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Abstract

Tensor-based techniques for learning allow one to expheitstructure of carefully chosen representations of data.
This is a desirable feature in particular when the numberadfiing patterns is small which is often the case in areas
such as biosignal processing and chemometrics. Howeestldbs of tensor based models is somewhat restricted and
might suter from limited discriminative power. On aftirent track, kernel methods lead to flexible nonlinear medel
that have been proven successful in martfedént contexts. Nonetheless, a naive application of kemathods does
not exploit structural properties possessed by the givesotgal representations. The goal of this work is to go beyon
this limitation by introducing non-parametric tensor lthseodels. The proposed framework aims at improving the
discriminative power of supervised tensor-based modeiewstill exploiting the structural information embodied i
the data. We begin by introducing a feature space formed blimear functionals. The latter can be considered as
the infinite dimensional analogue of tensors. Successivelghow how to implicitly map input patterns in such a
feature space by means of kernels that exploit the algebtaicture of data tensors. The proposed tensorial kernel
links to the MLSVD and features an interesting invarianagperty; the approach leads to convex optimization and
fits into the same primal-dual framework underlying SVMeliklgorithms.

Keywords: multilinear algebra, reproducing kernel Hilbert spacessbrial kernels, subspace angles

1. Introduction Table 1: Some examples of tensorial representations in

| Tensors([30] are higher order arrays that generalize real-life applications
the notions ofvectors(first-order tensors) anahatrices
EEG data
(second-order tensors). The use of these data structures (time x frequencyx electrode}
has been advocated in virtue of certain favorable prop- neuroscience g »

erties. Additionally, tensor representations naturadly r fMRl data ) _ )
sult from the experiments performed in a number of do- (timex x — axisx y — axisx z - axis)
mains, see Tablg 1 for some examples.

image (video) recognition

An alternative representation prescribeflattenthe vision: . N .
. . . (pixel x illuminationx expressiorx - - -)
different dimensions namely to represent the data as
high dimensional vectors. In this way, however, impor- . fluoresce excitation-emission data
tant structure might be lost. Exploiting a naturah@ay chemistry (samples< emissionx excitatior)

representation, for example, retains the relationship be-
tween the row space and the column space and allows

NOTICE: this is the authors version of a work that was acabpte

for publication in Neural Network Journal. Changes resgltfrom one to find structure preserving projections mofie- e
the publishing process, such as peer review, editing, ciores, struc- ciently m] Still, a main drawback of tensor-based
tural formatting, and other quality control mechanisms mabe re- learning is that it allows the user to construct models
flected in this document. Changes may have been made to ths wo iy are #ine in the data (in a sense that we clar-
since it was submitted for publication. A definitive versigas subse- . o . .
quently published in Neural Networks, Volume 24(8), Octob@11, ify later) and hence fail in the presence of nonlineari-
Pages 861-874; doi:10.1Q1.6eunet.2011.05.011. ties. On a dferent track kernel methodﬂ4m48] lead
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to flexible models that have been proven successful in 1.2. Relation with Existing Literature
many diferent contexts. The core idea in this case
consists of mapping input points represented as vec-
tors{X!,..., XM} c R' into a high dimensional inner-
product spaceg;-,-)z) by means of &eature map

¢ : R' — 3. Since the feature map is normally cho-
sen to be nonlinear, a linear model in the feature space
corresponds to a nonlinear rulelh. On the other hand,
the so-calleckernel trickallows one to develop compu-
tationally feasible approaches regardless of the dimen-
sionality of § as soon as we know : R' x R' — R
satisfyingk(X,Y) = (¢(X),#(Y))s . When input data
areN-th order arrays, nonetheless, a naive application
of kernel methods amounts to perform flattening first,
with a consequent loss of potentially useful structural
information.

Tensor-based techniques are mostly based on decom-
positions that to some extent generalize the matrix SVD

],ﬂﬁ]. As such, the largest part of the existing ap-
proaches relates to unsupervised methods. Recently,
machine learning and related communities got inter-
ested in tensors and their use for supervised techniques
have also been explored [51].[43]. However with the
exception of very specialized attempts|[22], the ex-
isting proposals deal with linear tensor-based models
and a systematic approach to the construction of non-
parametric tensor-based models is still missing. A first
attempt in this directior@Z] focused on second order
tensors (matrices) and led to non-convex and compu-
tationally demanding problem formulations. The pro-
posed ideas can be extended to higher order tensors at
1.1. Main Contributions the price of an even higher computational complexity.

