, are equal to −1 or 1 and are known in
advance. Therefore, if we are able to estimate the vector k̄ and the phase delay φω , we
can also estimate k and consequently c. To this end, we define

ψ(t)> := [1 cos(ωt+ φ0) sin(ωt+ φ0) . . .

. . . sin(p(ωt+ φ0)) cos(p(ωt+ φ0))] , (7.18)

so that we can rewrite (7.15) as f(x̄(t)) = ψ(t)>k̄, and express the measurement
equation via the linear regression model

y(t) = ψ(t)>k̄ + e(t) .

We can then obtain the least-squares estimate

̂̄k =
(
N1∑
t=1

ψ(t)ψ(t)>
)−1 N1∑

t=1
ψ(t)y(t) . (7.19)

Using this estimate, we now show how to recover the coefficients of the polynomial.
From (7.17), the absolute value of each ki, i = 1, . . . , p, can be reconstructed via

|k̂i| =
√
k̂2
s,i + k̂2

c,i . (7.20)

Using the estimates k̂s,1 and k̂c,1, one can recover the phase delay φω as

φ̂ω = tan−1

(
k̂s,1

k̂c,1

)
, (7.21)

where uniqueness of the solution is guaranteed in I = (−π, 0]. Using φ̂ω, we can
uniquely recover the sign of the coefficients ki, exploiting the knowledge of the
coefficients γs,i, γc,i introduced in (7.17). Finally, the estimate ĉ can be recovered via

ĉ = M−1k̂ , (7.22)

whereM is defined in (7.16).

We summarize the procedure for the polynomial case in Algorithm 3.

We observe that this procedure still requires to recover the phase delay φω . However, in
this case this can be done with one simple operation, namely (7.21), instead of requiring
the solution of a dedicated optimization problem, like in the general parametric case
discussed in Section 7.3.1. Furthermore, it is not required to have a highly accurate
estimate of φω . In fact, what we need is just that φ̂ω lies in the same orthant of φω , so
that we can correctly determine the sign of the coefficients ki, i = 0, . . . , p. As for
the asymptotic performance of this estimation procedure, we have the following result
showing that the asymptotic variance of the procedure does not depend on the choice
of ω.
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Algorithm 3 Polynomial static nonlinearity estimation

Input: {y(t)}N1
t=1, ω, φ0

Output: ĉ0, . . . , ĉp
1: Construct the regressors (7.18) and compute the least-squares estimate (7.19)
2: Recover the absolute value of the coefficients ki, i = 0, . . . , p using (7.20)
3: Estimate the phase shift via (7.21) and the sign of the coefficients ki, i = 0, . . . , p
4: Recover the coefficients ci, i = 0, . . . , p, using (7.22)

Proposition 3. The procedure outlined above gives consistent estimates of the
coefficients ci, i = 0, . . . , p. Furthermore, the asymptotic covariance of their estimates
is equal to

σ2

N1
M−1DM−T , (7.23)

whereD = diag {1, 2, . . . , 2}.

Proof. Let

Γ =



γ0 0 . . . 0
0 γs, 1 sin(φω) 0 . . . 0
0 γc, 1 cos(φω) 0 . . . 0
...

...
...

...
0 . . . 0 γs, p sin(pφω)
0 . . . 0 γc, p cos(pφω)


, (7.24)

so that (7.17) can be rewritten as k̄ = Γk. We note that the Moore-Penrose
pseudoinverse of Γ is

Γ# = (Γ>Γ)−1Γ> = Γ> ,

so that k = Γ>k̄.

Since we do not need to estimate φω but only its sign, we can conclude that the
covariance matrix of the estimated coefficients ci, i = 0, . . . , p can be calculated as
the same as the one obtained via least-squares, that is

E[(f̂ − c)(f̂ − c)>] = M−1E[(k̂− k)(k̂− k)>]M−T

= M−1Γ>E[(̂̄k− k̄)(̂̄k− k̄)>]ΓM−T

= σ2M−1Γ>
(
N1∑
t=1

ψ(t)ψ(t)>
)−1

ΓM−T . (7.25)
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Recalling the structure of ψ(t) given in (7.18), it is straightforward to check that, as
N1 grows large,

1
N1

N1∑
t=1

ψ(t)ψ(t)> −→ diag
{

1, 1
2 , . . . ,

1
2

}
:= D̄−1 , (7.26)

where D̄ has size 2p+ 1× 2p+ 1. Equation (7.23) follows from the fact that

Γ>D̄Γ = Γ>ΓD = D .

The consistency of the estimates follows from the consistency of the least-squares
estimates (7.19). This concludes the proof.

Example 1. Consider the third-order polynomial nonlinearity

f(x) = c0 + c1x+ c2x
2 + c3x

3 .

We have

f(x̄(t)) = c0 + c2
2 + (c1 + 3

4c3) cos(φω) sin(ωt+ φ0)

+ (c1 + 3
4c3) sin(φω) cos(ωt+ φ0)

+ c2
2 sin(2φω) sin(2(ωt+ φ0))

− c2
2 cos(2φω) cos(2(ωt+ φ0))

− c3
4 cos(3φω) sin(3(ωt+ φ0))

− c3
4 sin(3φω) cos(3(ωt+ φ0)) ,

and 

γ0
γs,1
γc,1
γs,2
γc,2
γs,3
γc,3


=



1
1
1
1
−1
−1
−1


, M =


1 0 1/2 0
0 1 0 3/4
0 0 1/2 0
0 0 0 1/4

 .

The asymptotic covariance of the coefficient estimates, computed via (7.23), is then

σ2

N1


3 0 −4 0
0 20 0 −24
−4 0 8 0
0 −24 0 32

 ,
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which shows that, for the case p = 3, the odd coefficients are estimated with lower
accuracy. Not surprinsingly, the estimates of the even coefficients and the estimates of
the odd coefficients are uncorrelated.

7.3.3 Nonparametric approach

The obtained estimate depends on the regularization parameter γ entering (1.28), the
kernel shaping hyperparameter in (1.29) (in this chapter the kernel parameter will
be denoted as η to avoid confusion), and also the unknown phase delay φω. Tuning
suitable values for the first two quantities can be done using standard techniques, such
as marginal likelihood, SURE, or cross validation (Friedman, Hastie, & Tibshirani,
2001). As for φω, it is natural to ask to which interval we should restrict our search,
and if we can treat it as an additional hyperparameter, to be tuned along with the other
model hyperparameters. The following lemma answers the first question.

Lemma 2. Let K(·, ·) be an isotropic kernel, i.e. a kernel such that K(x̄i, x̄j) =
K(|x̄i − x̄j |), for every x̄i, x̄j . Denote by f̂φ1(x̃) and f̂φ2(x̃) the estimates of f(·) at
the point x̃ obtained using x̄(t) = sin(ωt+ φ0 + φ1) and x̄(t) = sin(ωt+ φ0 + φ2)
as input locations, respectively. Then f̂φ1(x̃) = f̂φ2(x̃) for all x̃ ∈ R if φ1 = φ2 + kπ,
k ∈ Z.

Proof Follows from the fact that

sin(ωt+ φ0 + φ1) =
{

sin(ωt+ φ0 + φ1 + kπ) k even
− sin(ωt+ φ0 + φ1 + kπ) k odd (7.27)

and the fact that the kernel is isotropic. �

Then, also in this case the search of φω has to be restricted to I = (−π, 0]. The
following example clarifies that φω can be seen as an additional kernel hyperparameter.
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Example 2. Consider the RBF kernel (1.29). We have that

(x̄i − x̄j)2 = (sin(ωi+ φ0 + φω)− sin(ωj + φ0 + φω))2

= (sinφω cos(ωi+ φ0) + cosφω sin(ωi+ φ0)

− sinφω cos(ωj + φ0) + cosφω sin(ωj + φ0))2

= (sinφω(cos(ωi+ φ0)− cos(ωj + φ0))

+ cosφω(sin(ωi+ φ0)− sin(ωj + φ0)))2

= [zsi − zsj zci − zcj ]Ψ
[
zsi − zsj
zci − zcj

]
, (7.28)

where zsi = sin(ωi+ φ0), zci = cos(ωi+ φ0) (the same notation holds for j) and

Ψ =
[

cos2 φω
1
2 sin 2φω

1
2 sin 2φω sin2 φω

]
.

Then we can write

K(x̄i, x̄j) = exp
(
−‖zi − zj‖2Ψ

η

)
,

with zi = [zsi zci ]>, which shows that the RBF kernel with the input x̄(t) = sin(ωt+
φ0 + φω) can be seen as an RBF kernel with a bi-dimensional known input

z(t) = [sin(ωt+ φ0) cos(ωt+ φ0)] ,

weighted by the Mahalanobis distance Ψ (Weinberger & Tesauro, 2007), which depends
on the hyperparameter φω. Therefore, we can treat the tuning of φω in the same way
we treat the tuning of the other kernel hyperparameter η.

We summarize the procedure for nonparametric estimation of f(·) in Algorithm 4.

Algorithm 4 Nonparametric static nonlinearity estimation

Input: {y(t)}N1
t=1, ω, φ0

Output: f(x̃), for any x̃ ∈ R
1: Tune the hyperparameters γ, η, φω
2: Compute f(x̃) using (1.33)



NUMERICAL EXPERIMENTS 123

7.4 Numerical experiments

The proposed methodology is tested on two simulated Wiener systems, which
we refer to as S1 and S2. The LTI block of S1 is obtained using the Matlab
command cheby2(3,5,0.2), which returns a third-order system with stopband
edge frequency 0.2π and 5 dB of stopband attenuation at the passband value. The static
nonlinearity is the third-order polynomial f(x) = x3. The parameters characterizing
S1 are then

a =
[
2.46 2.26 −0.77

]
,

b = 10−2 [0.47 1.42 1.42 0.47
]
,

c =
[
0 0 0 1

]
.

As for S2, the LTI part is obtained using the Matlab command cheby2(4,18,0.2),
while the nonlinear part is the third-order polynomial f(x) = x+ 5x2 − 0.5x3. Thus,
S2 is described by the parameters

a =
[
−2.49 2.53 −1.18 0.22

]
,

b =
[
0.11 −0.21 0.28 −0.21 0.11

]
,

c =
[
0 1 5 −0.5

]
.

The two systems are depicted in Fig. 7.1. The variance of the output noise is obtained
by matching different signal-to-noise ratios (SNR). In particular, we test the proposed
methods for SNR = 10, 20, 40 dB. Thus, we have in total 6 experimental conditions. For
each experimental condition we generate 100 Monte Carlo, each with a different noise
realization. The performance of the methods is evaluated by assessing the accuracy in
tracking the output of a noiseless test set yt,test of length N = 500, obtained by feeding
the systems with a i.i.d. Gaussian sequence. We use the normalized mean absolute
error (%MAE) (i.e. see Appendix D) and the normalized mean square error (%MSE),
defined as

%MSE = 100

√∑N
t=1 (ytest(t)− ŷtest(t))2√∑N

t=1 (ytest(t)−mean(ytest(t)))2
. (7.29)

7.4.1 Experiments using the parametric and the polynomial
approaches

First, we test the methods presented in Section 7.3.1 and in Section 7.3.2. We refer to
the two methods as 2-E-P (two-experiment parametric) and 2-E-Poly (two-experiment
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Figure 7.1: Blocks composing S1 and S2. (Up) S1. (Down) S2. (Left) Nonlinear
blocks. (Right) Magnitude of the transfer functions of the LTI blocks.

polynomial). We use the same input signals for both methods. In the first stage of the
approach, we feed the system with the signal u(1)(t) = sin(0.05t), keeping N1 = 500
transient-free samples. In the second stage, we use random white Gaussian noise
with unit variance as input u(2)(t), collecting N2 = 500 samples. The two methods
are compared with a single-stage PEM-based estimator, implemented through the
Matlab command nlhw (see Ljung, Zhang, Lindskog, Iouditski, and Singh (2007)
for details); we refer to this method as NLHW. To get a fair comparison, the data
used by NLHW are obtained by feeding the system with a random white Gaussian
sequence of length N1 + N2 with variance equal to the variance of the sequence
[u(1),1 . . . u(1),N1 u(2),1 . . . u(2),N2 ].

In Table 7.1 we report the medians of the results obtained in the 6 experiments. As
can be seen, on S1 the performance of the three methods are comparable to each other,
while NLHW fails in providing a good model of S2. The motivation is that the method
often falls into a local minimum of the cost function related to the PEM optimization
problem. Separating the identification of the LTI block from the static nonlinearity
avoids this issue; thus, the proposed methods 2-E-P and 2-E-Poly give reliable results
for both S1 and S2.
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Table 7.1: Median values of %MAE and %MSE over 100 Monte Carlo runs obtained
by the three parametric methods on the 6 tested experimental conditions.

SNR Method S1 S2
(dB) %MAE %MSE %MAE %MSE

10
2-E-P 0.19 4.82 0.5 6.97

2-E-Poly 0.2 5.1 0.49 6.87
NLHW 0.19 5.28 3.3 39.63

20
2-E-P 0.15 4.13 0.34 4.74

2-E-Poly 0.16 4.07 0.33 4.67
NLHW 0.16 3.71 3.72 51.12

40
2-E-P 0.14 3.44 0.25 3.55

2-E-Poly 0.13 3.33 0.25 3.49
NLHW 0.09 2.25 3.61 44.35

7.4.2 Experiments using the nonparametric approach

For the nonparametric approach, the input used in the first stage is u(t) = 10 sin(t+
π/2). We collect N1 = 500 steady-state output samples. In the second stage the
systems are excited with an uniformly distributed random signal, collecting N2 = 500
samples.

In the proposed nonparametric approach, dubbed 2-E-NP, f̂(·) is estimated using
the LS-SVM approach described in Section 7.3.3, under a cross validation scheme.
To solve the optimization problem associated with hyperparameter selection, we use
coupled simulated annealing (Xavier-de Souza et al., 2009) and simplex (Nelder &
Mead, 1965); an implementation of these techniques is available in the toolbox LS-
SVMlab v1.81. The results of the Monte Carlo simulations are displayed through the
box plots of Fig. 7.2.

The proposed method is compared with the method introduced in Chapter 4, where the
Best Linear Approximation (BLA) (Pintelon & Schoukens, 2012) is used together with
LS-SVM to model the linear and nonlinear blocks, respectively. This method is referred
to as BLA+LS-SVM. This method uses 10 random phase multisine (see Pintelon and
Schoukens (2012)) inputs u(i)

BLA(t) with their corresponding outputs y(i)
BLA(t). Here

t = 1, . . . , 2500 and i = 1, . . . , 10. Using those signals, the BLA is calculated and as
an approximation to the LTI block. Using a second data set with a new input signal
unl(t), the intermediate variable x̂nl(t) is estimated. With x̂nl(t) and the known output
ynl(t) a model of the nonlinear block is estimated using LS-SVM. In this case, unl(t)

1http://www.esat.kuleuven.be/sista/lssvmlab/
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Figure 7.2: Box plots of the obtained %MAE for the 100 Monte Carlo runs of the 6
experiments.

is the same sinusoidal signal described used by 2-E-NP. To train the LS-SVM model,
only the last 500 samples of x̂nl(t) and ynl(t) are used.

In Table 7.2 we report the median values of %MAE obtained using the two
nonparametric methods. It can be seen that the proposed technique outperforms
BLA+LS-SVM, despite the simplicity of the input employed in the first stage of the
procedure, as compared with the random phase multisine signal required by BLA
(note also that BLA+LS-SVM uses a 5 times longer input in this stage). It should be
noted that the performance of 2-E-NP is lower than those obtained by the parametric
methods. This can be explained by the fact that the parametric approaches exploit
more detailed prior information on the static nonlinearity, because it is known that the
nonlinearity is a third-order polynomial, while when 2-E-NP is used, it is only known
that the nonlinearity is smooth.
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Table 7.2: Median values of %MAE over 100 Monte Carlo runs obtained by the two
nonparametric methods on the 6 tested experimental conditions.

SNR Method S1 S2
(dB) %NMAE %MAE

10 2-E-NP 2.29 2.58
BLA+LS-SVM 16.7 53.81

20 2-E-NP 1.73 1.45
BLA+LS-SVM 29.08 4.68

40 2-E-NP 1.59 0.94
BLA+LS-SVM 13.15 4.72

7.5 Conclusions

We have proposed in this chapter a new method for Wiener system identification.
Remarkably, it is shown that for Wiener systems, a poorly exciting signal –such as
a sinusoid– can help estimating (part of) the system by means of relatively simple
least-squares based procedures. The main idea underlying the method is that we can
separate the estimation of the static nonlinear function from the identificaiton of the
LTI block composing the Wiener system. To do so, we have to excite the system using
two different inputs. The first input is a sinusoid, which, after the transient effect of the
LTI system has vanished, permits to estimate the static nonlinearity as a function of the
phase delay introduced by the LTI block. We have described three different approaches
to nonlinearity estimation, namely a parametric, a polynomial, and a nonparametric
approach. Depending on the adopted approach, the phase delay is also estimated so that
the static nonlinearity is recovered. Using the information on the static nonlinearity,
we use a persistently exciting input to identify the LTI block. The proposed method is
shown to compare favorably with other techniques for Wiener system identification.

