
Visualization of Hierarchical Communities in Large Scale Networks
Adrien Baland∗

KU Leuven
Raghvendra Mall†

ESAT-STADIUS
KU Leuven

Rocco Langone‡

ESAT-STADIUS
KU Leuven

Johan Suykens§

ESAT-STADIUS
KU Leuven

ABSTRACT

In this paper we design a tool that allows visualization of hierar-
chical communities extracted from complex networks similar to
Google maps i.e. the tool allows to zoom in and zoom out of com-
munities at different levels of hierarchy. This tool uses the hier-
archical structure of the communities to attack this problem in a
recursive manner in order to avoid an ever-increasing complexity.
We incorporated several additional functionalities that allows the
user to modify the communities and/or their layout in the tool. The
tool is implemented with the R library Shiny.

The proposed tool requires the community membership of each
node for the different levels of hierarchy as well as the network
configuration i.e. the set of connections between all nodes. Based
on these data, a few choices regarding the layout can be made by the
user and the tool then proceeds to render these data in a 2D layout.

Index Terms: I.3.1 [Computer Graphics]: Visualization Tool—
Hierarchical Community Visualization;

1 INTRODUCTION

In the modern era complex networks are ubiquitous. Their om-
nipresence is reflected in domains like social networks, web graphs,
road graphs, communication networks, biological networks and fi-
nancial networks. Complex networks can be represented as graphs
(G(V,E)), where the nodes (V) represent vertices in the graph and
edges (E) depict the relationship between these nodes. Real world
networks exhibit community like structure, where nodes within a
community are densely connected and the connections are sparse
between the communities. The problem of community detection
has rich literature including [1], [2] and [3].

A subclass of these detection algorithms attempts to create a hi-
erarchical community structure, divided in H levels of hierarchy.
For each level h (h = 1, . . . ,H), the algorithm returns a set of com-
munities Ch

i (i = 1, . . . ,Nh) such that three conditions are ensured:

• Each node belongs to exactly one community at each level.

• Each community for a given level (except for h = 1) is
strictly contained in one and only parent community (∀h′ =
2, . . . ,H, j = 1, . . . ,Nh′ ,∃i ∈ {1, . . . ,Nh′−1} : Ch′

j ⊂Ch′−1
i).

• The size of a parent community corresponds to the sum of the
size of its children communities.

Some algorithms which create such a hierarchical structure are the
Louvain [1], OSLOM [2] and AH-KSC [3] methods.

Based on the list of connections between the nodes these algo-
rithms return a set of community memberships for each level of
hierarchy. These memberships along with the connection list is all
that our tool requires as input. With this information the user se-
lects one layout out of several possible layouts for the communities

∗e-mail: adrien@baland.be
†e-mail:Raghvendra.Mall@esat.kuleuven.be
‡e-mail:Rocco.Langone@esat.kuleuven.be
§e-mail:Johan.Suykens@esat.kuleuven.be

at that level of hierarchy and then the tool proceeds to place every
community in the 2-D space. The hierarchical structure is used to
recursively place communities based on the parent location in order
to avoid a higher computational complexity. The users are provided
with a range of possibilities that can be explored to improve the vi-
sualization if required.

To the best of our knowledge no software exists currently that al-
lows the user to navigate through more than two hierarchical levels
on a given visualization palette. The primary contribution of this
work is to design a tool which overcomes this drawback and allows
hierarchical visualization of communities in complex networks.

2 EXPOSITION

Several points have to be taken into account during the construction
of this tool, from the placement method of the communities for a
given level to the additional functionalities a user might desire.

2.1 Community layout
To place communities in a two-dimensional space for the top hier-
archy level (largest communities), our tool currently offers various
methods with different computational complexities. These methods
take the similarity between each pair of communities into account,
where this similarity is proportional to the ratio of the number of
connections between the communities and their respective sizes:

• Circular/Spiral layout : The layout is divided into a user-
defined number of layers all surrounding a sun, chosen as the
largest community. Based on the number of layers, the num-
ber of communities inside a single layer say n is also given.
On the first layer (aside from the sun), the n most-similar com-
munities to the sun are selected and placed circularly at the
same distance d from this sun

i-th position :
[

d cos
(

2πi
n+1

)
,d sin

(
2πi

n+1

)]
i = 1, . . . ,n

where a similarity-based greedy approach is used to determine
the order of the communities on that layer. On every outer
layer, the communities chosen are picked as those who are
the most similar to the community in the inner layer. The
difference between spiral and circular layout lies in a slight
rotation that is applied between two successive layers.