In this paper we elaborate on a possible framework to Here we consider tensors of any order and elaborate on

extend the flexibility of tensor-based models by kernel- 2 different formalism that leads to convex optimization.
based techniques. We make several contributions: The approach fits into the same primal-dual framework
] ] o underlying SVM-like algorithms while exploiting alge-
e We give a constructive definition of the (feature) praic properties of tensors in a convenient way.
space of infinite dimensional tensors and show the

link with finite dimensional tensors that are used
in multilinear algebra. The formalism gives rise to
product kernels which comprise, as a special case, In the next Section we introduce the notation and
the popular Gaussian-RBF kernel. some basic facts about finite dimensional tensors and
spaces of functions admitting a reproducing kernel. In
Section B we study spaces of infinite dimensional ten-
sors which give rise to product kernels. Successively
in Section % we introduce a novel family of structure-
preserving factor kernels for tensors. Secfibn 5 is dedi-
cated to the study of an invariance property possessed by
the new kernels. Special attention is devoted to the case
where input data are temporal or spatial signals repre-
sented via Hankel tensors. In Sectidn 6 we then discuss
estimation of nonparametric tensor-based models in the
framework of primal-dual techniques. Successively we
e We study an invariance property fulfilled by the validate our finding by presenting experimental results

proposed kernels and introduce the concept of con- in SectiorL Y. We end the paper by drawing our conclud-

gruence sets. We highlight the relevance of this ing remarks in Sectidnl 8.

formalism for pattern recognition and explicitly

discuss a class of problems that takes advantage of ] _
the new similarity measure. 2. Notation and Background Material

1.3. Outline

e The Gaussian-RBF kernel and the linear kernel are
based on the Euclidean distance. However the lat-
ter does not capture the topological structure un-
derlying a number of objects of interests, such as
videos. In turn, such objects often admit a very
natural tensorial representation. We then introduce
a class of structure-preserving product kernels for
tensors that fully exploits the tensorial representa-
tion. This relies on the assumption that the latter is
useful for the learning task of interest.

e We elaborate on the primal-dual framework used e denote scalars by lower-case lettexsb(c, .. ),
in Support Vector Machines (SVMs) and related vectors as capitalsA(B,C,...) and matrices as bold-
algorithms and discuss implications of the tensor- face capitals A, B, C,...). We also use lower-case let-
like primal representation. As an additional contri-  tersi, j in the meaning of indices and with some abuse
bution we detail the rigorous derivation of Least-  of notation we will usel, J to denote the index upper
Squares SVM (LS-SVM) for classification based pounds. Additionally we write, to denote the set
upon results in infinite dimensional optimization. (1, ...,1}. We writea to mean thé—th entry of a vector
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A. Similarly we writea;; to mean the entry with row in-
dexi and column indey in a matrix A. Finally we will
often use gothic letterg(, B, ¢, ...) to denote general
sets or spaces, regardless of their specific nature.

2.1. Basic Facts about Finite Dimensional Tensors

In this paper we deal with input data observations rep-
resented as real-valuéd-th order tensors, which we
denote by calligraphic lettersA, 8,C,...). They are
higher order generalizations of vectors-t order ten-
sors) and matrices €hd order tensors). Scalars can

,,,,,

,,,,,

if it consists of the outer product & nonzero vectors
UD eR:, UPD eRb, ..., UN e R that s, if

W@ ... N

in iz in

1)

for all values of the indices. In this case we write=
UPeU®@®...@UMN, The linear span of such elements
forms a vector space, denoted Ry @ R? @ - -- @ RV,
which is endowed with the inner product