Future challenges are to extend the two-experiment approach to more involved model
structures, such as Wiener-Hammerstein and Hammerstein-Wiener systems.
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In this part, two newly developed methods for system identification of Hammerstein
systems are presented. The proposed methodologies not only take into account the
information about the structure of the system, but also exploit the structural information
of the underlying systems so that the impulse response of the associated linear systems
can be approximated.

In Chapter 8 SISO Hammerstein systems are considered based on Castro-Garcia,
Agudelo, and Suykens (2017b). That work is extended to include the MIMO
Hammerstein systems In Chapter 9 based on Castro-Garcia, Agudelo, and Suykens
(2017a). In both scenarios the respective method consists of two stages: First, the
impulse response of the system is approximated. In the SISO case this can be
done straightforwardly, but in the MIMO one it becomes a more involved process.
Afterward, using the found estimation of the linear block, LS-SVM is used to model
the nonlinearity. These methods have as their main advantage their versatility with
respect to the class of systems that can be modeled.



Chapter 8

Impulse Response
Constrained LS-SVM
modeling for Hammerstein
System Identification

8.1 Introduction

The proposed methodology in this chapter not only takes into account the information
about the structure of the system, but also exploits the structural information so that the
impulse response of the linear system can be approximated.

The method proposed can be separated in two stages: First the system’s impulse
response is estimated. Then, using this, an LS-SVM model of the whole system is
estimated (i.e. as opposed to modeling its component blocks). Even though at the
second stage a model for the whole system is obtained, it can still be separated into the
corresponding models of the linear block and the nonlinearity.

The capabilities of the method will be illustrated through several Monte Carlo
simulations covering two examples and it will be shown how the measurement

This chapter is based on:
Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017b). Impulse Response Constrained LS-
SVM modeling for Hammerstein System Identification. In proceedings of the 20th world congress of the
International Federation of Automatic Control (IFAC 2017), Toulouse, France. (pp. 14611 – 14616).
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noise (white Gaussian noise with zero mean) affects the behavior of the proposed
methodology.

Given that a modified formulation of LS-SVM is used in order to include the
estimated Impulse Response, two different methods for tuning the parameters are
also discussed. These methods are Genetic Algorithms and Simulated Annealing for
global optimization on a validation set.

This chapter is organized as follows: In Section 8.2 a quick review of the impulse
response of Hammerstein systems is presented. In Section 8.3 the proposed method
is presented. Section 8.4 shows the results found when applying the described
methodology on two simulation examples. Finally, in Section 8.5, the conclusions are
presented.

8.2 Hammerstein Impulse Response

Throughout this chapter, we use the discrete time framework. Given this, we define an
impulse as a Kronecker delta function. This means for t ∈ N:

uimp(t) = uiδ(t) =
{
ui for t = 0
0 for t 6= 0. (8.1)

This representation shows that the δ(t) function, by definition a unit impulse, is rescaled
by a factor ui.

In order to obtain an impulse response matrix from a Hammerstein system, it is enough
to apply such an impulse as input and measure the corresponding output. This can
be easily understood if we consider that the first block contains a static nonlinearity
and therefore, the resulting intermediate variable ximp(t) for the impulse input uimp(t)
is a rescaled version of uimp(t). The initial value is simply the value of the impulse
multiplied by an unknown constant η, that is:

ximp(t) =
{
ηui for t = 0 with η 6= 0
0 for t 6= 0. (8.2)

The linear part will be excited then by ximp(t) and the corresponding output yimp(t)
can be used to construct an Impulse Response MatrixMIR (Ljung, 1999):

MIR =


yimp(0) 0 0 · · · 0
yimp(1) yimp(0) 0 · · · 0
yimp(2) yimp(1) yimp(0) · · · 0

...
...

...
. . .

...
yimp(N − 1) yimp(N − 2) yimp(N − 3) · · · yimp(0)

. (8.3)
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This is very convenient as we can easily obtain a rescaled version of the impulse
response of the system. Note however that this measured impulse response will contain
noise.

The rescaling of the impulse response does not represent a problem as the LS-
SVM model will take care of it in the next stage. In other words, the rescaling
of the approximated linear block has no effect on the input-output behavior of the
Hammerstein model (i.e. any pair of {f(u(t))/η, ηG(q)} with η 6= 0 would yield
identical input and output measurements), as will be shown in Section 8.3.1.

It is important to highlight that the impulse excitation has the disadvantage of not being
persistently exciting. In practice the amplitude of such signals is limited and hence,
within the available experiment time, more information can be collected by using richer
excitations. In this sense it is possible to use for instance a Pseudo Random Binary
Signal (PRBS) input upr(t) switching between zero and a non zero constant ū. This
means that

ypr(t) = MIRxpr(t)
= ηMIRupr(t),

(8.4)

with f(ū) = ηū and therefore M̂IR = ηMIR can be estimated from the known upr(t)
and ypr(t).

8.3 Proposed Method

8.3.1 Impulse Response Constrained LS-SVM

The proposed method aims to integrate the Impulse Response Matrix MIR of the
Hammerstein system as defined in Section 8.2 into the LS-SVM formulation presented
in Section 1.7.1. To do this, the constrained optimization problem is reformulated for
any input/output data as follows:

min
w,b,e

1
2w
>w + γ

2e
>e

subject to y = MIR(Φ>Uw + 1Nb) + e.
(8.5)

Here, w ∈ Rnh , the input matrix is U = [u1,u2, . . . ,uN ]> and the elements of the
input signal ui ∈ Rn. Also y, e,1N ∈ RN with y = [y1, y2, . . . , yN ] the output,
e = [e1, e2, . . . , eN ] the errors and 1N a vector of ones. Finally, ΦU ∈ Rnh×N , or
equivalently:

ΦU = [ϕ(u1), ϕ(u2), . . . , ϕ(uN )] (8.6)

with ϕ(·) : Rn → Rnh the feature map to a high dimensional (possibly infinite) space.
Also, we have that Ω = Φ>UΦU .
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Note that in the constraint of (8.5) the separation of the blocks is clear: The Impulse
Response MatrixMIR models the linear block and is multiplied with the output of the
nonlinear model given by Φ>Uw + 1Nb. However, note also that we only consider one
global error for the whole model. This means that the tuning of the Impulse Response
Constrained LS-SVM eventually will have to deal with the errors of the two blocks, i.e.
the errors introduced by the Impulse Response Matrix and the errors introduced by the
selection of the parameters in the nonlinear block.

From the Lagrangian:

L(w, b, e;α) = 1
2w
>w + γ 1

2e
>e−α>(MIR(Φ>Uw + 1Nb) + e− y), (8.7)

the optimality conditions are then derived:



∂L
∂w = 0 → w = ΦUM>

IRα

∂L
∂b = 0 → 0 = 1>NM>

IRα

∂L
∂ei

= 0 → e = α/γ

∂L
∂αi

= 0 → y = MIR(Φ>Uw + 1Nb) + e.

(8.8)

By elimination of w and e, the last equation can be rewritten as:

y = MIR(Φ>UΦUM>
IRα+ 1Nb) + α

γ
(8.9)

and the following linear system is obtained: 0 1TNM>
IR

MIR1N MIRΩM>
IR + 1

γ IN

 b

α

 =

 0

y

 . (8.10)

For a new input signal Ud ∈ Rn×D with elements d ∈ Rn and the training input
U ∈ Rn×N with elements u ∈ Rn, let us define a matrixK ∈ RD×N whose entries
are defined as

Ki,j = exp
(
−‖uj − di‖22

σ2

)
, (8.11)

with i = 1, . . . , D and j = 1, . . . , N . Note that in the case where Ud = U then
K = Ω.

If N 6= D we also need to define an additional matrix MNew. This matrix will be
a re-sized version of MIR in order to make it coincide with the new data set (i.e.
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MNew ∈ RD×D). Note that if the new data set is longer than the training one, and
assuming that the impulse response yimp is long enough to allow the system to settle
down, MNew can be generated by extending yimp with zeros. On the other hand, if
the new data set is shorter than the training one,MNew can be generated by truncating
yimp. Of course, if N = D thenMIR = MNew.

Finally, we can define the estimated output for Ud as:

ŷ(Ud) = MNewKM
>
IRα+MNew1Nb. (8.12)

In this final formulation, the clear separation between the linear and nonlinear blocks
present in (8.5) is lost. However, it is still possible to make a separation between the
two blocks by factorizingMNew. This leads then to

ŷ(Ud) = MNew(KM>
IRα+ 1Nb). (8.13)

In Section 8.4 it will be illustrated how from (8.13) we can recover a good
approximation to the nonlinearity.

8.3.2 Role of Regularization

It is important to highlight the importance of the regularization in the found model.

As shown in (8.10), y can be expressed as:

y = MIR1Nb+MIRΩM>
IRα+ IN

γ
α. (8.14)

If we were to calculate the output of the found model for the input of the training data
set, we would have then:

ỹ = MIR1Nb+MIRΩM>
IRα (8.15)

It is clear then from (8.14) and (8.15) that ỹ = y −α/γ, this leads to

ỹ = y − 1
γ

(
MIRΩM>

IR + IN
γ

)−1
(y −MIR1Nb) (8.16)

Now, let us assume that a change ∆v in the measurement noise occurs and let us
analyze the effect it has in ỹ:

ỹ + ∆ỹ = y + ∆v − 1
γ (MIRΩM>

IR + IN
γ )−1

(y + ∆v −MIR1Nb)
= y − 1

γ (MIRΩM>
IR + IN

γ )−1

(y −MIR1Nb) + ∆v

− 1
γ (MIRΩM>

IR + IN
γ )−1∆v.

(8.17)
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Therefore
∆ỹ = ∆v − 1

γ (MIRΩM>
IR + IN

γ )−1∆v

= (I − 1
γ (MIRΩM>

IR + IN
γ )−1)∆v.

(8.18)

From (8.18) it is evident that the effect of ∆v in ỹ is heavily dependent on γ. Let us
now assume that γ → 0:

∆ỹ ≈

(
I − 1

γ

(
IN
γ

)−1
)

∆v = 0. (8.19)

Here, ∆v has no effect over ỹ. This result was to be expected as the errors considered
in (8.5) have no impact at all given that γ is so small.

Let us assume now that γ →∞ (i.e. the errors in (8.5) are given a very high weigth):

∆ỹ ≈ (I − 1
γ

(MIRΩM>
IR)−1)∆v = ∆v. (8.20)

Here the model would follow the training points perfectly regardless of the noise. This
is an undesirable effect as well as it clearly leads to overfitting.

8.3.3 Method Summary

In Fig. 8.1 the algorithm of the proposed method is summarized. Note that the elements
in the input signals used are scalars and therefore, we drop the matrix notation.

8.4 Simulation Results

The proposed methodology was applied to two systems in the discrete time framework.
In order to be able to compare between the results of different examples the normalized
mean absolute error (%MAE) is used as defined in Appendix D. The first system (i.e.
Example 1) was generated through a nonlinear block:

x(t) = u(t)3 (8.21)

and a linear block:

y(t) = q6+0.8q5+0.3q4+0.4q3

q6−2.789q5+4.591q4−5.229q3+4.392q2−2.553q+0.8679x(t). (8.22)

The second system (i.e. Example 2) was generated through a nonlinear block:

x(t) = −0.5u3 + 5u2 + u (8.23)
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Impulse Response
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a training set, train
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that uses the matrix

MIR in its constraints).

Stop

Figure 8.1: Summary of the method showing the main steps.

and a linear block:

y(t) = 0.004728q3 + 0.01418q2 + 0.01418q + 0.004728
q3 − 2.458q2 + 2.262q − 0.7654 x(t). (8.24)

The examples can be visualized in Fig. 8.2.

Both systems were initially excited using an impulse signal uimp (i.e. uimp =
[10, 0, . . . , 0]>) and the corresponding yimp were retrieved. The Impulse Response
MatricesMIR were created using the corresponding yimp. Next, a ramp like signal is
used to excite the systems (i.e. uR) and their corresponding outputs yR are retrieved.
Finally, using uR, yR andMIR, models for the systems are estimated as explained in
Section 8.3.

The estimated models were tested in an independent test set. The inputs of this set uT
are Multilevel Pseudo Random Signals with 2% switching probability and amplitude
values drawn from a uniform distribution with amplitudes in the interval [−10, 10]. All
the signals in the presented examples consist of 500 samples.
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Figure 8.2: Example 1: (Left) Linear block in the frequency domain (normalized). (Rigth)
Nonlinear block. (Top) Example 1. (Bottom) Example 2.

Two different methods for tuning the hyper-parameters (i.e. σ and γ) were tried,
namely Genetic Algorithms and Simulated Annealing. These methods were used
through validation sets. Results for Examples 1 and 2 are shown in Fig. 8.3 for the
different tuning methods.

White Gaussian noise with zero mean was added to the output of the systems such that
a resulting Signal to Noise Ratio (SNR) of 20 dB was obtained. It is clear that even
in the presence of noise, the proposed methodology works very well when Simulated
Annealing or Genetic Algorithms are used.

In Fig. 8.4, the found nonlinearities for Examples 1 and 2 are depicted. These
estimations were done following the separation between the linear and nonlinear
blocks in the found model explained in (8.13). This is, x̂ = KM>

IRα+ 1Nb with a
K matrix generated as explained in Section 8.3.1 using the input of the training data
U and an input UNL = [−10,−9, . . . , 9, 10].
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Figure 8.3: Results for Examples 1 and 2.
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Figure 8.4: (Left) Nonlinearity of Example 1. (Rigth) Nonlinearity of Example 2. (Top) Actual
Nonlinearities. (Bottom) Estimated nonlinearities. Results corresponding to the examples of
Figs. 8.3.

As can be seen, even though the scales are different, the shapes of the estimated
nonlinearities are very similar to the actual ones. Again, it is important to note that
this scaling factor is of no consequence in the input-output behavior as any pair of
{f(u(t))/η, ηG(q)} with η 6= 0 would yield identical input and output measurements.

In addition, in order to show the effect of parameter tuning during the modeling of the
system Figs. 8.5 and 8.6 are presented. There σ and γ are alternatively fixed while
the other varies in a wide range. The corresponding normalized mean absolute errors
(%MAE) are displayed for the training and test set of Examples 1 and 2 for Genetic
Algorithms and Simulated Annealing correspondingly.

Fig. 8.7 summarizes the result of 100 Monte Carlo simulations for each example and
each tuning methodology.
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Figure 8.5: Example1. Behavior of the error with respect to γ (left) and σ (right). (Top)
Training set results. (Bottom) Test set results. The black dot shows the selected value.

From these results it can be seen that both Genetic Algorithms and Simulated Annealing
can achieve very good results even in the presence of noise. However, it is also clear
that the levels of noise used lead the results obtained with Genetic Algorithms to be
slightly less homogeneous.

The proposed method takes the underlying structure of the system into account through
the modified constraint in (8.5), therefore it is expected to produce better models than
those obtained with purely black box methods like the NARX LS-SVM discussed
in Suykens et al. (2002). Table 8.1 shows the results of the comparison between the
proposed method (i.e. IR+LS-SVM) and a NARX LS-SVM with 10 lags input and 10
lags output in a test set. Additionally, the method is compared against the MathWorks’
System Identification Toolbox (SITB) (Ljung et al., 2007). Both, the single hidden
layer neural network with sigmoid neurons (i.e. SigmoidNet) and the piecewise
linear estimator (i.e. PWlinear) are considered.

For the NARX LS-SVM, a ramp signal uR is used for training and a 10-
fold cross-validation scheme was used with a combination of Coupled Simulated
Annealing (Xavier-de Souza et al., 2009) and simplex search for the tuning of the
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Figure 8.6: Example 2. Behavior of the error with respect to γ (left) and σ (right). (Top)
Training set results. (Bottom) Test set results. The black dot shows the selected value.

hyper-parameters (i.e. LS-SVMlab v1.81). For the SigmoidNet 25 neurons are used.
Similarly, for the PWlinear 25 points are used for the nonlinear modeling. In both
cases the order of the linearity is chosen by observation of the behavior of the noiseless
case. This means that the order of numerator and denominator are the same in both
examples and both methodologies, this is 6 and 3 for Examples 1 and 2 respectively.

To train the SITB methods, a 500 points ramp signal ranging from -15 to 15 was created.
This signal was randomly shuffled so the resulting training signal is rich in its frequency
content while covering all the input range.

It can be seen that the proposed method clearly outperforms the purely black box
approach of NARX LS-SVM. Also, when compared with the SITB methods the results
of the proposed method are in general better. Note that the order of the linear block
was manually picked for the SITB methods in a noiseless environment while for the
proposed method the process is fully automated.

1http://www.esat.kuleuven.be/stadius/lssvmlab/
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Figure 8.7: Results of 100 Monte Carlo simulations using (Left) Genetic Algorithms and
(Rigth) Simulated Annealing with 20dB SNR and no noise for Example 1 (Top) and Example 2
(Bottom).

8.5 Conclusions

The proposed method in this chapter includes information about the structure of the
Hammerstein system within an LS-SVM formulation. Also, we exploit the structure of
the system for obtaining a rescaled impulse response and the fact that such a rescaling
is not a problem for the modeling of the system as a whole.

The results indicate that when the structure of the system is taken into account, a
substantial improvement can be achieved in the resulting modeling. Also, they show
that the method is effective in the presence of zero mean white Gaussian noise.
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Table 8.1: %MAE Comparison. Median values are offered for 100 Monte Carlo simulations
for each case.