• Multidimensional scaling (MDS) : Using exclusively the sim-
ilarity between each pair of community (which can be con-
verted to a distance matrix), MDS techniques are used to
project these communities into a lower-dimensional space
(here, two dimensions) while trying to retain distances be-
tween communities.

• Spring system : Force-directed graph drawing algorithms are
very useful in graph visualization. In these algorithms, all
connections between vertices are replaced by springs s ∈ S,
characterized by their natural length rs and their stiffness co-
efficient ks, and the node’s optimal position minimizes the po-
tential energy of the system

min ∑
s∈S

ks(rs−||~xs1 −~xs2 ||)2

with ~xs1 ,~xs2 the two end-points of spring s. Projecting our
problem into this framework, our communities become the
vertices and the springs parameters between two vertices are
functions of both the size of the clusters and their similarity.

• Others : Our tool also offers the possibility to easily use a
custom positioning method.

(a) Circular Layout (b) Spiral Layout

(c) MDS Layout (d) Spring Layout

Figure 1: Some layouts offered by our tool.

Based on the position computed by these methods for the top hi-
erarchy level, the communities are placed as circles on the 2D plane
(an example layout is shown in Figure 1), with the area of the circle
being proportional to the size of the community and are placed in
a fashion s.t. the communities do not overlap. After that, the hi-
erarchical structure is used to position the children communities in
the following top-down approach: For every parent-community (1)
find all of its immediate children communities; (2) compute their
position with the same method as presented above; (3) re-scale and
translate these positions so that all children are located inside of
it. Because of this, several small positioning problems are solved
sequentially instead of one massive problems.

2.2 Visualization
With all these communities positioned on the grid, the user can nav-
igate through the layout by means of the following ways:

1. Level-zoom : Completely zoom inside a given community of
the current hierarchy level and switch the hierarchy level. All
communities associated with the parent are displayed on the
palette and the borders of the parent community disappears.
Now, only its descendants become visible, with its children as
the new top-level. At any point the user can go back to the
previous level.

2. Spreading-zoom : A drawback from our recursive approach
and from the fact that we use circles to represent communities
is that children communities overlap inside their parent as the
size of the parent corresponds to the sum of the children sizes.
Because of this, the user can apply partial zooms to the lay-
out, which progressively spread the children outside of their
parents to reduce overlaps between descendants.

3. Community information : Upon placing the cursor on a given
community (on the top-level or one of its descendants), a se-
ries of information about this community (its ancestors if the

Figure 2: Difference between zoom types for the red-framed com-
munity : change of hierarchy level vs spread of children outside the
parent.

selection is not on the 1st level) appear on the screen (size,
name, most-related community) etc.

2.3 Additional Functionalities
Next to these compulsory elements of our tool given its purpose, a
few other handy functionalities have been added to make it more
practical. These functionalities include (1) removal of a commu-
nity from the data (only available on the top-most hierarchy level to
avoid a mis-match between parent size and children sizes); (2) man-
ual relocation of a community on the grid; (3) merger of two com-
munities together (while re-positioning their children inside this
new community); (4) change of a community name; (5) display
of the top m (user-defined) connections for some communities; (6)
save all of the current data into a .zip to resume the work later on.

3 CONCLUSION

In this work we presented a tool that allows the user to visualize hi-
erarchical communities in a two-dimensional grid over any number
of hierarchy levels. This tool takes advantage of the hierarchical
structure to decrease the complexity of the placement problem and
allows user to apply some changes to either the community infor-
mation or to the results given by the algorithm.

The hierarchy is also used to allow the user to switch from one
level to another to focus on sub-communities of a given parent and
provides basic configuration details about any community that the
user selects. This allows the user to go through this community
information in a relatively user-friendly way.

ACKNOWLEDGEMENTS
The work is supported by Research Council KUL, ERC AdG A-
DATADRIVE-B, GOA/10/09MaNet, CoE EF/05/006, FWO G.0588.09,
G.0377.12, SBO POM, IUAP P6/04 DYSCO.

REFERENCES

[1] V. Blondel, J. Guillaume, R. Lambiotte and L. Lefebvre, Fast unfold-
ing of communities in large networks., Journal of Statistical Mechan-
ics: Theory and Experiment, 10:P10008, 2008

[2] A. Lanchichinetti, F. Radicchi, J. Ramasco, and S. Fortunato, Find-
ing statistically significant communities in networks, PLOS One,
6(e18961), 2011.

[3] R. Mall, R. Langone and J. A. K. Suykens, Multilevel Hierarchical
Kernel Spectral Clustering for Real-life Large Scale Complex Net-
works, PLOS One, e99966, 9(6), pp. 1-18, 2014.