<ﬂ, 3) = Z Z oo Z ailiz.,.iNbiliz..,iN

i1 i2 IN

Aiji,..iy = U

(2)

and with the Hilbert-Frobenius norm|Alle
V(A, A). The latter is a straightforward extension of
the usual Hilbert-Frobenius norm for matrices and of the
[, norm for vectors, denoted simply tjy ||. In the fol-
lowing we will use(:, -) foranyN > 1 and|| - || for any
N > 1, regardless of the specific tupll,(>, ..., In).
Additionally, notice that for rank-1 tensoes,;, i, =
U2 andly, 4, = VDY

it holds that

(A, B) = <U(l), V(1)> <U(2), V(2)> ... <U(N), V(N)> . (3

It is often convenient to rearrange the elements of a ten-
sor so that they form a matrix. This operation is referred
to asmatricizationor unfolding

Definition 1 (h—mode matricization @]). Assume a
N-th order tensotA € R'* ® --- ® RN, The n-th
mode matrix unfolding, denoted ad,, is the ma-

trix R @ RY 5 Ap " = ay,.;, where
J = lhsilnee o Inlilols - 1Ihg and for R =
[N+1n+2--- N123---n-1] we have:j = 1+

Steiya [ = D Ty, In] -

We conclude this quick excursion on tensors by re-
calling the multilinear singular value decomposition
(MLSVD) [53],[54],[15] that shares many properties
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with the matrix singular value decomposition (SVD).
First we introducen—mode products.

Definition 2 (n-mode product [I']S]). The n-mode
product of a tensorA € R @ R? @ .- @ R~
by a matrixU € R™ @ R', denoted byA x, U, is a
(Ipxlox- - <X 1In_1 X InXIny1 X - -x 1) —tensor with entries
(A X0 Wigiz-in s jnines-in = RigeNyy Biaiz-in-sinine-in Ui -

2.2. Multilinear Singular Value Decomposition

Theorem 1(MLSVD[15]). AnyA € R":®---®R'~N can
be written as the product

A=8x1 U(l) X2 U(Z) X3+ XN U(N) (4)
in whichu® = [Ui”) ue ... Ul(:)] e R @R is an
orthogonal matrix andS e R""®- - -@ R~ is calledcore
tensor

Notably, as shown iHIiS], the core tensor features a
number of properties. In practice the matd¥) can be
directly found from the SVD decomposition of theth
unfolding A, = UMSMVM®T The core tensas then
satisfies:S = A x; UDT x, UDT x5y UNT

2.3. Reproducing Kernel Hilbert Spaces of Functions

An important role in this paper is played by (infi-
nite dimensional) spaces of real-valued functions. We
denote such a space by and we will often write
(%, (-, -)y) to indicate that) is endowed with the Hilbert
space (HS) structure defined according to some inner
produck-, -)s. The theory of reproducing kernel Hilbert
spaces (RKHSSE[l]I%] is concerned with HSs of func-
tions defined on an arbitrary abstract ¥etWe consider
the case wher& c R" @ R"? ® ---® RN and denote by
X a generic element €. We stress at this point that
might equally well denote a subset of scalars, vectors,
matrices or — more generally — tensors of any order.
We recall that a HSS, (-, -)s) of functionsf : X - R
is a reproducing kernel Hilbert space (RKHS) if for any
X € X theevaluation functional k : f — f(X) is
bounded. A functiork : X x X — R is calledrepro-
ducing kernelof $ if (i) ky = k(-,X) € $ for any
X e X (i) f(X) = (f,ky)s holds for anyX € X and
f € $. We write ), instead of$y whenever we want to
stress thak acts as a reproducing kernel for Point
(i) is the same as saying thiat is the Riesz represen-
ter [@] of Ly. From points(i) and (ii) it is clear that
k(X,Y) = (k. ky)s Y(X,Y) € X x X. If we now
let p(X) := k(X,-), we can se& as an instance of the
feature spac@ discussed in the Introduction. Alterna-
tive feature space representations can be stated. Recall



that given a countable sét, the space ofK-valued
square summable sequences is definedﬂfé‘ét) =

{(Xi)ieg[ stx e KVYiedandyy %% < oo} .

Theorem 2(I“2<(9l) feature space|:|[4.])A function k de-
fined on: X x X is a reproducing kernel if and only if
there exist®l and¢ : X — I5(2) such that

K(X. ) = (6(X). 6y

forany(X,Y) € X x X.