SNR 20dB No Noise
Method Ex 1 Ex 2 Ex 1 Ex 2

NARX LS-SVM 2.8154 2.0174 0.5668 0.4592
IR+LS-SVM (SA) 2.742 1.4452 0.0048 0.03433
IR+LS-SVM (GA) 2.3843 1.1288 8.6216 × 10−5 0.0905

SITB PWLinear 1.9487 4.1317 0.2559 0.447
SITB SigmoidNet 3.3196 6.8528 0.3486 0.1992

For this method, the kernel parameter σ and the regularization parameter γ have to
be tuned. To this end, two techniques were used and compared using Monte Carlo
simulations.

It is interesting to note that in the initial formulation, a clear separation in the modeling
of the linear and nonlinear blocks is present. However, when the final model to be used
is derived from the dual formulation, that separation is no longer clear anymore.

The solution of the model follows from solving a linear system of equations. This
is a clear advantage over other methodologies like the overparametrization presented
in Goethals et al. (2005).



Chapter 9

Impulse Response
Constrained LS-SVM
modeling for MIMO
Hammerstein System
Identification

9.1 Introduction

Despite the abundance of the existing literature on Hammerstein system identification,
the vast majority focuses on Single-Input Single-Output (SISO) case. For the
Multiple-Input Multiple-Output (MIMO) case, however, much less works exist.
Examples of methods for the identification of MIMO Hammerstein systems include for
instance: Gomez and Baeyens (2004), Jeng and Huang (2008), Goethals et al. (2005),
Lee et al. (2004); Verhaegen and Westwick (1996) and Al-Duwaish and Karim (1997).

The method proposed in this Chapter consists of two stages: First, it takes into account
the information about the structure of the system in order to approximate its impulse

This chapter is based on:
Castro-Garcia, R., Agudelo, O. M., Suykens, J. A. K. (2017a). Impulse response constrained LS-
SVM modeling for MIMO Hammerstein system identification. International Journal of Control. doi:
10.1080/00207179.2017.1373862. Available online at http://www. tandfonline.com/doi/abs/10.1080/
00207179.2017.1373862.

145
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response. Then, using this estimation, an LS-SVM model of the whole system is
obtained. The main advantages of the proposed method include its versatility with
respect to the class of systems that can be modeled as it is applicable to cases where
the problem class of the nonlinearities is unknown due to the good generalization
properties of LS-SVM. Another advantage is that the proposed method can be naturally
used for the identification of multivariate Hammerstein systems with arbitrary numbers
of inputs and outputs while other works have heavier restrictions in this regard.

The proposed method is tested in three examples through several Monte Carlo
simulations. It is shown how the measurement noise (white Gaussian noise with
zero mean) affects its behavior and also how its accuracy compares with other state of
the art methodologies.

This chapter is organized as follows. In Section 9.2, the concepts on which the proposed
system identification technique is based are explained. In Section 9.3, the method
itself is presented. Section 9.4 shows the results found when applying the described
methodology on three simulation examples. Finally, in Section 9.5, the conclusions are
presented.

9.2 Background

9.2.1 Problem statement

Following the notation used a conversion between a time signal and a vector should
be transparent, e.g. a time signal u(t) with samples at t = 0, 1, . . . , N − 1 can be
represented as a vector u ∈ RN . Similarly, a set of p signals ui(t) with i = 1, . . . , p
and samples at t = 0, 1, . . . , N − 1 could be represented as a matrix U ∈ RN×p.
Throughout this chapter, the time and vector notations will be used interchangeably.

Given the structure of Hammerstein systems, the system to be identified is of the form

y = Hf(U), (9.1)

where H is an impulse response matrix representing the linear part and f(·) is the
nonlinear part.
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The impulse response matrix of a SISO linear time invariant (LTI) system can be
constructed as follows (Ljung, 1999):

H =


yimp(0) 0 0 · · · 0
yimp(1) yimp(0) 0 · · · 0
yimp(2) yimp(1) yimp(0) · · · 0

...
...

...
. . .

...
yimp(N − 1) yimp(N − 2) yimp(N − 3) · · · yimp(0)

 . (9.2)

Where the vector yimp = [yimp(0), yimp(1), . . . , yimp(N − 1)] is the response of the
system to an impulse input.

For a system with p inputs a matrix of the form U ∈ RN×p, where each column
represents an input signal, can be used. It is assumed that there will be as many
intermediate variables as inputs, therefore the intermediate variables will be xi =
fi(U) with fi : RN×p → RN for i = 1, . . . , p. Note then that for such a system
f : RN×p → RpN with f(U) = [f1(U)>, . . . ,fp(U)>]>. For a system with r
outputs, y ∈ RrN . Finally, for a system with p inputs and r outputs the impulse
response matrixH ∈ RrN×pN is as follows:

H =


H11 H12 · · · H1p
H21 H22 · · · H2p

...
...

. . .
...

Hr1 Hr2 · · · Hrp

 , (9.3)

with eachHij as defined in (9.2) corresponding to the impulse response matrix from
the jth input to the ith output. It is assumed that fi(0N×p) = 0N .

9.2.2 Impulse response of MIMO Hammerstein Systems

In Jeng and Huang (2008) a method for estimating the impulse response of a MIMO
Hammerstein is introduced. Such method, where specially designed two level signals
are used to take advantage of the inherent structure of a Hammerstein system, is adapted
in this chapter.

In order to excite the system for the identification of the LTI subsystem the inputs are
divided in as many stages as inputs. At each stage a different input is a Pseudo Random
Binary Signal (PRBS) switching between zero and a non-zero constant while all the
other inputs are kept at zero. For a 2-input system, an illustration example is provided
in Fig. 9.1. Given these inputs, the intermediate variables will be synchronized with
the changing input at each stage and will have values of either 0 or a nonzero constant.
This means that the intermediate variables will also be PRBS.
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Figure 9.1: Example of the inputs for the identification of the LTI subsystem of a system with 2
inputs.

Without loss of generality, consider a system with 2 inputs u1 and u2 as the one
represented in Fig. 9.2. For the identification of the linear part, in this system there
will be 2 stages then. In the first stage u1i ∈ {0, ū1} and u2i = 0 with i = 1, . . . ,

⌊
N
2
⌋

and ū1 the nonzero constant of the PRBS part of u1. Similarly, for the second stage
u1i = 0 and u2i ∈ {0, ū2} for i =

⌊
N
2
⌋

+1, . . . , 2
⌊
N
2
⌋

and ū2 the nonzero constant of
the PRBS part of u2. For such an excitation, the corresponding intermediate variables
will be as stated in (9.4) for the first stage and as stated in (9.5) for the second one:

x1i ∈ {0, f1(ū1, 0)}

x2i ∈ {0, f2(ū1, 0)}
, i = 1, . . . ,

⌊
N

2

⌋
, (9.4)

x1i ∈ {0, f1(0, ū2)}

x2i ∈ {0, f2(0, ū2)}
, i =

⌊
N

2

⌋
+ 1, . . . , 2

⌊
N

2

⌋
. (9.5)

Let us define now Hij ∈ RN×N with i = 1, . . . , r and j = 1, . . . , p as the impulse
response matrices corresponding to the different LTI blocks conforming the linear part
of a system with p inputs and r outputs. Note that for p = 2 and r = 2 the system can
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Figure 9.2: A MIMO Hammerstein system with two inputs and two outputs. Hij

are impulse response matrices corresponding to the linear dynamical systems of the
ith output and the jth intermediate variable. f1(u1,u2) and f2(u1,u2) are static
nonlinearities.

then be represented as in (9.6) provided that both a1 and a2 are different from 0.[
y1
y2

]
=

[
H11 H12
H21 H22

] [
f1(u1,u2)
f2(u1,u2)

]
,

=
[
H11
a1

H12
a2

H21
a1

H22
a2

] [
a1f1(u1,u2)
a2f2(u1,u2)

] (9.6)

with f1 : RN × RN → RN and f2 : RN × RN → RN the static nonlinear mappings;
y1 ∈ RN and y2 ∈ RN the outputs and u1, u2 ∈ RN the inputs of the system.

Equation (9.6) clearly shows that there could be a rescaling in either the linear or
nonlinear parts and the other would have to compensate to keep the input-output
relation. This is a known fact in the identification of this kind of systems (Boyd &
Chua, 1983), where a rescaling of the blocks has no effect on the input-output behavior
of the Hammerstein system (i.e. any pair of {f(U)/η, ηH} with η 6= 0 would yield
identical input and output measurements).

Let us now define a1 = ū1/f1(ū1, 0) and a2 = ū2/f2(0, ū2). This definition
necessarily means that during the first stage a1x1 = u1 and a2x2 = ρ2u1 with
ρ2 = a2f2(ū1, 0)/ū1. In a similar way, for the second stage a1x1 = ρ1u2 and
a2x2 = u2 with ρ1 = a1f1(0, ū2)/ū2.
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From (9.6) then:
y1 = H11x1 +H12x2,
y2 = H21x1 +H22x2

(9.7)

for the first stage this means

y1 =
[
H11
a1

+ ρ2
H12
a2

]
u1 = H

(1)
1 u1,

y2 =
[
H21
a1

+ ρ2
H22
a2

]
u1 = H

(1)
2 u1.

(9.8)

Similarly, for the second stage

y1 =
[
ρ1
H11
a1

+ H12
a2

]
u2 = H

(2)
1 u2,

y2 =
[
ρ1
H21
a1

+ H22
a2

]
u2 = H

(2)
2 u2.

(9.9)

Let us define now

Q =
[
H

(1)
1 H

(2)
1

H
(1)
2 H

(2)
2

]
,

H =
[
H11 H12
H21 H22

]
,

P =
[

I
a1

ρ1I
a1

ρ2I
a2

I
a2

]
.

(9.10)

Therefore
Q = HP . (9.11)

From (9.8) and (9.9) it is clear that H(1)
1 , H(1)

2 , H(2)
1 and H(2)

2 can be directly
calculated as u1, u2, y1 and y2 are known. In this chapter the least squares method
was used to calculateQ.

In order to calculate the impulse responses corresponding to the LTI blocks (i.e. H),
the only missing element now is P .

Theorem 2. Let us define the following matrix

P̃ =
[

I ρ̃1I
ρ̃2I I

]
,

with
ρ̃1 = β1ρ1,
ρ̃2 = β2ρ2.
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Here β1, β2 ∈ R with β1 6= 0 and β2 6= 0. β1 is the proportion between the actual
ρ1, which is unknown, and the chosen ρ̃1. Similarly, β2 is the proportion between the
actual ρ2 and the chosen ρ̃2.

Provided that ρ̃1ρ̃2 6= 1, matrix P̃ can be used in place of P in (9.11). From an
input-output perspective the response of the identified MIMO Hammerstein system is
then the same.

Proof.

P̃−1 = 1
1− β1β2ρ1ρ2

[
I −β1ρ1I

−β2ρ2I I

]
.

As Q is known and instead of the actual P only P̃ is available, from (9.11) an
approximation to the linear block Ĥ is found:

Ĥ = QP̃−1,

= HPP̃−1,

= H

[
k11I k12I
k21I k22I

]
,

= HK,

with

k11 = 1− β2ρ1ρ2

a1(1− β1β2ρ1ρ2) , k12 = (1− β1)ρ1

a1(1− β1β2ρ1ρ2) ,

k21 = (1− β2)ρ2

a2(1− β1β2ρ1ρ2) , k22 = 1− β1ρ1ρ2

a2(1− β1β2ρ1ρ2) .

Note that in the case that ρ1 = ρ̃1 and ρ2 = ρ̃2, then β1 = β2 = 1 and K =[ I
a1

0
0 I

a2

]
.

IfHK is used as an approximation to the linear part, all that is required for modeling
the system, from an input-output perspective, is that the intermediate variables x are
modified byK−1, this is:

y = HKK−1x.
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The only remaining consideration then is whetherK is actually invertible. ForK not
invertible:

k21k12 = k11k22

⇒ 1−β2ρ1ρ2
a1(1−β1β2ρ1ρ2)

1−β1ρ1ρ2
a2(1−β1β2ρ1ρ2) = (1−β1)ρ1

a1(1−β1β2ρ1ρ2)
(1−β2)ρ2

a2(1−β1β2ρ1ρ2)
⇒ 1− β2ρ1ρ2 − β1ρ1ρ2 + β1β2(ρ1ρ2)2 = (1− β1 − β2 + β1β2)ρ2ρ1
⇒ 1 + β1β2(ρ1ρ2)2 = ρ1ρ2 + β1β2ρ1ρ2
⇒ 1

ρ1ρ2
+ β1β2ρ1ρ2 = 1 + β1β2

⇒ 1
ρ1ρ2
− 1 = β1β2(1− ρ1ρ2)

⇒ 1−ρ1ρ2
ρ1ρ2(1−ρ1ρ2) = β1β2

⇒ 1
ρ1ρ2

= β1β2
⇒ 1 = ρ̃1ρ̃2.

It can be seen that the non-invertible case of K is always avoided as ρ̃1ρ̃2 6= 1 is
already a constraint for selecting ρ̃1 and ρ̃2.

The number of inputs determines the number of existing ρ (and ρ̃) variables in the
system. For a system with p inputs this number is p(p−1). In Theorem 2 it was shown,
for a system with 2 inputs and 2 outputs, that as long as ρ̃1ρ̃2 6= 1 the chosen values of
ρ̃1 and ρ̃2 will not affect the response of the identified MIMO Hammerstein system
from an input-output perspective. In order to guarantee a proper selection of the ρ̃
values in systems with more inputs, an equivalent restriction must be made, this is: The
chosen ρ̃i for i = 1, . . . , p(p− 1) must be such that det(P̃ ) 6= 0.

In Fig. 9.3 a graphical representation of the model to be found is presented.

9.3 Proposed Method

9.3.1 MIMO case

For illustrative purposes and without loss of generality we will show the case where the
system has two inputs u1, u2 ∈ RN , two intermediate variables x1, x2 ∈ RN and
two outputs y1, y2 ∈ RN (see Fig. 9.2). In Section 9.3.2 this will be extended to a
more general case with p inputs and r outputs.

In this system, the nonlinear part will be approximated by two separate expressions:
x̂1 = f̂1(u1,u2) and x̂2 = f̂2(u1,u2). Also the matrix Ĥ (i.e. see Theorem 2) will
approximate G(q) in the time domain and is composed by the approximation of the
impulse response of the LTI blocks that combine the intermediate variables into the
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Figure 9.3: The model to be estimated. Note that once Ĥ is calculated, F̂ can
compensate the difference between H and Ĥ . Here g11 = k22

k11k22−k12k21
, g12 =

− k12
k11k22−k12k21

, g21 = − k21
k11k22−k12k21

and g22 = k11
k11k22−k12k21

.

outputs.

Ĥ =
[
Ĥ11 Ĥ12
Ĥ21 Ĥ22

]
. (9.12)

With the elements above, we can derive an expression to incorporate the linear part into
the calculation of the whole model. Let us define

y =
[
y1
y2

]
∈ R2N ,

M1 =
[
Ĥ11
Ĥ21

]
∈ R2N×N ,

M2 =
[
Ĥ12
Ĥ22

]
∈ R2N×N ,

e =
[
e1
e2

]
∈ R2N ,

(9.13)

where e1 and e2 correspond to the errors associated to the outputs y1 and y2
respectively.

Now, let the cost function be defined as

min
w1,w2,b1,b2,e1,e2

J = 1
2w
>
1 w1 + 1

2w
>
2 w2 + γ1

2 e
>
1 e1 + γ2

2 e
>
2 e2

subject to y = M1
(
Φ>1 w1 + 1Nb1

)
+M2

(
Φ>2 w2 + 1Nb2

)
+ e.

(9.14)
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Here b1 and b2 are the bias terms for each nonlinear function (i.e. f̂1(u1,u2)
and f̂2(u1,u2)), Φ1 and Φ2 are the aggregation of columns ϕ1(xi) and ϕ2(xi)
respectively (i.e. the functions mapping the inputs to a higher dimensional feature
space) with i = 1, . . . , N ,w1 andw2 are the weight vectors of the nonlinear functions
and 1N is a column vector of ones with length N (the length of the data set).

From the Lagrangian

L(w1,w2, b1, b2, e1, e2,α) = 1
2w
>
1 w1 + 1

2w
>
2 w2 + γ1

2 e
>
1 e1 + γ2

2 e
>
2 e2

−α>
(
M1

(
Φ>1 w1 + 1Nb1

)
+M2

(
Φ>2 w2 + 1Nb2

)
+ e− y

) (9.15)

with α ∈ R2N the Lagrange multipliers, the optimality conditions are derived:

∂L
∂w1

= 0→ w1 = Φ1M
>
1 α

∂L
∂w2

= 0→ w2 = Φ2M
>
2 α

∂L
∂b1

= 0→ 0 = 1>NM>
1 α

∂L
∂b2

= 0→ 0 = 1>NM>
2 α

∂L
∂e = 0→ α = Γe
∂L
∂αi

= 0→ y = M1
(
Φ>1 w1 + 1Nb1

)
+M2

(
Φ>2 w2 + 1Nb2

)
+ e,

(9.16)
with Γ = diag

([
γ11>N , γ21>N

]>)
.

The last equation in (9.16) can be rewritten by replacing w1, w2 and e as

y = M1
(
Φ>1 Φ1M

>
1 α+ 1Nb1

)
+M2

(
Φ>2 Φ2M

>
2 α+ 1Nb2

)
+ Γ−1α. (9.17)

Note again that Mercer’s theorem can be used and therefore kernel functions Ω(1)
ij =

k1(utrain,i,utrain,j) and Ω(2)
ij = k2(utrain,i,utrain,j) represent the kernel matrices

Ω(1) and Ω(2) correspondingly. Note that this implies that Ω(1) = Φ>1 Φ1 and Ω(2) =
Φ>2 Φ2.

The following linear system is finally obtained 0 0 1>NM>
1

0 0 1>NM>
2

M11N M21N M1Ω(1)M>
1 +M2Ω(2)M>

2 + Γ−1

 b1
b2
α

 =

 0
0
y

 . (9.18)

The resulting model for a new input Unew ∈ RNn×p is then:

ŷ = M̄11Nb1 + M̄21Nb2 +
(
M̄1K

(1)M̆>
1 + M̄2K

(2)M̆>
2

)
α, (9.19)

with Utrain the set of inputs used to train the model, K(1)
ij = k1(utrain,i,unew,j)

and K(2)
ij = k2(utrain,i,unew,j) with i = 1, . . . , N , j = 1, . . . , Nn and therefore
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K(1),K(2) ∈ RN×Nn . M̄1,M̄2 ∈ R2Nn×N and M̆1,M̆2 ∈ R2N×Nn . Note
that if N 6= Nn then M1 and M2 have to be truncated or expanded to generate
M̄1,M̄2,M̆1,M̆2 and comply with the new dimensions. Given the way these matrices
are constructed, this should be straightforward.

9.3.2 General case

The method’s formulation can be extended to a p inputs and r outputs case easily
though the solution of such systems becomes computationally expensive very quickly
as the number of inputs and/or outputs increases. For this extension, the cost function
in (9.14) is rewritten leading to a rewritting of (9.18).

min
wi,bi,ej

J =
p∑
i=1

1
2w
>
i wi +

r∑
j=1

γj
2 e
>
j ej

subject to y =
p∑
i=1

Mi

(
Φ>i wi + 1Nbi

)
+ e.

(9.20)

Here

y =


y1
y2
...
yr

 , with yi ∈ RN and i = 1, . . . , r,

e =


e1
e2
...
er

 , with ei ∈ RN and i = 1, . . . , r.

(9.21)

Also let us defineMi ∈ RrN×N for i = 1, 2, . . . , p

Mi =


Ĥ1i
Ĥ2i

...
Ĥri

 . (9.22)

A matrixM ∈ RrN×p can then be defined such that

M = [M11N ,M21N , . . . ,Mp1N ] , (9.23)
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and a diagonal matrix Γ ∈ RrN×rN

Γ = diag
([
γ11>N , γ21>N , . . . , γr1>N

]>)
. (9.24)

Finally b ∈ Rp is defined as

b = [b1, b2, . . . , bp]> . (9.25)

The corresponding linear system is then[
0p×p M>

M Γ−1 +
∑p
i=1MiΩ(i)M>

i

] [
b
α

]
=
[

0p
y

]
. (9.26)

Note that for this system, p+ r parameters must be tuned if the RBF Gaussian kernel
is used (i.e. σ1, σ2, . . . , σp and γ1, γ2, . . . , γr). Also note that α,y ∈ RrN .

The resulting model for a new input Unew ∈ RNn×p is then:

ŷ = M̄b+
(

p∑
i=1

M̄iK
(i)M̆>

i

)
α, (9.27)

with Utrain ∈ RN×p the set of inputs used to train the model, K(i)
lj =

ki(utrain,l,unew,j) with ki(·, ·) the kernel functions with i = 1, . . . , p, l = 1, . . . , N
and j = 1, . . . , Nn and therefore K(i) ∈ RN×Nn . M̄i ∈ RrNn×N , M̄ =[
M̄11N ,M̄21N , . . . ,M̄p1N

]
and M̆i ∈ RrN×Nn . Again, note that if N 6= Nn

then the Mi matrices have to be truncated or expanded to generate M̄i,M̆i and
comply with the new dimensions.

In Algorithm 5 a summary of the proposed methodology is presented.

9.4 Simulation Results

9.4.1 Method steps

The proposed method was applied to three examples with two inputs and two outputs,
consisting of two nonlinear functions and four LTI blocks as illustrated in Fig. 9.2.
Note that in order to be able to compare between the results of different examples
the normalized mean absolute error (%MAE) is used as defined in Appendix D. The
corresponding nonlinear functions of Example 1 are given in (9.28) and plotted in
Fig. 9.4.

f1(u1, u2) = u3
1

10 + 0.9u2
2, (9.28a)
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Algorithm 5 Impulse Response Constrained LS-SVM for MIMO Hammerstein System
Identification.
Input: Multi-stage pseudo-random binary input signals for estimation of the linear

part ULP ∈ RN×p (i.e. p inputs signals of length N ) and their corresponding r
outputs yLP ∈ RrN . Training inputs for the LS-SVM Utrain ∈ RN×p and their
corresponding outputs ytrain ∈ RrN . Validation inputs Uval ∈ RN×p and their
corresponding outputs yval ∈ RrN . Test inputs Utest ∈ RN×p.

Output: Evaluation of the test output signal ytest ∈ RrN ;
1: Use ULP and yLP to estimate the matrixQ as shown in (9.8),(9.9) and (9.10).
2: Estimate Ĥ = QP̃−1 with P̃ as defined in Theorem 2.
3: Create matricesMi with i = 1, 2, . . . , p using Ĥ as shown in (9.22).
4: Use matricesMi to create matrixM as in (9.23).
5: Assemble a linear system like the one in (9.26) and using Utrain, ytrain, Uval

and yval proceed to tune the parameters σ1, σ2, . . . , σp and γ1, γ2, . . . , γr.
6: Obtain α and b from (9.26) using the estimated parameters.
7: Apply the found model to Utest to obtain ŷtest as in (9.27).
8: return ŷtest.

f2(u1, u2) = u2
1 + u2

2. (9.28b)

The transfer functions of Example 1 are presented in (9.29) and the magnitude of their
frequency response is shown in Fig. 9.5.

G11(q) = 0.9063
q − 0.8187 , (9.29a)

G12(q) = 1.572q + 1.323
q2 − 0.8828q + 0.6065 , (9.29b)

G21(q) = 0.1969q3 + 0.04616q2 − 0.5395q − 0.1147
q4 − 0.9768q3 + 0.1687q2 − 0.268q + 0.2019 , (9.29c)

G22(q) = 1.268q + 1.038
q2 − 1.452q + 0.5488 . (9.29d)

Initially, the procedure described in Section 9.2.2 is applied in order to obtain an
estimation of the impulse response of the different transfer functions. Note that as
described, the parameters in matrix P̃ are chosen arbitrarily and therefore the impulse
responses obtained do not match exactly with the original ones. However, this will not
impact the model from an input-output perspective as will be shown later. Once the
impulse responses are calculated, the matricesMi (i.e. see (9.22)) are created and the
system in (9.26) can be solved. In this work, for the tuning of the parameters (i.e. σ1,
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Figure 9.4: Nonlinear functions for Example 1. (Left) f1(u1, u2) and (Right)
f2(u1, u2).

σ2, γ1 and γ2) Coupled Simulated Annealing (CSA) was used (Xavier-de Souza et al.,
2009). In Fig. 9.6 and Fig. 9.7 the results for the estimations of y1 and y2 in Example

1 are shown respectively for a no-noise case and an arbitrary P̃ =
[

1 1
2 1

]
.

In Fig. 9.8 the resulting estimations of the impulse response are shown for different
values of P̃ where the main diagonals are always 1. In Table 9.1 the corresponding
values of ρ̃1 and ρ̃2 can be found together with the resulting %MAE in the test set. As
can be seen, the results are quite similar despite the fact that the LTI approximations
were different from the actual impulse response of the linear systems and among
themselves. This was to be expected as explained in Theorem 2.
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Figure 9.5: Magnitude of the frequency response of the LTI blocks for Example 1.
(Upper left) G11(q), (Upper right) G12(q), (Lower left) G21(q) and (Lower right)
G22(q).

Table 9.1: Different entry values for ρ̃1 and ρ̃2 and the resulting %MAE in the test set.

ρ̃1 ρ̃2 %MAE of y1 %MAE of y2
7 1 0.268060647 0.1360575
7 5 0.120215049 0.037695636
2 10 0.425032546 0.17183245
10 9 0.230242274 0.122064228
2 9 0.223370104 0.137673664
4 6 0.639722418 0.196497981
4 9 0.132787457 0.096275247
10 6 0.308935392 0.154759024
6 10 0.194847013 0.092984275
10 10 0.151705355 0.085846982
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Figure 9.6: Example 1, output 1 simulation results. (Up) Real output. (Center) Scatter
plot between the actual and the estimated output. (Bottom) Absolute value of the
difference between the actual and the estimated output.
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Figure 9.7: Example 1, output 2 simulation results. (Up) Real output. (Center) Scatter
plot between the actual and the estimated output. (Bottom) Absolute value of the
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Figure 9.8: Estimation of the impulse responses. The actual impulse response appears
in blue while the approximated impulse response used appears in red. The other colors
represent approximations obtained through the values of ρ̃1 and ρ̃2 presented in Table
9.1. (Upper left) G11(q), (Upper right) G12(q), (Lower left) G21(q) and (Lower right)
G22(q).
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Figure 9.9: Estimated nonlinear functions for Example 1. (Left) f̂1(u1, u2) and (Right)
f̂2(u1, u2)

It is interesting to note that from (9.19) the estimated nonlinear functions can be
retrieved by factorizing M̄1 and M̄2 such that

ŷ = M̄1

(
1Nb1 +

(
K(1)M̆>

1

)
α
)

+ M̄2

(
1Nb2 +

(
K(2)M̆>

2

)
α
)
,

= M̄1x̂1 + M̄2x̂2,

= M̄1f̂1(u1,u2) + M̄2f̂2(u1,u2).
(9.30)

For Example 1 the estimated nonlinear functions are presented in Fig. 9.9. Note that the
estimated nonlinear functions are linear combinations of the original ones as illustrated
in Fig. 9.3. When the cross terms are comparatively smaller than the corresponding
diagonal terms (i.e. g12 � g11 and g22 � g21), the estimated functions will be more
similar to the original ones.
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9.4.2 Signals description

The inputs used for the proposed method had N = 900 points. Note that as described
in Section 9.2.2 a special set of signals is used for the identification of the impulse
responses of the system. In this case pseudo random binary signals ranging between 0
and 1 were used with a 5% switching probability and consisting of 2N points. Upper
and lower limits for all inputs where set (i.e. u1,u2 ∈ [−4, 5]).

To generate the training set for the reformulated LS-SVM N is chosen such that√
N ∈ N. We select

√
N values between the upper an lower limits of u1 and u2 (i.e.

v
(1)
i and v(2)

i for i = 1, . . . ,
√
N ). An uniform distribution covering the whole range

is used (i.e. the difference between any pair of consecutive values is constant). To
guarantee that all the combinations of the selected values of u1 and u2 are considered,
the procedure is as follows:

• For each value v(1)
i create a vector of size

√
N where all the elements are v(1)

i .

• Randomly permute the order of the resulting vectors and concatenate them. This
constitutes u1 ∈ RN which is the first input of the training set.

• Randomly permute the order of the selected values v(2)
i to create a vector of size√

N .

• Repeat the last step
√
N times and concatenate the results. This constitutes

u2 ∈ RN which is the second input of the training set.

With this procedure it is guaranteed that all the possible combinations of v(1)
i and v(2)

i

are considered, see Fig. 9.10 for an illustration.

For the tuning of the parameters described in Section 9.3.1 validation was used where
the inputs where taken randomly from a uniform distribution between the upper and
lower bounds defined for the training set. In this case we opted for plain validation
and therefore used 10 validation sets, all of them generated in the same fashion. Note
however that this could be replaced with a cross-validation scheme. In a similar way, the
inputs of the test set were created by taking random values from a uniform distribution
between the upper and lower bounds defined for the training set.

9.4.3 Noise effect analysis

In Section 9.4.1 the proposed method was explored step by step through Example 1 and
to make the explanation more clear no noise was used. Nevertheless, for any method to
be useful for system identification it is expected to be robust against noise. To show
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Figure 9.10: Training set for the LS-SVM part.

how the proposed method behaves in the presence of noise, Examples 2 and 3 are
introduced and the results of 100 Monte Carlo simulations are offered for all examples
and for different levels of white Gaussian noise with zero mean. For these simulations,
signals as the ones described in Section 9.4.2 were employed.

For Example 2 the corresponding nonlinear functions are presented in (9.31) and
plotted Fig. 9.11.

f1(u1, u2) = u3
1

5 + sin(u2)u2
2, (9.31a)

f2(u1, u2) = 10 sin(u1) + u2
2. (9.31b)

The transfer functions of Example 2 are given in (9.32) and the magnitude of their
frequency response is shown in Fig. 9.12.

G11(q) = 100q3 + 300q2 + 300q + 100
q3 − 2.458q2 + 2.262q − 0.7654 , (9.32a)

G12(q) = 18000q2 − 32400q + 14400
q2 − 1.5q + 0.7225 , (9.32b)

G21(q) = 10000q4 − 1.884e04q3 + 2.506e04q2 − 1.884e04q + 1e04
q4 − 2.485q3 + 2.528q2 − 1.184q + 0.2245 , (9.32c)
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Figure 9.11: Nonlinear functions for Example 2. (Left) f1(u1,u2) and (Right)
f2(u1,u2).

G22(q) = 100q3 − 50.64q2 − 50.64q + 100
q3 − 2.564q2 + 2.218q − 0.6456 . (9.32d)

Functions including saturation or dead-zones are generally regarded as difficult to learn.
In Example 3 we include one of each of these functions. The corresponding nonlinear
functions are presented in (9.33) and plotted Fig. 9.13.

f1(u1, u2) =

 −2 for u1 < −2
u1 for − 2 ≤ u1 < 2
2 for u1 ≥ 2

, (9.33a)

f2(u1, u2) =

 u2 − 1.2 for u2 > 1.2
0 for − 1.2 ≤ u2 ≤ 1.2
u2 + 1.2 for u2 < −1.2

. (9.33b)

The transfer functions of Example 3 are given in (9.34) and the magnitude of their
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Figure 9.12: Magnitude of the frequency response of the LTI blocks for Example
2. (Upper left) G11(q), (Upper right) G12(q), (Lower left) G21(q) and (Lower right)
G22(q).

frequency response is shown in Fig. 9.14.

G11(q) = 1.857
q − 0.8607 , (9.34a)

G12(q) = 0.001429q2 + 0.004898q + 0.001048
q3 − 2.44q2 + 1.984q − 0.5379 , (9.34b)

G21(q) = −0.3612q2 + 0.1623q + 0.3408
q3 − 1.954q2 + 1.627q − 0.5543 , (9.34c)

G22(q) = 0.4599q + 0.4245
q2 − 1.731q + 0.7866 . (9.34d)

The results for all examples with different levels of noise are presented in Figures 9.15
and 9.16. In Table 9.2 the resulting medians are offered to summarize the results.
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Figure 9.13: Nonlinear functions for Example 3. (Left) f1(u1, u2) and (Right)
f2(u1, u2).

Table 9.2: %MAE Comparison for the proposed method. Median values are offered
for 100 Monte Carlo simulations for each case.

Example 1 Example 2 Example 3
y1 y2 y1 y2 y1 y2

SNR 10dB 3.8499 3.3225 4.8041 6.4876 3.7755 2.2042
SNR 20dB 1.2885 1.0098 3.235 5.7129 1.3033 1.095
SNR InfdB 0.086366 0.032617 0.028782 0.0069262 0.33918 0.77252
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Figure 9.14: Magnitude of the frequency response of the LTI blocks for Example
3. (Upper left) G11(q), (Upper right) G12(q), (Lower left) G21(q) and (Lower right)
G22(q).

9.4.4 Methods comparison

The proposed method, from now on referred to as IR-H-LS-SVM, is compared with 3
other methods for MIMO Hammerstein system identification, namely:

• NARX LS-SVM (Suykens et al., 2002).

• The method in Jeng and Huang (2008) where an approximation to the input
response of the system is obtained and with it and the known output an estimation
of the intermediate variable is found. Using this approximation and the known
input, a mapping of the nonlinearity is done through the fitting of a polynomial.
From now on, this method will be referred to as IR H-MIMO.

• Using orthonormal bases for the identification of block-oriented nonlinear
systems is proposed in Gomez and Baeyens (2004). This method will be referred
to as ONBF.

The NARX LS-SVM approach is not a method specifically developed for the
identification of MIMO Hammerstein Systems. However, it is still relevant in this
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Figure 9.15: Monte Carlo simulation of the proposed method. Output 1 for Examples 1
(Left), 2 (Center) and 3 (Right).
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Figure 9.16: Monte Carlo simulation of the proposed method. Output 2 for Examples 1
(Left), 2 (Center) and 3 (Right).