(5)

3. Non-parametric Tensor-based Models

We can now turn to the problem of interest, namely
the definition of non-parametric tensor-based models.
By tensor-based we mean that the input of our model
will be a tensotX. We will refer toX as thedata tensor
On the other hand we call “non-parametric” a model
that is not &ine in the data tensor. fAne models are
those of the type

frp(X) =(F.X) +b (6)
that are considered e.g. iE[43]. A related approach
found e.g. in |f5l1] considersfizne models with a
predefined 1-rank parametrization f@r: fi i, i,
vi(ll)vi(zz) . \/I(L\') . The corresponding supervised technique
is non-convex and results into an alternating scheme to
find b and vectorgvV®™ e R : ne NN}. We will com-
pare to this approach later on in the experimental Sec-
tion.

In the next Sections we will discuss a framework
to overcome the limitation entailed by the restrictive
model class in[{6). This is achieved by leveraging the
flexibility of kernel methods on the one hand and the
structure of data tensors on the other. Next we discuss
the integration with kernel methods starting from the
simplest cases.

3.1. Naive Kernels for Data Tensors
Notice that Theoref]2 implies that

k(X,Y) =X, Y) (7)
defined upon[{?2), is a valid reproducing kernel. Indeed
(B) reads her&(X, Y) = (vec(X), vec(V)) where vec|
denotes vector unfolding and the inner product in the
right hand-side is defined dk*'>-!v, Equation[(¥) is an
elementary generalization of the linear kernel defined
onRR'. This choice of kernel function is precisely what
leads to model of the typ&l(6). In a similar way other
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kernel functions admit a straightforward generalization
to the case where input data are tensors. For instance,
a natural way to generalize the popular Gaussian-RBF
kernel [40] to data tensors is

(X, 9) = oo -5lX - V) (@)
whereo is used to set an appropriate bandwitch. How-
ever observe that bothl(7) arld (8) treat tensor data as
mere collections of entries without keeping into account
the underlying structure. In particular notice that (8) can
be equivalently restated as:

[

peN|l><N|2><»-»><N|N

.9 = exp(~ 57300 -0 (@

namely as the product of Gaussian-RBF kernels each of
which is defined on the entries of data tensors. Suppose
now thatP denotes an operator that acts on data ten-
sors by permuting their entries according to some fixed
rule. Then we clearly havi(X, V) = k(P(X), P(Y)).

This type of invariance is not desirable in many practi-
cal situations. For the case of grayscale images, hamely
second order tensors, the use of this kernel leads to ig-
noring the relation between each pixel and its neighbors.
For videos , namely third order tensors, it would addi-
tionally neglects the temporal structure.

Notice that [[B) is a special case of a more general
class ofproduct kernels Later we will introduce a dif-
ferent choice of product kernel that conveniently ex-
ploits the algebraic structure of data tensors. First we
show in the next Section that product kernels can be
seen to arise from a space of infinite dimensional ten-
sors. This fact is relevant on its own as it shows that
these kernels are strictly connected to the notion of finite
dimensional tensors on which tensor-based techniques
are grounded. The consequences of this fact will be dis-
cussed in Sectidn 8.2.

3.2. Space of Multilinear Functionals

Assume RKHSS f1,()0.), (92,2 )s)s- s
(5P, (-, )¢p) Of functions onX and for anyp € Np let
kP : X x X — R be the reproducing kernel ¢f,. We
recall that

lﬁ:ﬁlx.ﬁzx---xﬁp%R (10)

is a bounded (equivalently continuous) multilinear func-
tional [27], if it is linear in each argument and there ex-
istsc € [0, o) such that

ly(hy, ho, ..., hp)l < cllhallg, lh2llg, - - - 11Nplls,



forall hy € $;, 1 € Np. Itis said to beHilbert-Schmidif
it further satisfies

Z Z Z ly(er. e, ....ep)7° < oo

€€ &€ epeCp

for one (equivalently each) orthonormal bagjsof ),

p € Np. It can be shown@?] that the collections
of such well behaved Hilbert-Schmidt functionals en-
dowed with the inner product

Wbmse= Yy e

e e¢; e,
D, wene. e ee) (1)
epeCp

forms — by completion — a HS that we denote by HSF.