SIMULATION RESULTS 171

Chapter as it allows to see how the LS-SVM framework, though powerful by itself,
can be improved by including additional information from the structure of the system.
The training set was generated under the same guidelines as those described in Section
9.4.2 with the exception of the number of points as in this case N = 2500. For the
hyper parameter tuning a 10 fold cross validation scheme was used. Also, a preliminary
Monte Carlo experiment was carried out to determine the optimal number of input and
output lags to be used for each example. During these experiments input and output
lags from 4 to 10 were tested. For Example 1, 4 lags of input and 4 lags of output
were selected. For Example 2, 10 lags of input and 10 lags of output were chosen. For
Example 3, 9 lags of input and 9 lags of output were used.

For the IR H-MIMO method, PRBS of 800 samples were created in order to identify
the linear part. These signals followed the same guidelines described in Section 9.2.2,
that is: In a first stage u1 was a PRBS and u2 was kept at 0. Then, in a second stage u1
was 0 and u2 was a PRBS. After the impulse responses were estimated, the nonlinear
part was modeled. To do this, signals of 980 points were used of which the last 80
where included to make the corresponding linear system overdetermined. The initial
900 points where generated guaranteeing that all combinations of 30 points drawn
from a uniform distribution between −5 and 5 were included. With these signals the
nonlinearities were estimated by fitting two-dimensional polynomials with degrees 3, 7
and 9 for Examples 1, 2 and 3 respectively.

For the ONBF method, polynomial basis functions were used for identifying the
nonlinearity: For Example 1 until degree 3, for Example 2 until degree 5 and for
Example 3 until degree 7. Empirically, it was found that the use of simpler basis
functions yielded better results for the modeling of the linear part and in consequence
q−n was used. For Example 1 the number of bases used was 10 and for Examples 2
and 3 it was 40. These values were set by trial and error and were the ones that offered
a good trade-off between complexity and accuracy. For Example 1 1600 data points
were used and for Examples 2 and 3 3600 were employed.

The results are summarized in Table 9.3. For ease of comparison, the results from
Table 9.2 are included again. The best results for each case are in bold case.

As can be seen the proposed method performs quite well when compared with the other
methods considered. It is the best in 12 out of the 18 cases analyzed and in general
has a very good and stable performance. By this, it is meant that comparatively good
results are obtained in all cases. Also, it can be seen that the proposed method is robust
against the type of noise employed, this is particularly evident for the SNR = 10dB
case where our method performs better than the others.

Note that the class model of the nonlinear part of Example 1 is polynomial which
makes its identification much easier for methods using polynomial bases (as is the case
for IR H-MIMO and ONBF). However, representing the nonlinear parts of Examples 2
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Table 9.3: %MAE Comparison for the different methods tested. Median values are
offered for 100 Monte Carlo simulations for each case.

Example 1 Example 2 Example 3
y1 y2 y1 y2 y1 y2

SNR 10dB

IR H-LS-SVM 3.8499 3.3225 4.8041 6.4876 3.7755 2.2042
NARX LS-SVM 8.6475 10.5307 12.3816 9.9141 5.3544 3.2651

IR H-MIMO 6.6443 4.9827 15.5643 20.2475 9.0841 21.1168
ONBF 4.529 4.6303 2.954 6.8069 4.587 13.883

SNR 20dB

IR H-LS-SVM 1.2885 1.0098 3.235 5.7129 1.3033 1.095
NARX LS-SVM 5.2555 5.5722 13.119 6.3674 3.9329 2.319

IR H-MIMO 2.2933 2.9713 3.1664 7.2392 3.2163 6.6558
ONBF 2.8237 1.6546 1.5856 4.3417 4.0638 6.0554

SNR InfdB

IR H-LS-SVM 0.086366 0.032617 0.028782 0.0069262 0.33918 0.77252
NARX LS-SVM 3.9083 2.9626 14.9459 7.743 2.7757 1.0772

IR H-MIMO 1.8149 × 10−6 2.3505 × 10−7 0.23985 0.98531 0.51268 0.43857
ONBF 0.98313 0.9845 1.3339 3.8984 0.9663 1.3401

and 3 using polynomial basis functions can be more difficult as they do not belong to
the class problem anymore. However, this is not a problem for the proposed method
which does not require previous knowledge about the class problem.

Finally, note that if the cross-validation methodology were employed, the proposed
method would be the one using the least number of points as no validation sets would
be required.

9.5 Conclusions

In this chapter a new methodology for identifying MIMO Hammerstein Systems
is presented where the impulse response of the system is incorporated into an LS-
SVM formulation. This means that the model found benefits from the regularization
capabilities of LS-SVM. It is shown that the proposed method is robust against the type
of noise employed as even in the presence of high levels of noise it has a comparatively
good performance, in fact, for the examples presented it performed better than the other
methods considered.

The method proposed is very flexible with regard to the number of inputs and outputs it
can handle and it is shown that it can model both SISO and MIMO systems. In addition,
it has very good generalization capabilities and can work with different classes of
problem. This constitutes a nice advantage when the class of problem is unknown
or is difficult to model with certain basis functions. It is interesting to note that even
though P̃ is chosen arbitrarily the results are largely unchanged. This allows for certain
flexibility when modeling the system.
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Information from the structure of the system is included into the LS-SVM formulation
allowing for an improvement of the modeling capabilities of LS-SVM for this type of
systems. Nevertheless, the model is still obtained from a linear system of equations
which represents an advantage.
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Additional Kernel Methods
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In this part two works related to Machine Learning are presented. Both of them are of
a general nature but can be specifically applied to system identification problems.

In Chapter 10 two methods are offered which allow a tradeoff between complexity
and accuracy. It is shown there that with a small loss in accuracy, the complexity of
the models can be greatly reduced. To do this, different versions of Fixed-Size Kernel
models based on Fixed-Size Least Squares Support Vector Machines (FS-LSSVM)
are employed. This chapter is based on the work presented in Castro, Mehrkanoon,
Marconato, Schoukens, and Suykens (2014).

In Chapter 11 two new methods for extending the LS-SVM formulation to problems
including dynamics are presented. In the first of these methods the frequency spectrum
is divided into bands and a model focusing on each of such bands is estimated.
Afterward all of these models are merged together. In the second one the procedure is
similar, however, only a part of the spectrum is considered in this way. To complete
the frequency spectrum, NARX LSSVM is used. These new methods are thoroughly
compared with NARX-LSSVM in the context of real life data sets. This chapter is
based on the work in Castro-Garcia, Tiels, and Suykens (2017).



Chapter 10

SVD truncation schemes for
fixed-size kernel models

10.1 Introduction

When evaluating modeling techniques several performance criteria can be used.
Normally, performance based on an error cost function is evaluated on a test set
as this illustrates the generalization performance of the model. However, there might
be other desirable characteristics of the models. For instance, where control is the goal
of the identified model, a low complexity is also desirable by itself besides a good
generalization capacity (Marconato, Schoukens, Rolain, & Schoukens, 2013).

For assessing the generalization performance of trained models without the use of
validation data, various criteria have been developed. Such criteria take the general
form of a prediction error (PE) which consists of the sum of two terms, namely PE =
training error + complexity term. The complexity term represents a penalty growing
with the number of free parameters in the model. Clearly, when the model is too simple
it will be penalized by the residual error, but if it is too complex, it will be penalized
by the complexity term. The minimum value for the criterion is given by a trade-off
between the two terms (Bishop, 1995).

In Moody (1991) Moody generalized such criteria to deal with non-linear models and

This chapter is based on:
Castro, R., Mehrkanoon, S., Marconato, A., Schoukens, J., Suykens, J. (2014). SVD truncation schemes for
fixed-size kernel models. In proceedings of the International Joint Conference on Neural Networks. IJCNN
2014. Beijing, China, Jun. 2014 (pp. 3922-3929).
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to allow for the presence of a regularization term through the generalized prediction
error which includes the effective number of parameters. Other approaches, like the
one presented by Vapnik and Chervonenkis in V. N. Vapnik (1998) proposed an upper
bound on the generalization error with a complexity term depending on the Vapnik-
Chervonenkis dimension. Several other different theories with different notions of
model complexity have been proposed in literature.

It is well-known that when applying regularization, instead of the number of parameters,
the effective number of parameters is a more suitable notion then for model complexity.
Also within support vector machines and kernel-based models the use of regularization
is common (Suykens et al., 2002). Within the context of this chapter we will consider
different versions of fixed-size kernel models related to fixed-size least squares support
vector machines (Suykens et al., 2002). We will consider the Effective Degrees of
Freedom (EDF), which are characterized by the trace of the hat matrix, as the notion
for model complexity. The studied fixed-size kernel models relate to applying ordinary
least squares and ridge regression in the primal, after obtaining a Nyström approximated
feature map based on a selected subset of the given data. The resulting kernel models
are sparse and the terminology of support vectors is used here for the Rényi based
selected subset of prototype vectors. The size of the subset controls the degree of
sparsity of the fixed-size kernel model.

Through this work, SVD truncation schemes for the fixed-size kernel models are
investigated. It will be illustrated that even though these truncation schemes are
not suited to further improve the generalization performance, the effective degrees
of freedom can be greatly reduced. This realizes a reduction of the complexity of
the resulting models and in this way, the resulting model can keep a fairly good
generalization performance while at the same time getting a reduced complexity.

This chapter is organized as follows: In section 10.2, the SVD truncation schemes
employed are presented and the concept of effective degrees of freedom is explained.
Also, some practical considerations for the implementation done are exposed. In section
10.3 the Silverbox and Wiener-Hammerstein data sets are presented and the results
found for the application of SVD truncation schemes are illustrated. These results are
discussed on section 10.4. Finally, in section 10.5 the conclusions are given.

10.2 SVD truncation schemes

In Appendix B a review of Fixed Size LS-SVM is presented including the estimation of
the feature map ϕ̂. In Appendix C the EDF concept for LS-SVM is introduced as well.

Once ϕ̂ is calculated, the model in primal form is computed according to the techniques
described in this section. The particular studied estimation techniques are introduced
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in the present section as well as the effective degrees of freedom (EDF) for Fixed-Size
Ordinary Least Squares (FS-OLS) and Fixed-Size Ridge Regression (FS-RR).

10.2.1 FS-OLS with truncation

After obtaining the optimal M subsample values through Quadratic Rényi Entropy (see
Appendix B), the training points are projected into the feature space. This projection
depends on the dimensionality given by the number of support vectors selected by the
user (i.e. M )

Φ̂ = [ϕ̂(x1), ..., ϕ̂(xNtrain)]> (10.1)

withXtrain = [x1, ...,xNtrain ]. From this, matrixQ is defined:

Q = Φ̂>Φ̂. (10.2)

The Q matrix can be decomposed through SVD resulting in Q = USV >. Given
thatQ is a positive semi-definite matrix andQ = Φ̂>Φ̂ = USV > with UU> = I ,
V V > = I and S a diagonal matrix with positive diagonal elements, one has Q =
USV > = USU> = V SV >.

After decomposing Q, the less relevant singular values from S are discarded
successively and the reconstructedQ matrix Q̂ = UŜV > is used in the validation set
to determine the best truncation (i.e. how many singular values are discarded).

The FS-OLS model estimate with truncation becomes then:

wOLStrun =
(
UŜV >

)−1
Φ̂>ytrain. (10.3)

Similarly to equation (10.1):

Φ̂val =
[
ϕ̂(xval1 ), ..., ϕ̂(xvalNval

)
]>

(10.4)

withXval = [xval1 , ...,xvalNval
]. Therefore:

ŷvalOLS,trun = Φ̂valwOLStrun . (10.5)

Once the best truncation is found, the system is applied to the test set:

ŷtestOLS,trun = Φ̂testwOLStrun . (10.6)

Here, Φ̂test is defined as:

Φ̂test =
[
ϕ̂(xtest1 ), ..., ϕ̂(xtestNtest)

]>
(10.7)

withXtest = [xtest1 , ...,xtestNtest
].
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10.2.2 FS-RR with truncation

For ridge regression, Φ̂, Φ̂val, Φ̂test andQ are calculated in the same way as described
in the FS-OLS method. However, the formulation changes as follows:

wRR =
(
Φ̂>Φ̂ + λI

)−1
Φ̂>ytrain

= (Q+ λI)−1 Φ̂>ytrain
(10.8)

where λ is the regularization parameter. Truncation of this solution becomes:

wRRtrun = (UŜU> + λUU>)−1Φ̂>ytrain
= U

(
Ŝ + λI

)−1
U>Φ̂>ytrain.

(10.9)

Once again, the most appropriate λ value is determined by the validation set (i.e.
through linesearch) and finally, the resulting model is tested on the test set:

ŷvalRR,trun = Φ̂valwRRtrun (10.10)

and
ŷtestRR,trun = Φ̂testwRRtrun . (10.11)

For truncation, the same procedure is used as in FS-OLS, however, besides looking
for the best λ value, also the best truncation is looked for. This results in a gridsearch
approach.

10.2.3 SVD truncation as regularization

It is interesting to note that the truncation of the SVD can be seen as a regularization
procedure by itself. To see this, first consider

wRR = (Φ̂>Φ̂ + λI)−1Φ̂>ytrain = Mytrain. (10.12)

WithM = V ΣMU
>,

ΣM = diag
(

σ1

σ2
1 + λ

, . . . ,
σN

σ2
N + λ

)
. (10.13)

The regularization process can be seen then as a filtering of the contributions from the
smallest singular values to the solution. This can further be seen then as a rewriting of
the ith element of ΣM as the corresponding element of the original S matrix times a
factor fi (Hansen, 1990).
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In the case of the truncation of the SVD, where the last singular value considered is σk:

fi =
{

1 for σi ≥ σk
0 for σi < σk

. (10.14)

Clearly, this corresponds to a sharp filter that cuts off the last N − k singular values.

In the case of regularization the filter becomes instead

fi = σ2
i

σ2
i + λ

, for i = 1, . . . , N, (10.15)

which in turn corresponds to a smooth filter dampening the components corresponding
to σi < λ. This means then

wRR =
N∑
i=1

σ2
i

σ2
i + λ

u>(i)yTrain

σi
v(i), (10.16)

with u(i) and v(i) the ith columns of U and V respectively.

Interestingly, if k is such that σk = λ, the sharp filter of the SVD truncation can be
seen as an approximation to the smooth filter of the regularization.

10.2.4 Effective degrees of freedom

The hat matrix (see Appendix C), from where the effective degrees of freedom can be
estimated (De Brabanter, De Brabanter, Suykens, & De Moor, 2011a), becomes for
OLS:

HOLS = Φ̂(Φ̂>Φ̂)−1Φ̂>
HOLStrun = Φ̂(UŜ−1V >)Φ̂>.

(10.17)

Similarly, for Ridge Regression and its truncated version:

HRR = Φ̂(Φ̂>Φ̂ + λI)−1Φ̂>
HRRtrun = Φ̂U(Ŝ + λI)−1U>Φ̂>.

(10.18)

10.3 Experimental results

In FS-LSSVM it is necessary to specify a subset of M input points to represent the
data set reasonably well. For this purpose, the quadratic Rényi entropy is used and
an approximation to the feature map is calculated as explained in Appendix B. A
gridsearch approach is used then to tune the values of the tuning parameters λ and σ.
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The parameters are selected in accordance with the results obtained from evaluating the
resulting model on the validation set. The chosen model is finally used on the test set.

Note that the structure of the model will be that of a nonlinear autoregressive model
with exogenous input (NARX), where the model relates the current value of a time
series with past values of the same series and current and past values of the driving
(exogenous) series. A NARX model can be expressed as follows:

ŷt = f(yt−1, yt−2, . . . , yt−p, ut, ut−1, ut−2, . . . , ut−p) (10.19)

where f(·) is some nonlinear function and ŷt is the estimated value of y. Here y is the
variable of interest, u is the external input and p is the number of lags used determining
how many past u and y values are included to calculate ŷ.

In this section, the results obtained by applying the techniques presented in this chapter,
under the one-step ahead framework, are presented. Also, a description of the data sets
used is offered.

10.3.1 Silverbox data set

The Silverbox data set was introduced in J. Schoukens, Nemeth, Crama, Rolain, and
Pintelon (2003). This data set represents an electrical circuit simulating a mass-spring
damper system. It is a nonlinear dynamic system with feedback exposing a dominant
linear behavior (Espinoza et al., 2004).

In Figure 10.1, the inputs and outputs of the system are depicted. The data set consists
of 131072 data points and was split evenly between test, validation and training sets.

10.3.2 Wiener-Hammerstein data set

The concatenation of two linear systems with a static nonlinearity in between constitutes
an important special class of nonlinear systems known as a Wiener-Hammerstein system
(Giri & Bai, 2010).

The Wiener-Hammerstein data set1 was introduced in J. Schoukens et al. (2009).
The system modelled is an electronic nonlinear system with a Wiener-Hammerstein
structure as shown in Figure 10.2. There, G1 is a third order Chebyshev filter, G2 is a
third order inverse Chebyshev filter and the static nonlinearity is built using a diode
circuit. The measured input and output of the circuit are as shown on Figure 10.3. The
data set consists of 188000 data points and was split evenly between test, validation
and training sets.