Proposition 1. The multilinear functional associated to
any P—tuple(hl, hz, ey hp) €ENHIXH XX Hp and
defined by

l//hl,hz,,.,,hp(f:b f2’ ey fP) =
<h17 fl>ﬁ1<h27 f2>ﬁ2 e <hP7 fP>-ﬁP (12)
belongs taAHSF. Furthermore it holds that
<l//h1,h2,...,hp7 l/’gl,gz,...,gp>HS F=
(h1, 91) 6,2, %), - - (NP, OP) 5 - (13)

In particular for anyX € X the multilinear functional

l//kll\,,k)z(,...,k;(fb f27 IR fP) =

Ky, T30, Ky T2)s5, - - (KT, TR
f1(X) F2(X) -+ fp(X)  (14)

belongs toHSF. Finally we have for anyX € X and
YeX,

Wi 1. YKL ..kE IHSF =

KHX, KX, Y) - KX, Y) . (15)
Proof. See Appendik Appendix]A. O

3.3. Link with Finite Dimensional Tensors

A comparison between rank-1 elemeifis (1) (12)
and betweer (13) anfll(3) clarifies the relation between
the finite dimensional case and its infinite dimensional
extension. Notice that starting froln{12) one can let

hi®hy - ®@hp = Yn.h,. e (16)

and define the tensor product spage® 9, ® - - ® Hp
as the completion of the linear span

spar{h1®h2®~-~®hp : hie$Hi,ieNp}.

This approach gives rise to a space of infinite dimen-
sionalP-th order tensors. The construction mimics the
wayR"* @ R ® --- ® RN was constructed based upon

elements[{ll). However in the next Subsection we give
a different derivation which emphasizes the role of re-
producing kernels, a key feature to construct practical
algorithms.

3.4. Reproducing Kernel Hilbert Space Induced by
Multilinear Functionals

Recall from [I#) the definition of the multilinear
functionalyyt 2 e Let

¢: X — HSF

X = Y an
and defin&k : X x X — R by
KX, Y) = ($(X), $(Y))isF - (18)

Notice that according ta_(15k can be equivalently
stated as the product kernel

KX, Y) = KX, KX, Y) - KX, Y)  (19)
where forp € Np, kP denotes the reproducing kernel
of ;. In the following, in light of [18), we calk the
tensorial kernel Notice thatk is positive definite since
it arises from the well-defined inner produgt-)nse
and inner products define positive kernéls [4]. As well
known, a key feature of kernel methods is that it is not
needed to define the feature map — which is giow-
explicitly. Rather, one can choose a positive ketel
and exploit the so-callekernel trick In turn, since by
(I9) the tensorial kernet is obtained by the product
of the factor kernelgkP} .y, choosingk amounts to
choose the factors.

4. Factor Kernels for Data Tensors

It is important to stress at this point that, as equa-
tion (@) shows, the Gaussian-RBF kernel is also a ten-
sorial kernel with factors that depend upon the entry-
wise evaluation of data tensors. However, as discussed

See e.g. [[40, Definition 2.5] for a formal definition of pogti
definite kernel.



in Sectior 3.1L, this tensorial kernel does not take advan- only to ensure that the factor kernels are positive definite
tage of the additional structure Bf* e R? @ - -- @ R'™. which in turn guarantees th&t{19) is a valid reproducing
More generally, the naive kernels that were considered kernel. This, in particular, imposes restrictions on the
in Subsectiof 3]1 act on the data tensors as if they werechoice of the distance functioth Notably, however,
vectors ofR'1'>Iv_In this way one defines the distance the definition in [2D) implies that the product kerrkel
between two tensord andY as the lengthlX — Y||r in (I9) can be equivalently restated as the RBF kernel
of the straight line segment connecting them. Itis well k(X,Y) = exp(1/(20?)dr (X, Y)?) that closely resem-
known that many objects of interest live in low dimen- bles [8) but dffers in that the Euclidean norm s replaced
sional manifolds embedded in high dimensional vector by the non-Euclidean distance function defined as:
spacds. In all these cases the Euclidean metric is subop-
timal to_ capture the topology of th_e input patterns. To dr(X, ) = Z (X s Y )2 . 1)
cope with such cases we will now introduce, as factors,
a new class of kernel functions based upon the chordal
distance on the Grassmannian manifolds of matrix un- |n (20) we have useg to index a generic matrix unfold-
foldings. As we will show this links to the MLSVD and ing — and notn — to stress that we can consider, as
possesses an interesting invariance property. In generakactors, kernels based on matricizations indexed by any
the choice of a kernel function should be addressed casesubsefjs ¢ Ny. The choice of factors to be retained can
by case depending on the specific aspects of the problempe guided by suitable information criteria such as the
of interest. Nonetheless we will show in Sectdn 5 that, kernel-target alignmenm]_Z]_ In the following we will

in virtue of its properties, the proposed family of ker- assume for simplicity thai3 = Ny and usen instead
nels especially suits certain tasks involving the analysis of p. Later we will show that this case enjoys a special
of temporal (or spatial) signals. invariance property.

neNy

4.1. Distance Between Matrix Unfoldings

Next we address the problem of defining a similar-
ity measure taking advantage of the algebraic struc- It turns out that any unitarily invariant metric
ture of input tensors. This can be achieved regarding ©" & Grassmannian manifold connects to the no-
tensors as the collection of linear subspaces comingtion of principal angles Let us recall that for

4.2. Relation with Principal Angles

from each matricization (see Definitigh 1). Assume for R = min{dim(R(X<p.)), dimR(Yn-))} the prin-
now thatly, < lpilpa - Inlylalg -+ Ipg and de- cipal angles 9(1”),92”),...,9(,?”) between R(X.n.) and
note byR(W) the row space of a matriw/ € R" @ R'2, RYn.) can be defined recursively by caSl) :=
RW) := {WTA c Ae R'l} c R'2. More precisely we XER(X<S$§R(y<n>)<X’ Y) = (X0, Y") subject to]|X|| =

can define for some € R* IVl = 1 and(X. X0y = Y.YDy = 0 fori e N,_y.
1 Among the various distance measures arising from
kP(X, Y) = eXp(—r‘_zd(X<p>’y<p>)2) (20) the principal angles [17] a suitable distance between
R(X<n-) andR(Y .n.) is theprojection Frobenius norm
where d(Xp-, Y<p-) denotes a suitable distance be- (also known ashordal distance[lﬂ]). It relies on the
tweenR(X<p>) and R(Y<p.) on theGrassmann man-  one-to-one correspondence between a subspiamed
ifold corresponding to the set df dimensional sub-  the associated orthogonal projectidn and is defined
spaces in alf. -+ Inlil2l3 -+ Ip-1)-dimensional  by:
vector space.

The idea of using subspaces has already been ex- dpr(X<ns, Yans) = ||HR(X<n>) - Nrw_.)
ploited to establish a similarity between matriced [21]. NG
This choice has been shown to be relevant in a num-
ber of tasks such as face recognition, see é.g. [3] and
reference therein. The choice of using an exponential
in (20) is to a large extent arbitrary. In fact, one has

F =
sing™||, (22)

where sird™ is the vector obtained taking the sine of
each one of the principal angles betweenthéh ma-
trix unfoldingsX .. andY ... This specific choice of
distance gives rise to positive definite kernels.

For instance, the space of linear dynamical systems, whieh a . .
determined only up to a change of basis, has the structur&téfel Theorem 3. If the distance function d corresponds to

manifold. the projection Frobenius norn22) then the tensorial



kernel k obtained from the product of factd8g)is pos- X = VSOV
itive definite.

) (@ T
Xa2> = UxiSxa VX1

3) (@ AT
Xa3> 2> UxiSx1 VX1

Proof. The proof is given in Appendix O

4.3. Factors, Tensor Dimensions and Degeneracy

At the beginning of Subsectign 4.1 for ease of presen-
tation we made a precise assumption on the dimensions
of the n—th matrix unfolding. We shall now discuss all
the three possible situations for the case where factors Yz = U SV
are defined upon the chordal distanie:

M) (O T
Ya> 2 Uy Sy Yy

{2) ((2) T
Y 2 Uy Sy Yy

) Figure 1: An illustration of the tensorial kernebased
case Liln < Inialnez -+ Inlal2ls -~ Ina. This  ypon factors[{24). For-ad order tensorst and Y it

is the case that we considered above. It holds that requires to Compute the SVD of the matrix unfoldings
dpr(X<ns, Y<ns) > 0 and henc&(X, Y) < 1 un- Xene andY .
lessX . n- andY .. span the same row space.

case 2:n > lnprlnee -+ Inlp 1o I3 -+ In21. IN this
case we definé” in (20) based upon a distance
between column spaces instead of row spaces.