1http://tc.ifac-control.org/1/1/Data%20Repository/sysid-2009-wiener-hammerstein-benchmark
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Figure 10.1: Silverbox benchmark data set

Figure 10.2: Taken from J. Schoukens et al. (2009). Wiener-Hammerstein system
consisting of a linear dynamic block G1, a static non-linear block f(·) and a linear
dynamic block G2

10.3.3 Truncation and generalization performance

When the systems described in Section 10.2 are subjected to truncation, the general
result obtained on the data sets used in this work is that the generalization performance
decreases. This implies that if only the generalization performance is considered, the
models should either remain unchanged or the truncation should be very minor in
order to avoid the decrease in generalization performance. However, if a compromise
between generalization performance and complexity is allowed, the situation changes
dramatically. This can be seen in Figures 10.4 and 10.5 where a 10% in decreased
generalization performance is allowed (i.e. the best generalization performance value
is multiplied by 1.1 and this value is used as a tolerance threshold).
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Figure 10.3: Wiener-Hammerstein benchmark data set

Figure 10.4: Test set performance vs. Number of support vectors on the Silverbox
benchmark data set. At each point the relation between the number of singular values
truncated and the total number of singular values is displayed.
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Figure 10.5: Test set performance vs. Number of support vectors on the Wiener-
Hammerstein benchmark data set. At each point the relation between the number of
singular values truncated and the total number of singular values is displayed.

In Figures 10.6 and 10.7 the resulting selection (i.e. with the 10% threshold) is
represented by the diamond shaped markers. As can be seen, the more support values
the system uses, the greater the reduction of singular values that can be achieved.

Figure 10.6: Compromise of up to 10% of test set performance for reduced complexity
in the Silverbox benchmark data set. Horizontal axis represents the number of Singular
Values eliminated. Vertical axis represents the test performance (log10(RMSE)).
(Left) FS-RR. (Rigth) FS-OLS.

Note that this holds for both data sets and for both FS-OLS and FS-RR methods. This
behavior already suggests that the effective degrees of freedom can be greatly reduced
if a small compromise of the generalization performance is allowed. This idea will be
developed in section 10.3.4.
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Figure 10.7: Compromise of up to 10% of test set performance for reduced complexity
in the Wiener-Hammerstein benchmark data set. Horizontal axis represents the
number of Singular Values eliminated. Vertical axis represents the test performance
(log10(RMSE)). (Left) FS-RR. (Rigth) FS-OLS.

10.3.4 Effective number of parameters

The definitions in section 10.2.4 allow the representation of the effective degrees of
freedom (given the different possible truncations) versus the generalization performance
of the model. Figures 10.8 and 10.9 illustrate these results. Note that in this case, not
only a good generalization performance is desired, but also a model with a reduced
complexity. A compromise between both of them must be achieved. The lines suggest
a possibly good choice for this compromise. To draw these lines, the axes are rescaled
so they have the same scale and the point with the minimum combined distance to
the vertical axis and the lowest error in the rescaled axes is chosen. The rescaling is
done to give the same relevance to both axes. The line is then drawn with the axes
in their original scale and the graphs show that in these cases, it is possible indeed to
greatly reduce the effective degrees of freedom without much loss of generalization
performance.

10.4 Discussion

It has been shown in section 10.3.3 that when applying SVD truncation schemes for
Fixed-Size kernel models, in principle a significant reduction of support vectors is not
to be expected if the generalization performance is to be maximized. However, if a
trade-off between generalization performance and complexity is allowed, a significant
truncation of the singular values of theQ matrix can be made. Furthermore, it has been
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Figure 10.8: Test set performance vs EDF on the Silverbox benchmark data set for
different fixed sizes. Horizontal axes represent the number of remaining effective
degrees of freedom after truncation (i.e. tr(H)). The vertical axes represent the test set
performance (log10(RMSE)). (Left) FS-RR. (Rigth) FS-OLS.

Figure 10.9: Test set performance vs EDF for RR on the Wiener-Hammerstein
benchmark data set for different fixed sizes. Horizontal axes represent the number of
remaining effective degrees of freedom after truncation (i.e. tr(H)). The vertical axes
represent the test set performance (log10(RMSE)). (Left) FS-RR. (Rigth) FS-OLS.
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shown that the complexity of the system, in terms of the effective degrees of freedom,
can be greatly reduced through singular value truncation without a big impact on the
generalization performance.

The results presented are relevant as they demonstrate that when employing Fixed-
Size kernel models, it is possible to obtain models with highly reduced complexity
when SVD truncation schemes are applied. However, those models will have a small
reduction on generalization performance. This is desirable when the identified model
is used e.g. for control purposes and when parsimonious models are preferred (Ljung,
1999; Marconato et al., 2013).

These findings are in line with Marconato et al. (2013), Moody (1991) and Spiegelhalter,
Best, Carlin, and Van Der Linde (2002) as they illustrate that indeed the effective
degrees of freedom for a Fixed-Size kernel model can greatly differ from the number
of parameters of the system. In other words, the effective degrees of freedom can be
much smaller than the number of support vectors in the Fixed-Size models.

10.5 Conclusions

In this chapter we have considered different truncation schemes for fixed-size Kernel
models based on SVD. It has been shown that if a compromise between generalization
performance and complexity is allowed, the effective degrees of freedom of the
underlying system can be greatly reduced on Fixed-Size kernel models without much
loss of generalization performance.

FS-OLS and FS-RR methods have shown to very efficiently reduce the effective degrees
of freedom of Fixed-Size kernel models under an SVD truncation scheme. In fact, the
methods presented have been successfully applied on two well-known benchmark data
sets in system identification: the Wiener-Hammerstein and Silverbox data sets where
similar and consistent results were obtained. Possible future work may explore related
methods for other possible model structures.



Chapter 11

Frequency Division Least
Squares Support Vector
Machines

11.1 Introduction

A frequency-domain formulation of LS-SVM is presented in Lataire, Piga, and Tóth
(2014) and Lataire, Pintelon, Piga, and Tóth (2017). In these works the focus is
on estimating discrete-time and continuous-time linear time-varying (LTV) systems,
respectively. The frequency-domain formulation can deal with stationary correlated
(over time) noise, since stationary noise is not correlated over the frequency. Also, the
frequency-domain formulation has the added advantage that it is easy to focus on a
frequency band of interest (Lataire et al., 2017).

The methods proposed in this chapter introduce a frequency-domain weighting in a
time-domain formulation of LS-SVM for the estimation of nonlinear systems using
a NARX model structure. Since the transformation from the time domain to the
frequency domain is a linear orthonormal transformation given by the DFT matrix, the
proposed method fits in the setting of weighted LS-SVM (Suykens et al., 2002), with a
particular choice for the weights. However, an initial estimation of the weights using
an unweighted LS-SVM is not needed as they follow from the selection of a frequency

This chapter is based on:
Castro-Garcia, R., Tiels, K., Suykens, J. A. K. (2017). Frequency Division LS-SVM for Nonlinear Modeling.
In Internal report 17-24, ESAT-SISTA, KU Leuven (Leuven, Belgium).
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band of interest. Moreover, the computational efficiency of LS-SVM is maintained due
to the linear orthonormal transformation to go from the time to the frequency domain.

The proposed method is illustrated on several datasets from DaISy (De Moor,
De Gersem, De Schutter, & Favoreel, 1997), which is a collection of datasets for
the identification of systems. For each dataset, the output spectrum is divided in a
number of frequency bands using the frequency weighting. An LS-SVM model is
trained for each particular frequency band and the overall model is obtained as the sum
of the individual models. This technique can be seen as a local nonlinear modeling
where each local model takes care of a certain frequency band. As such, the method is
different from local modeling approaches as in (Münker & Nelles, 2016) where local
FIR or ARX linear models are constructed and combined using validity functions.

Applications where data are split over several frequency bands and a specific LS-SVM
classification model is trained based on the best suited frequency band are reported in
Jiang, Liu, and He (2012) and Xie, Wang, and He (2014). A similar approach, but with
a regression goal in mind, is reported in Li, Xie, He, Qiu, and Zhang (2012).

This chapter is organized as follows: In Section 11.2 the proposed methods are
presented. Section 11.3 illustrates the results found when applying the described
methodology to several real life and simulation examples. Finally, in Section 11.4, the
conclusions are presented.

11.2 Proposed methods

Two methodologies are proposed that allow a better performance than the standard
NARX LS-SVM. In particular, these methods are well suited to deal with nonlinear
dynamical systems which usually pose a difficult modeling problem.

11.2.1 Frequency Division LSSVM

As explained in Section 1.7.1, the framework of LS-SVM is given by a primal-dual
formulation. For the methods proposed in this chapter that framework is kept. Given
the data set {x(t), y(t)}Nt=1, the objective is to find a model

ŷ(t) = w>ϕ(z(t)) + b (11.1)

where z(t) = [y(t − 1), y(t − 2), . . . , y(t − ra),x>(t),x>(t − 1), . . . ,x>(t − rb)]
with zk ∈ Rra+n(rb+1), w is a weight vector, x(t − i) ∈ Rn with i = 0, . . . , rb are
the present and past inputs, y(t− i) ∈ R, with i = 1, . . . , ra are the past outputs and
ŷ(t) ∈ R denotes the estimated current output. Also, ϕ(·) : Rra+n(rb+1) → Rnh is
the feature map to a high dimensional (possibly infinite) space and b is the bias term.
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It is possible to formulate an optimization problem where emphasis is given specifically
to a frequency band. To do this let us define a discrete Fourier transform matrix as

A = 1√
N



1 1 1 · · · 1
1 e−

2πj
N e−

4πj
N · · · e−

2(N−1)πj
N

1 e−
4πj
N e−

8πj
N · · · e−

4πj
N

...
...

...
. . .

...

1 e−
2(N−1)πj

N e−
4(N−1)πj

N · · · e−
2(N−1)2πj

N

 , (11.2)

with j =
√
−1.

This means that it is possible to retrieve a representation of the error vector e (i.e. see
(1.29)) in the frequency domain as

F(e) = Ae, (11.3)

where the Fourier transform operator F is such that F(x(t)) = X(k) and
F−1(X(k)) = x(t)1.

Given that the intention is to focus only on one specific frequency band, a diagonal
matrix P is created. For an emphasis in the frequency band between frequencies fA
and fB , P will have a diagonal p of the form

p =


p1
p2
p3
p3
p2
p1

 , (11.4)

with p1 = 0n1 , p2 = 1n2 and p3 = 0n3 . Here n1 represents the number of bins
between 0Hz and fA, n2 those between fA and fB and n3 those between fB and fs

2
with fs the sampling frequency. Fig. 11.1 illustrates an example of the diagonal of P .

An optimization problem is then formulated:

min
w,b,e

1
2w
>w + γ

2e
>e+ η

2e
>A>PAe

subject to y = Φ>w + 1Nb+ e,
(11.5)

where γ and η are regularization parameters, Φ = [ϕ(z1), ϕ(z2), . . . , ϕ(zN )] ∈
Rnh×N and ϕ(·) : Rra+n(rb+1) → Rnh . Note that the term η

2e
>A>PAe will force

the model to specially focus in the frequency band defined by P . Also, note that
1In this work it is assumed that F(x(t)) ∈ C and F−1(X(k)) ∈ R
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Figure 11.1: Example of the diagonal of matrix P used to emphaize a frequency band
between fA and fB .

the term γ
2e
>e could be replaced by γ

2e
>Ψe where Ψ would be a weighting matrix.

However, for the remaining of this chapter we will have Ψ = I . Finally, we will
assume that the termA>PA ∈ R.

Through the use of Mercer’s theorem (Mercer, 1909), the entries of the kernel matrix
can be represented by Ωi,j = ϕ(xi)>ϕ(xj) = k(xi,xj) with i, j = 1, ..., N (and
therefore Ω ∈ RN×N ). The function ϕ(·) does not have to be explicitly known
then as it is used implicitly through the positive definite kernel function. In this
chapter, the radial basis function kernel (RBF kernel) is used i.e. k(xi,xj) =
exp(−‖xi − xj‖22 /σ

2) where σ is the kernel parameter.

The Lagrangian is then formulated

L(w, b, e;α) = 1
2w
>w + γ

2e
>e+ η

2e
>A>PAe

−α>(Φ>w + 1Nb+ e− y),
(11.6)

with α ∈ RN the Lagrange multipliers. The optimality conditions for this formulation
are then:
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∂L
∂w = 0 → w = Φα
∂L
∂b = 0 → 1>Nα = 0
∂L
∂e = 0 → 0 = γe> + ηe>A>PA−α>

α> = e>(INγ + ηA>PA)
e = ((γIN + ηA>PA)−1)>α

∂L
∂αi

= 0 → y = Φ>w + 1Nb+ e.

(11.7)

By elimination of w and e the last equation in 11.7 can be rewriten as

y = Φ>Φα+ 1Nb+ ((γIN + ηA>PA)−1)>α. (11.8)

The following linear system is then obtained[
0 1>N
1N Ω + (γIN + ηA>PA)−1

] [
b
α

]
=
[

0
y

]
, (11.9)

and the resulting model for a new set is

ŷnew = Φ>Neww + 1Nnewb,
= Φ>NewΦα+ 1Nnewb,
= Kα+ 1Nnewb,

(11.10)

with ΦNew = [ϕ(znew,1), ϕ(znew,2), . . . , ϕ(znew,Nnew)] ∈ Rnh×Nnew , Nnew the
number of points of the new data set and K ∈ RNnew×N with Kij = k(znew,i, zj)
and i = 1, . . . , Nnew, j = 1, . . . , N .

It is interesting to note that the application of the model is exactly of the same form as
that of a standard LS-SVM. Furthermore, the model obtained in 11.9 is very similar
to the standard one (i.e. see (1.32)). For instance if P = IN , given that A is an
orthogonal matrix, the resulting linear system would be[

0 1>N
1N Ω + ((γIN + ηIN )−1)>

] [
b
α

]
=
[

0
y

]
(11.11)

and therefore [
0 1>N
1N Ω + IN

γ+η

] [
b
α

]
=
[

0
y

]
, (11.12)

which is equivalent to the model in (1.32). This shows that for the method to work it
is necessary that the frequency band considered is smaller than the whole frequency
spectrum considered (i.e. from 0Hz to fs). Otherwise, the model found will be
equivalent to the NARX LSSVM method.

With the method presented so far, we can obtain a model capable of focusing in a
particular frequency band given by P . However, the procedure can be repeated in
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order to cover a broader range of the frequency spectrum. This means that for a given
division of the spectrum where p+ 1 bands are selected, the method can retrieve a final
model including all of the frequencies considered by merging together the found p+ 1
modelsMi with i = 1, . . . , p+ 1 (i.e. one model for each of the frequency bands of
interest).

Given the intrinsic focus on a certain frequency band of each of the modelsMi, it is
necessary to take the estimation of each of them, for an input Utest, to the frequency
domain and filter such estimation using the corresponding Pi. This is:

ŷ = F−1

(
p+1∑
i=1

PiF(ŷi)
)
. (11.13)

In Algorithm 6 a summary of the Frequency Division LS-SVM (FD-LSSVM) method
is presented. In Section 11.3 an illustrative example is shown.

Algorithm 6 Frequency Division LS-SVM.

Define the division vector f = [0, f1, f2, . . . , fp,
fs
2 ] ∈ Rp+2 containing the

frequencies determining the frequency bands required.
for i := 1 to p+ 1 do

Create pi with frequencies fA = fi and fB = fi+1 as shown in (11.4).
Create matrix Pi = diag(pi).
Use (11.9) to tune a modelMi.
Obtain ŷi through (11.10) usingMi and Utest.

Estimate ŷ using (11.13).

11.2.2 Effective degrees of freedom

The complexity analysis, in terms of the effective degrees of freedom (EDF), for
FD-LSSVM is fairly similar to that of LS-SVM shown in Appendix C.

Single sub model

From (11.9) for a particular frequency band a modelMi is obtained

ytr,i = (Ωi + (γiI + ηiA
>PiA)−1)αi + 1Nbi. (11.14)
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From (11.14), αi and bi can be written as
αi = (Ωi + (γiI + ηiA

>PiA)−1)−1(ytr − 1Nbi),

bi = 1>N (Ωi + (γiI + ηiA
>PiA)−1)−1ytr

1>N (Ωi + (γiI + ηiA>PiA)−1)−11N
.