. . sm o (mT
case 3iln = Inetlnez -+ Inl1l213 -+ In-1. Under Xy =(UF, UP, )( S )( U J (23)
this condition we have that"(X,Y) = 1 unless X2

bothX_.,. andY .. are rank deficient. In practice ] ] )

when dealing with real-life noisy data this event Where entries on the_dlagonalsffyl are assumed to be
does not occur. Thus, in general, theth matri- ordered in a decreasing manner. A well known property
cization is uninformative and we can avoid com- ©f the SVD decomposition states now that the orthogo-
putingk" since it does not contribute to the prod- Nl Projection operator ont&(X <) is given by

uct kernel [IP). Notice, however, that the case of
square matrix unfolding can occur at most for a
single running index € Ny: the remainingN — 1

are guaranteed to be non-square and informative.

n € Ny. The latter can be stated in block-partitioned
form as:

n n)T
HR(X<n>) = V/(Y,)lV/(Y,)l .

Hence computing the tensorial kernel based on the pro-
jection Frobenius norm, corresponds to computing the
MLSVD (equivalently finding the SVD of the matrix

A ner xample of the thir R? .
$ a concrete example of the third casedee ® unfoldings) and let the factor kernel be

R3® R3. The first matrix unfolding is square and hence

in general uninformative where&X_,.) andR(X.3.) 1 2

are both 3-dimensional subspacesRf and we can K'(X,Y) = exp(—ﬁ ”V?)lV,(Vn)lT - Vf;)lvf;)fHF) :

conveniently compute their similarity based upon the in- (24)

formation they share. Figure[1 illustrates the computation of the tensorial
We conclude noticing that, in particular, case 3 never yerne| based on the SVD’s of the matrix unfoldings.

arllses forCL|1b|ctensors namely for elements Rfl_ ® Simple matrix algebra shows thdi{24) is equivalent

R2®---@R'™~ wherel; =1, =--- = Iy = |. In practice, to k"(X,Y) = exp(—ﬁan _traceZTZ)) whereZ =

as in Subsection 5.3, the tensor representation is often .\ o . _ _
enforced by the user for instance to take advantage of Yx1 V.1 This formula is more ficiently computed
certain characteristics of data, such as their dynamical than the right hand-side df.(p4).

nature. In these situations the dimensions of the tensor

representation can be chosen and hence one can avoig Congruent Data Tensors and Invariance Property
degenerate cases. Next we clarify the relation with the

MLSVD of sectior(2.P. How to describe the intrinsic geometry of mani-
folds in learning problems is an important issue that

4.4. Link with the MLSVD involves the understanding of certdivariance prop-
Recall that, at a matrix level, the MLSVD df boils erties[lﬂ]. In this Section we consider cubic data ten-

down to the SVD of the matrix unfolding¥,,, where sors and study the invariance property that follows from



regarding tensors as the collection of linear subspacesof factor kernels[(24) ensures that perfect class sepa-
spanned by each matricization. As in the previous Sec- ration is achieved. For practical problems, however,
tions we shall assume that the tensorial kernel is definedone does not know in advance if classes are well ap-

upon the projection Frobenius nortpe: k(X,Y) = proximated by congruence sets. The question is then

exp1/(20?) ¥ nen, dpr(X<anss Yans)?). if the embedding implied by factor kernels still cap-
tures the structure of the learning tasks of interest. In

5.1. Congruence Sets and Invariance fact, in the statistical learning literature several resul

In the following two data tenso and.Y are called exist showing that generalization takes place if this is
congruentf k(X, ) = 1. Additionally if k(X, ) = 1 the case. This type of insight can bg achieved, for in-
for any pairX,Y e X, then we callX a congruence  Stance, based upon ke_rn_el—target_ahgnm@t [12]. As-
set A characterization of tensors by means of subspacesSUMe We are given a training setidfinput-output pairs