(11.15)

Let us define now ci = 1>N (Ωi + (γiI + ηiA
>PiA)−1)−11N ,

Zi = Ωi + (γiI + ηiA
>PiA)−1,

J = 1N1>N .
(11.16)

From (11.10), for the training set we have

ŷtr,i = Ωiαi + 1Nbi. (11.17)

Therefore,

ŷtr,i =
(

Ωi

(
Z−1
i −Z

−1
i

J

ci
Z−1
i

)
+ J

ci
Z−1
i

)
ytr

= Hiytr.
(11.18)

Combined models

From (11.13) and (11.18)

ŷtr =
p+1∑
i=1

A>PiA

(
Ωi

(
Z−1
i −Z

−1
i

J

ci
Z−1
i

)
+ J

ci
Z−1
i

)
ytr, (11.19)

and therefore

H =
p+1∑
i=1

A>PiA

(
Ωi

(
Z−1
i −Z

−1
i

J

ci
Z−1
i

)
+ J

ci
Z−1
i

)
(11.20)

The EDF are then

EDF =
p+1∑
i=1

tr
(
A>PiA

(
Ωi

(
Z−1
i −Z

−1
i

J

ci
Z−1
i

)
+ J

ci
Z−1
i

))
=

p+1∑
i=1

tr
(
A>PiAΩiZ

−1
i −A

>PiAΩiZ
−1
i

J

ci
Z−1
i +A>PiA

J

ci
Z−1
i

)
=

p+1∑
i=1

tr
(

ΩiZ
−1
i A>PiA−ΩiZ

−1
i

J

ci
Z−1
i A>PiA+ J

ci
Z−1
i A>PiA

) (11.21)
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Note that

Z−1
i A>PiA =

(
Ωi +

(
γiI + ηiA

>PiA
)−1
)−1

A>PiA

=
(

(A>PiA)−1Ωi + (A>PiA)−1 (γiI + ηiA
>PiA

)−1
)−1

=
(

(A>PiA)−1Ωi +
(
γi(A>PiA) + ηiA

>PiA(A>PiA)
)−1
)−1

=
(

(A>PiA)−1Ωi +
(
γi(A>PiA) + ηiA

>PiA
)−1
)−1

=
(
(A>PiA)−1 (Ωi + (γi + ηi)−1I

))−1

=
(
Ωi + (γi + ηi)−1I

)−1
A>PiA,

(11.22)

and from (11.22) in (11.21)

EDF =
p+1∑
i=1

tr
(
A

(
Ωi

(
M−1

i −M−1
i

J

ci
M−1

i

)
+ J

ci
M−1

i

)
A>Pi

)
, (11.23)

with Mi = Ωi + I

(γi + ηi)
. It is important to highlight the similarity be-

tween M and the matrix Z described in (C.3) and to note that the matrix(
Ωi

(
M−1

i −M−1
i

J

ci
M−1

i

)
+ J

ci
M−1

i

)
is very similar to the hat matrix of the

standard LS-SVM model (i.e. see Appendix C and in particular (C.5)).

Under the assumption that O(tr(Hi)) = O(tr(HLSSVM )) we can see that (11.23)

can be rewritten as EDFFD−LSSVM =
p+1∑
i=1

tr
(
PiAHiA

>Pi
)

and therefore

O(EDFFD−LSSVM ) = O(EDFLSSVM ).

11.2.3 Partial FD-LSSVM

Given that for a division vector with p+ 2 frequencies p+ 1 models have to be tuned,
FD-LSSVM can be computationally demanding. In this section we offer an alternative
where a tradeoff between the processing time and the accuracy of the results takes
place. This alternative, from now on referred to as Partial FD-LSSVM, combines
standard NARX LS-SVM and FD-LSSVM to improve the results of the former without
requiring the processing time of the later. Although its accuracy is not as good as that
of FD-LSSVM, it still surpasses that of NARX LS-SVM.

The idea in this approach is that not all the frequency spectrum is covered by the
frequency bands determined by the division vector. Such remaining frequencies are
covered instead by the standard NARX LS-SVM. This implies that, following (11.13),
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Partial FD-LSSVM can be expressed as

ŷ = F−1

q−1∑
j=1

PjF(ŷj) +QhF(ŷNARX)

 , (11.24)

whereQh = I −
q−1∑
j=1

Pj andQh 6= 0.

In Algorithm 7 a summary of the Partial Frequency Division LS-SVM method is
presented.

Algorithm 7 Partial Frequency Division LS-SVM.
Estimate ŷNARX as described in Section 1.7.2.
Define the division vector f = [f1, f2, . . . , fq] ∈ Rq containing the frequencies
determining the frequency bands required.
for j := 1 to q − 1 do

Create pi with frequencies fA = fj and fB = fj+1 as shown in (11.4).
Create matrix Pj = diag(pj).
Use (11.9) to tune a modelMj .
Obtain ŷj through (11.10) usingMj and Utest.

Estimate ŷ using (11.24).

For Partial FD-LSSVM a complexity analysis can be done in a similar way to that of
FD-LSSVM.

EDF =
q−1∑
j=1

tr
(
A

(
Ωj
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j −M−1
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)
+tr
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(
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−1
h

J
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Z−1
h

)
+ J

ch
Z−1
h

)
A>Qh

)
,

(11.25)

with Zh and ch as defined in (C.3).

11.3 Results

The methods were applied to to 4 real life data examples and 1 simulation example
whose data sets are publicly available2. In addition, the proposed methodologies
were also applied to synthetic examples: two Hammerstein and two Wiener systems.
Note that in order to be able to compare between the results of different examples the
normalized mean absolute error (%MAE) is used as defined in Appendix D.

2http://http://homes.esat.kuleuven.be/∼smc/daisy/daisydata.html
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11.3.1 Data set examples

A description of the data sets is presented and for each one, the division vectors used
are offered in normalized frequency.

1. Data of a CD-player arm
This data set corresponds to the mechanical construction of a CD player arm
and consists of two inputs and two outputs. The inputs are the forces of the
mechanical actuators while the outputs are related to the tracking accuracy
of the arm. The data was measured in closed loop, and then through a two-
step procedure converted to open loop equivalent data. The inputs are highly
colored.The division vector used for the first and second outputs are f (1) =
[0, 0.14, 0.2, 0.3, 0.4, 0.5] and f (2) = [0, 0.16, 0.4, 0.5] respectively.

2. Wing flutter data
The data set shows wing flutter data and consists of one input and one
output. However, due to industrial secrecy agreements no more details are
revealed. Again, the input is highly colored. The division vector used is
f = [0, 0.18, 0.32, 0.5].

3. Heat flow density through a two layer wall
This data set depicts heat flow density through a two layer wall (i.e. brick and
insulation layer) and consists of two inputs and one output. The inputs are the
internal and external temperature of the wall while the output is the heat flow
density through the wall. The division vector used is f = [0, 0.1, 0.25, 0.5].

4. Data from a test setup of an industrial winding process
The main part of the plant is composed of a plastic web that is unwinded from
first reel (unwinding reel), goes over the traction reel and is finally rewinded
on the the rewinding reel. Reel 1 and 3 are coupled with a DC-motor that is
controlled with input setpoint currents i1 and i3. The angular speed of each reel
(s1, s2 and s3) and the tensions in the web between reel 1 and 2 (t1) and between
reel 2 and 3 (t3) are measured by dynamo tachometers and tension meters. s1,
s2, s3, i1 and i3 are the five inputs and t1 and t2 the two outputs. For the first
output, the division vector used is f (1) = [0, 0.13, 0.5] while for the second one
it is f (2) = [0, 0.10, 0.2, 0.38, 0.5].

5. Simulation data of a pH neutralization process in a stirring tank
This data set represents simulation data of a pH neutralization process in a
constant volume stirring tank. The volume of the tank is 1100 liters, the
concentration of the acid solution (HAC) is 0.0032 Mol/l and the concentration
of the base solution (NaOH) is 0, 05 Mol/l. The data set consists of two inputs
(i.e. acid solution flow in liters and base solution flow in liters) and one output (i.e.
pH of the solution in the tank). The division vector used is f = [0, 0.1, 0.3, 0.5].
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Figure 11.2: Frequency domain representation of the training set outputs of the different
data sets used. Division vectors are represented by the dashed lines.

In Fig. 11.2 the training set outputs of the different data sets used are presented
accompanied by the frequency bands corresponding to the respective division vectors.

Method steps

In order to illustrate the procedure involved in FD-LSSVM the estimation of the first
output of Example 1 is presented.

First, by observation of the output in the training data f ∈ Rp+2 is selected. Then
for each pair fi,fi+1 for i = 1, . . . , p + 1 a vector p is generated and with it the
corresponding diagonal matrix P . Using (11.9) p+ 1 modelsMi are found. Finally
all the resulting models are merged together as shown in (11.13).

In Figs. 11.3 to 11.7 the estimation from the resulting models are illustrated. Note
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Figure 11.3: Result of applying the found model m1 to Utest. (Up) Overlapping in the
frequency domain of ytest and yFD−LSSVM . (Center) Magnitude of the difference
between ytest and yFD−LSSVM in the frequency domain. (Bottom) p used to construct
P .

that for each of the models, the frequency band delimited by p has a particularly good
accuracy.

It is interesting to compare the behavior of FD-LSSVM in the frequency domain to
that of the standard NARX LSSVM. Fig. 11.8 illustrates the later.

Fig. 11.9 illustrates the resulting estimations allowing a comparison between FD-
LSSVM, NARX LSSVM and Partial FD-LSSVM. The first 500 samples were used as
training data while the rest of the set was employed as test set. For all the methods, the
input and output delays were set at 5. For Partial FD-LSSVM only the first frequency
band from the division vector used in FD-LSSVM was employed.

In Fig. 11.10 the estimation of FD-LSSVM for the first output of Example 1 is presented
in the form of scatter plots for different division vectors f arbitrarily chosen. As can
be seen, the results are even better for some of the chosen f but are in general similar.
This shows on one hand that the method is robust regarding the selection of the division
vector while in the other, it shows that even better results can be achieved with a careful
chosing of f .
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Figure 11.4: Result of applying the found model m2 to Utest. (Up) Overlapping in the
frequency domain of ytest and yFD−LSSVM . (Center) Magnitude of the difference
between ytest and yFD−LSSVM in the frequency domain. (Bottom) p used to construct
P .

Results comparison

For each of the examples the first 500 samples were used as training data while the rest
of the set was employed as test set. For all the methods, the input and output delays
were set at 5. For the Partial FD-LSSVM method only the first frequency band was
used.

In Fig. 11.11 the results for 100 Monte Carlo simulations are presented for each of the
examples and for the two proposed methods and NARX LS-SVM. A summary of such
results is offered in Table 11.1 where the median of each Monte Carlo simulation is
shown.

As can be seen, the proposed methods represent a considerable improvement in accuracy
for the presented examples. In particular FD-LSSVM shows great promise for problems
involving nonlinear dynamical systems. To quantify these improvements, in Table
11.2 the %MAE improvement (i.e. 100

(
1− %MAEMethod

%MAELSSVM

)
) is presented for each

example and each method. For FD-LSSVM the improvement is in average 50.0261%
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Figure 11.5: Result of applying the found model m3 to Utest. (Up) Overlapping in the
frequency domain of ytest and yFD−LSSVM . (Center) Magnitude of the difference
between ytest and yFD−LSSVM in the frequency domain. (Bottom) p used to construct
P .

Table 11.1: %MAE Comparison. Median values are offered for 100 Monte Carlo
simulations in the test set for each case.

Output FD-LSSVM Partial FD-LSSVM NARX LSSVM

Example 1 y1 1.1471 3.9897 7.1057
y2 1.5109 1.5526 2.2523

Example 2 y 0.77256 1.3419 1.2969
Example 3 y 1.4623 2.0295 2.5253

Example 4 y1 1.7287 2.6198 4.7319
y2 1.177 2.8827 3.3534

Example 5 y 3.0965 3.7028 3.9963
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Figure 11.6: Result of applying the found model m4 to Utest. (Up) Overlapping in the
frequency domain of ytest and yFD−LSSVM . (Center) Magnitude of the difference
between ytest and yFD−LSSVM in the frequency domain. (Bottom) p used to construct
P .

Table 11.2: Percentage of improvement in the %MAE wrt. LS-SVM.

Output FD-LSSVM Partial FD-LSSVM

Example 1 y1 83.8566 43.8521
y2 32.9175 31.0660

Example 2 y 40.4303 −3.4698
Example 3 y 42.0940 19.6333

Example 4 y1 63.4671 44.6353
y2 64.9013 14.0365

Example 5 y 22.5158 7.3443

while for Partial FD-LSSVM it is 22.4425%.
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Figure 11.7: Result of applying the found model m5 to Utest. (Up) Overlapping in the
frequency domain of ytest and yFD−LSSVM . (Center) Magnitude of the difference
between ytest and yFD−LSSVM in the frequency domain. (Bottom) p used to construct
P .

11.3.2 Synthetic examples

Using the LTI and nonlinear blocks presented in Fig. 11.12 two Hammerstein and
two Wiener systems were created. To do so, linear block 1 and nonlinearity 1 were
cascaded to create a Wiener and a Hammerstein system. Similarly, linear block 2
and nonlinearity 2 were cascaded to create a second set of Wiener and Hammerstein
systems.

On each of the cases the training and test sets consisted of 500 and 1000 samples
respectively. For the training set an initial signal as the one shown in Fig. 11.13 was
created and then randomly permuted. In all cases, the inputs for the test set were drawn
from an uniform distribution between -10 and 10. For the 4 systems tested, the division
vector used was f = [0, 0.16, 0.33, 0.5] (i.e. normalized frequency). The delays used
for NARX-LSSVM, FD-LSSVM and Partial FD-LSSVM are the actual delays of the
underlying systems and for the Partial FD-LSSVM method only the first frequency
band was used. The result of 100 Monte Carlo simulations is presented in Fig. 11.14
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Figure 11.8: Result of applying the NARX LSSVM model to Utest. (Up) Overlapping
in the frequency domain of ytest and yFD−LSSVM . (Bottom) Magnitude of the
difference between ytest and yFD−LSSVM in the frequency domain.

Table 11.3: Percentage of improvement in the %MAE wrt. LS-SVM.

FD-LSSVM Partial FD-LSSVM
Hammerstein 1 73.8644 12.7322
Hammerstein 2 54.0519 16.7089

Wiener 1 58.5398 4.0437
Wiener 2 55.1123 10.1361

Once more, as can be seen, the proposed methods outperform standard NARX-LSSVM.
In Table 11.3 a comparison is presented.
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11.4 Conclusions

In this chapter, two new methodologies to model problems involving dynamics have
been presented, namely FD-LSSVM and Partial FD-LSSVM. Both of them were tested
in several real life data sets and a simulation one and several synthetic examples and
showed to significantly improve the performance of NARX LS-SVM. Given the NARX
structure of FD-LSSVM and Partial FD-LSSVM, these methodologies are particularly
useful for modeling nonlinear dynamical systems.

The main contribution of the presented methods lies in the fact that they create different
models focusing on specific frequency bands and then merge those models together.
Through this procedure, it is possible to find a resulting model that performs much
better than the standard NARX-LSSVM. It was shown through the examples that
the two proposed methods can handle systems with different numbers of inputs and
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Figure 11.10: Resulting estimation of FD-LSSVM for the first output of Example 1.
Scatter plots are presented for different division vectors f arbitrarily chosen. The line
corresponds to a perfect fit while the dots show the FD-LSSVM estimation for the used
f .
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outputs.

FD-LSSVM showed a greater accuracy; however it is a computationally demanding
method as p+ 1 models have to be estimated (for a division vector f ∈ Rp+2). On the
other hand, Partial FD-LSSVM can still achieve very good accuracy while requiring
less computation as it implies the estimation of fewer models (i.e. it requires q + 1
models with q < p). By presenting both methods we offer an alternative where a
tradeoff between the processing time and the accuracy of the results is possible.

Currently, the division vectors are manually created after inspection of the outputs in
the frequency domain. Nonetheless, it was shown that the method is robust to such
selections although the results could further improve with a careful composition of
f . Future work could include the automatic determination of the division vectors.
For instance, the selection could be done by partitioning the frequency spectrum in
accordance to the accumulated power.



Chapter 12

Conclusions

Throughout this thesis, new techniques developed for BONL system identification
were presented. These techniques imply the use of kernel methods in the form of
different formulations of LS-SVM. One of the common denominators of the presented
methods is the fact that knowledge about the structure of the systems is incorporated
into black-box modeling schemes greatly extending their capabilities. This is illustrated
by often comparing the performance of the presented methods against that of black-box
modeling techniques like NARX LS-SVM. The results reported are in line with what
would be expected, this is: the offered methods outperform NARX LS-SVM as they
incorporate more information about the system.

The developed methods were applied in some cases to system identification benchmarks
like the Wiener-Hammerstein and the Silverbox data sets (see Chapter 10) or the DAISY
data set (see Chapter 11) and in others cases to simulation examples where specific
input signals are designed for the particular cases. In almost every chapter, the presented
methodologies were compared to different state of the art methods showing a very
good comparative performance. This implies that the offered alternatives introduced in
this thesis are attractive options when dealing with the identification of BONL systems.
This is particularly interesting when considering that not only an increased performance
is offered but also a great deal of flexibility to deal with a variety of difficult problem
classes. Furthermore, some of the introduced methods were extended to include MIMO
structures extending the applicability of the offered methodologies.

211
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12.1 Summary and contributions

12.1.1 Part I

In this part the BLA is used in combination with LS-SVM for the identification of
Hammerstein and Wiener systems. For all the methods presented, it is necessary for
the BLA to accurately represent the LTI block as its results are subsequently integrated
into an LS-SVM formulation. This is particularly true for the methods presented in
Chapters 3 and 4 where the coefficients of the transfer function estimated by the BLA
are used directly into the LS-SVM reformulation. The work presented in Chapter 2 is
more robust against this as the introduced errors can be perceived as disturbances in
the intermediate variable estimated initially and can be corrected in posterior stages.

Chapter 2

A method is presented for the identification of Hammerstein systems. Here, the BLA is
used to obtain a preliminary nonparametric model of the LTI block of the underlying
Hammerstein system. It is shown how it is possible to use the inversion of this block
and the measured output to make an estimation of the intermediate variable even in
the presence of measurement noise. Afterward, this intermediate variable is used in
combination with the known input to estimate a nonlinear block using LS-SVM. Finally,
the parametric LTI block is recalculated. The method was tested in three examples, two
of them with hard nonlinearities, and was compared with four other methods showing
very good performance in all cases.

This chapter provides two main contributions. First the method itself is shown to
provide very good results when compared with other state of the art methods in difficult
examples containing hard nonlinearities. Secondly, it is shown how the regularization
allows to bypass the usual problems associated with the noise backpropagation when
the inversion of the estimated linear block is used to compute the intermediate variable.

Chapter 3

In this chapter once more a method is presented for the identification of Hammerstein
systems. In this case the BLA is used to obtain an approximation to the coefficients
of the transfer function of the LTI block and these coefficients are integrated into an
LS-SVM reformulation to model the system. The method was tested in two examples
and compared against NARX LS-SVM. Given that there is no previous information
incorporated in the NARX LS-SVM it was to be expected that the proposed method
would perform better as indeed happened.
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The main contribution of this chapter is that the method shows a way to introduce
previous information of the system into an LS-SVM formulation.

Chapter 4

The same concept used in Chapter 3 is applied here to Wiener systems. Even though the
methods are conceptually similar, the mathematical development is radically different.
In here, the BLA is used once more to approximate the coefficients of the transfer
function of the LTI block. Those coefficients are used for an LS-SVM reformulation
that ends up becoming a standard LS-SVM problem.

This chapter has as its main contribution the method presented for Wiener system
identification and the illustration of how by mixing techniques it is possible to integrate
additional information about the model into a black box modeling technique.

12.1.2 Part II

In this part novel methods for system identification of block structured models are
offered where the common denominator is the use of the steady state time response of
the systems. The presented methods can provide very accurate models of the underlying
systems. However, it could be argued that they have as a disadvantage that long times
are required for the necessary measurements to take place, although clearly this depends
on the specific system to be modeled and the number of samples desired. This alleged
disadvantage is particularly obvious in Chapter 6 where the MIMO Hammerstein case
is considered.

Chapters 5 and 6

In Chapter 5 a new method for identification of Hammerstein systems is presented. To
do this, a specially designed multi-step signal is used followed by LS-SVM to identify
the nonlinear block. Once a model of the nonlinear block is available, an estimation of
the intermediate variable can be obtained. With this estimation and the known output
the LTI block can be modeled. The work presented in Chapter 6 extends the work
from Chapter 5 to the MIMO case. Once more, specially designed signals are used
to straightforwardly model the nonlinear part and, once this is done, the intermediate
variables can be estimated. With the estimated intermediate variable and the known
outputs the linear part can be modeled directly.

These methods give a way to accurately model the nonlinearity of SISO and MIMO
Hammerstein systems in a straightforward manner and are some of the more accurate
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methods introduced in this thesis. Beside the methods themselves, the most notable
contribution of these Chapters is the fact that a way to directly model the nonlinear
block of SISO and MIMO Hammerstein systems is presented.

Chapter 7

Here we propose a new methodology for identifying Wiener systems using the data
acquired from two separate experiments. In the first experiment, we feed the system
with a sinusoid at a prescribed frequency and use the steady state response of the system
to estimate the static nonlinearity. In the second experiment, the estimated nonlinearity
is used to identify a model of the linear block feeding the system with a persistently
exciting input. Both: parametric and nonparametric approaches to estimate the static
nonlinearity are presented.

The main contribution in this chapter, besides the method itself, is showing that for
Wiener systems, a poorly exciting signal such as a sinusoid can help estimating part of
the system by means of relatively simple least-squares based procedures.

12.1.3 Part III

In this part we take advantage of the structure of Hammerstein systems to extract
information about the dynamics of the system. This is done by applying specific input
signals to the system that allow the estimation of a rescaled version of its impulse
response.

Chapters 8 and 9

In Chapter 8 a methodology for identifying SISO Hammerstein systems is presented
where an impulse signal is used. The corresponding output of that signal allows
the construction of an impulse response matrix that can be used into an LS-SVM
reformulation leading to a model of the whole system. In Chapter 9 this approach is
extended to the MIMO Hammerstein system case. Here, the estimation of the impulse
response matrix is more elaborated but it is shown that the required procedure is still
relatively simple as certain parameters can be arbitrarily chosen.

One of the main advantages of these methods comes from the fact that they are flexible
concerning the class of systems they can model and that no previous knowledge about
the underlying non-linearities is required except for very mild assumptions. The
methods are shown to perform well in the presence of white Gaussian noise. Also, in
the case of Chapter 9, it naturally adapts to handle different numbers of inputs and
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outputs. Finally, the methods incorporate information about the structure of the system
but still the solution of the model follows from a linear system of equations.

The presented methods are of a more practical nature than those offered in Chapters 5
and 6 as the time required for the experiments is greatly reduced while still being very
accurate.

12.1.4 Part IV

In the final part of the thesis two additional works were presented more related to the
machine learning field than to that of system identification.

Chapter 10

Two methodologies were presented in this chapter which allow to make a tradeoff
between the accuracy of the model and its complexity, this is: the complexity of
the model could be greatly reduced in exchange for a small decrease in its accuracy.
To measure the complexity, the effective degrees of freedom were used. The two
techniques rely on the use of Fixed Size LS-SVM and once an approximation to the
feature map is estimated, an SVD decomposition of the inner product of the input
vectors in the feature space takes place followed by a truncation of the less relevant
singular values. The resulting matrix is used instead of the originally decomposed
matrix. Both techniques were tested in the Wiener-Hammerstein and the Silverbox
data sets.

In this chapter the SVD truncation of FS-OLS and FS-RR methodologies are
contributed and are shown to very efficiently reduce the effective degrees of freedom
of Fixed-Size kernel models under an SVD truncation scheme without much loss of
generalization performance.

Chapter 11

Given the NARX structure of FD-LSSVM and Partial FD-LSSVM, these methodologies
are particularly useful for modeling nonlinear systems. In both methods, a reformulated
version of LS-SVM is used were different models are created. For each of these models
a specific band in the frequency spectrum is emphasized and the models are finally
merged together to create the final model of the system. Both methodologies were
tested in several real life data sets and a simulation one as well as several synthetic
examples. It was shown through the examples that the proposed methods can handle
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systems with different numbers of inputs and outputs. Also, both methods showed a
significantly improved performance compared to the standard NARX LS-SVM.

The main contribution of the presented methods lies in the fact that they create different
models focusing on specific frequency bands which are merged together afterward.
Throughout this procedure, it is possible to find a resulting model that performs much
better than the standard NARX LS-SVM.

Currently, the frequency division vectors are manually created after inspection of the
outputs in the frequency domain. Although the method is robust to such selections,
the results could further improve with a more careful composition of the frequency
division vector.

12.2 Future work

In BONL system identification, kernel methods have been successfully applied in the
past for certain classes of model structures. This thesis presents contributions in this
area, which is at the interface between nonlinear system identification and machine
learning, by combining and integrating the best of both paradigms and employing
parametric and kernel-based approaches. However, there is still a lot of research that
can be done. We will state some possible future research topics next:

• The presented methods have shown to be very promising when dealing with
Hammerstein or Wiener systems. Extending these methods to include more
complex systems like Wiener-Hammerstein or Hammerstein-Wiener would
widen their application area and improve the current state of the art in BONL
system identification.

• The methods presented in Part I rely on the use of the BLA, however other
methods could be used to estimate the linear blocks. With this in mind, the
method from Chapter 2 could be for instance extended to the MIMO case when
used in combination with that of Chapter 9.

• In Chapters 5 and 6 although the methods are very accurate, the initial input
signal is not completely used. Instead, only the last samples of every step are
taken into account. A good improvement could be to make use of those unused
samples for the estimation of the linear part.

• Future work for the FD-LSSVM and Partial FD-LSSVM approaches should
include the automatic determination of the frequency division vectors used. For
instance, the selection could be done by partitioning the frequency spectrum
in accordance with the accumulated power. Another option is to consider the
selected frequencies of the division vectors as additional tuning parameters.



Appendix A

Best Linear Approximation

The best linear approximation (BLA) of a PISPO (i.e. Period In Same Period Out)
system1 with input u(t) and output y(t) is defined as the linear system whose output
approximates the system’s output best in mean-square sense, i.e.

GBLA(k) := arg min
G(k)

Eu
{
‖Ỹ (k)−G(k)Ũ(k)‖22

}
, (A.1)

with {
ũ(t) = u(t)− E{u(t)}
ỹ(t) = y(t)− E{y(t)},

where GBLA is the frequency response function (FRF) of the BLA, and where the
expectation in (A.1) is taken with respect to the random input u(t).

It is assumed that the mean values are removed from the signals when a BLA is
calculated. The notations u(t) and y(t) will be used instead of ũ(t) and ỹ(t).

If the BLA exists, the minimizer in (A.1) can be found as

GBLA(k) = SY U (k)
SUU (k) , (A.2)

where the expectation in the cross-power and auto-power spectra is again taken with
respect to the random input u(t).

1A PISPO system is a system that when excited with a periodic signal u(t) produces a periodic output
y(t) (in steady state) with the same period length as u(t). Hammerstein systems are included in the class of
PISPO systems.

217



218 BEST LINEAR APPROXIMATION

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−250

−200

−150

−100

−50

0

G
0
 vs. G

BLA

Frequency

A
m

pl
itu

de
(d

B
)

 

 

G
0

G
BLA

Figure A.1: Example: comparison of the magnitudes of GBLA(k) and the actual
transfer function G0(k). G0(k) corresponds to a 10th order Chebyshev lowpass digital
filter with normalized passband edge frequency 0.2 and 5 dB of peak-to-peak ripple in
the passband.

Note that for periodic excitations with a fixed amplitude spectrum |U(k)| (such that
Eu

{
|U(k)|2

}
= |U(k)|2), (A.2) reduces to (J. Schoukens, Pintelon, & Rolain, 2012):

GBLA(k) = Eu

{
Y (k)
U(k)

}
. (A.3)

In this work random-phase multisine excitations (Pintelon & Schoukens, 2012) are
used for calculating the BLA. These asymptotically Gaussian distributed signals are
periodic and the BLA can thus be estimated by averaging (A.3) over a number of phase
realizations of the multisine. This is the main idea in the robust method (J. Schoukens
et al., 2012), which provides nonparametric estimates of the BLA, the noise variance,
the nonlinear variance, and the total (i.e. noise plus nonlinear) variance. Alternatively,
the fast method (Pintelon & Schoukens, 2012) can be used to calculate the BLA from
only one phase realization, although some restrictions apply (J. Schoukens et al., 2012).

For Gaussian distributed inputs u(t), it follows from Bussgang’s theorem (Bussgang,
1952) that the BLA of a Hammerstein system is proportional to the underlying linear
dynamic system.

An example of a resulting GBLA(k) compared to the actual transfer function G0(k)
is shown in Fig. A.1. As it can be seen, GBLA(k) resembles quite well the shape of
G0(k) up to a certain frequency and up to a certain scaling factor.



BEST LINEAR APPROXIMATION 219

It is important to highlight that the reliability of GBLA(k), the model found, decreases
as the frequency grows apart from the band of interest. This can be seen for instance
in the fluctuations present in Fig. A.1 from 12% of the sampling frequency (i.e. the
signal-to-noise ratio is smaller around these frequencies than for lower ones). Note
that the sudden perturbation at 33% of the sampling frequency is due to the lack of
excitation of the following frequencies and thus is nothing more than an artifact due to
the chosen excitation signal.

On top of the nonparametric estimate, a parametric transfer function model could be
estimated using a weighted least-squares estimator (J. Schoukens, Dobrowiecki, &
Pintelon, 1998)

θ̂ = arg min
θ

JN (θ) , (A.4a)

where the cost function JN (θ) is

JN (θ) = 1
N

N∑
k=1

W (k)
∣∣∣ĜBLA(k)−GM (k,θ)

∣∣∣2 . (A.4b)

Here, W (k) ∈ R+ is a deterministic, θ-independent weighting sequence, ĜBLA(k)
is an approximation to the actual GBLA(k) as it is limited to a finite number of
realizations of U(k) and Y (k), and GM (k,θ) is a parametric transfer function model

GM (k,θ) =
∑nb
l=0 bl exp (−j2π k

N l)∑na
l=0 al exp (−j2π k

N l)

= Bθ(k)
Aθ(k) ,

θ =
[
a0 · · · ana b0 · · · bnb

]T
,

(A.4c)

with the constraints ‖θ‖2 = 1 and the first non-zero element of θ positive to obtain a
unique parametrization.



Appendix B

Fixed Size LS-SVM

Usually, the feature map is not explicitly known when solving in the dual. This
is the case for the RBF kernel for which the feature map is infinite dimensional
V. N. Vapnik (1998). In order to be able to work in the primal space, it is required that
either the feature map ϕ is explicitly known and it is finite dimensional (e.g. linear
kernel case) or an approximation to ϕ is acquired. This can be achieved through an
eigenvalue decomposition of the kernel matrix Ω with entries k(xk,xl). Given the
integral equation

∫
k(x,xj)φi(x)p(x)dx = λiφi(xj) with λi and φi the eigenvalues

and eigenfunctions related to the kernel function respectively for a variable x with
probability distribution p(x). An expression for a finite sized approximation of the
feature map can be written then (De Brabanter et al., 2009; Espinoza et al., 2004;
Espinoza, Suykens, & De Moor, 2005b):

ϕ̂(x) =
[√

λ1φ1(x),
√
λ2φ2(x), ...,

√
λnhφnh(x)

]>
. (B.1)

Through the Nyström method (Nyström, 1930; Williams & Seeger, 2000), an
approximation to the integral equation is obtained by means of the sample average
determining an approximation to φi leading to

1
N

M∑
k=1

k(xk,xj)uik = λ
(s)
i uij (B.2)

where λ(s)
i and ui are the sample eigenvalues and eigenvectors respectively.
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A finite dimensional approximation ϕ̂i(x) can be computed for any point x(v) through

ϕ̂i(x(v)) = 1√
λ

(s)
i

M∑
k=1

ukik(xk,x(v))

with i = 1, . . . ,M.

(B.3)

This approximation can then be used in the primal to estimate w and b.

For large scale problems, a subsample of M datapoints (with M � N ) could be
selected to compute ϕ̂ together with estimation in the primal. This is known as Fixed-
Size Least Squares Support Vector Machines (FS-LSSVM) Suykens and Vandewalle
(1999). Criteria as entropy maximization has been used to select appropriate M
datapoints instead of a merely random approach. For example Rényi’s entropy HR is
used Girolami (2002) as:

HR = − log
∫
p(x)2dx. (B.4)

The higher the entropy found in the subset of M points used, the better this subset will
represent the whole data set.

Once the support vectors are selected through Rényi’s entropy, the problem in the
primal can be represented as

min
w,b

1
2w
>w + γ

2

M∑
i=1

(yi −w>ϕ̂(xi)− b)2 (B.5)

from where the optimalw and b can be extracted directly. Note that given the selection
of M � N , this is a sparse kernel model.



Appendix C

Effective Degrees of Freedom
for LS-SVM

When analyzing the complexity of LS-SVM, the plain number of model parameters is
not a good indicator of the complexity of the model found. This type of measurements
is not suitable for techniques using regularization such as in the LS-SVM case. Instead,
in this thesis the Effective Degrees of Freedom (EDF) will be used. The EDF can
be calculated as the trace of the hat matrix H (also known as the smoother matrix)
(Espinoza, Suykens, & De Moor, 2005a; Mallows, 1973; Spiegelhalter et al., 2002)
which is defined from the expression ŷ = Hy. For further insight about the effective
degrees of freedom see Bishop (1995); MacKay (1992); Moody (1991).

For LS-SVM,H is calculated as follows. From (1.32)

ytr = Ωα+ 1Nb+ α
γ ,

ytr = (Ω + γ−1I)α+ 1Nb.
(C.1)

From (C.1), α and b can be written as
α = (Ω + γ−1I)−1(ytr − 1Nb),

b = 1>N (Ω + γ−1I)−1ytr
1>N (Ω + γ−1I)−11N

.
(C.2)

Let us define now

 c = 1>N (Ω + γ−1I)−11N ,
Z = (Ω + γ−1I),
J = 1N1>N .

(C.3)
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From (1.33), for the training set we have

ŷtr = Ωα+ 1Nb. (C.4)

Therefore,

ŷtr = ΩZ−1(ytr − 1N
1>NZ−1ytr

c
) + 1N

1>NZ−1ytr
c

ŷtr = ΩZ−1
(
ytr −

J

c
Z−1ytr

)
+ J

c
Z−1ytr

ŷtr =
(

Ω
(
Z−1 −Z−1J

c
Z−1

)
+ J

c
Z−1

)
ytr

ŷtr = Hytr.

(C.5)

Finally we obtain the EDF for LS-SVM as EDFLS−SVM = tr(H).



Appendix D

Normalized Mean Absolute
error

In order to be able to compare between the results of different examples, let us have
the Normalized MAE defined as shown in (D.1) for a signal with N measurements.
Note that the Normalized MAE uses the noise free signal ytest(t) and its estimated
counterpart ŷtest(t).

%MAE = 100
N

N∑
i=1
|ytest,i − ŷtest,i|

|max(ytest)−min(ytest)|
. (D.1)

This way of measuring the performance of the methods will be used often throughout
this thesis.
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