[14] shows that congruence sets arise, in particular, in {(X(m), m) €XXY 1 me NM} . Recall the definition
the following case. of inner product[(R) for tensors of arbitrary order. Then

the (empirical) kernel-target alignmefgK, Y) is
Theorem 4 (Congruence Classes of Data Tensors)
Assume matricesA = [ApAs---,ARl, B = AKK.Y) = (K, YYT) (26)

[Bl,Bz,---,BR],CZ[Cl,CZ,---,CR]€R|®RRWith Mm
fullrank R. Asett c R' @ R' ® R' is a congruence set _
if for any X € X and represents the agreement between the kernel matrix
(K)ij = k(X®, X)) and the set of label¢. A concentra-
X = Z d A ®B ®C, (25) tion bound shows that this empirical quantity is concen-

trated around its population counterpart; in turn it can be
shown that if the population alignment s high then there
for some D= (dy,...,dgr) € CR. always exists a good classification hyperplané [11].
Equation[(Zb) only depends upon the kernel makrix
and the training labels. Hence the alignment can be used

_ . o as a criterion to compare ftirent similarity measures
with respect to the specific value of the multiplier vec- o14q training the corresponding models. Finally it is

tor D in (23). Notice that the result holds also for the important to remark that the alignment is clearly task
case where elements af are general complex-valued  yonendent: for the general case it is hard to grasp be-
t_ensors. A_formal prpof of Theorem 4 requires add'_' fore computing the kernel matrix if the similarity mea-
tional tec_hnlcal material ar_1d is beyond the scope of this ¢ .a qoes capture the structure of the problem. In prac-
manuscript. I_:urther details are four_1d E'[M] _that ac ticeitis expected that the factor kern€Isl(24) outperform
tually deals with a brogder spemflcanon of eqt_uvalence general purpose similarity as soon as classes are well
clgsses. Our next goal is to hl_ghllght the significance of approximated by congruence sets. The purpose of the
this result for pattern recogpnition. next Subsection is then to illustrate a special case where
this situation arises.

reNg

Before proceeding it is important to stress that con-
gruence set membership of a data tensas invariant

5.2. Implications for Pattern Recognition

A first important remark pertains the nature of con- 5.3, The Special Case of Hankel Tensors

ruence sets. . . . o .
9 In this section we consider a specific class of tensorial

Remark 1. If X; and X, are congruence sets corre- fepresentations. We focus of the case where input ten-

sponding to matrice§As, B1, C1} and{Az, By, Cy} re- sors with Hankel structure were constructed based upon
spectively, thetA1, By, C1} # { Az, By, Co} implies that univariate signals. Lefsp, sy, --- , Sr-1} be a sequence
the two sets do not intersecff N X5 = 0). of T real-valued numbers that represent a sighain

a time (or space) domain. We shall assume that the we
In light of this, the machinery of congruence sets is seen can write

to have an immediate application for pattern recogni- =1

tion. In fact, suppose that we want to discriminate be- s =) &% (27)
tween classes that are known to coincide with separate k=0

congruence sets. In this limiting case we are guaran-where  {&,&1,---,ér-1}  is a sequence  of
teed that the within class distance is exactly zero and T complex-valued = numbers that represent
the between class distance is strictly positive. The use weights and {zﬁ zg, - ,z{‘l} are powers of

8



zx = exp((i2rfc — dy)At), the k-th pole of the sig- 6. Model Estimation
na|. One specific situation arise whdp = 0, fx = k

and finally At = % in which case[(27) is the Inverse

Discrete Fourier Transform (IDFT)![8]. The weights We now turn to the general learning problem of inter-
collectively form the spectrumof the original sig- est. We want to estimate a modeto predict a target
nal S. Assume now integer, |, and I3 satisfying ~ variabley € 9) C R from an input patterX’ € X given
l1+1,+13 = T+2. TheHankel tensoX € R"@R'"2QR's atraining set oM input-output pairs

of the signalS [@] can be defined entry-wise by
{(X(m),ym) €XX9 : me NM} .
Xi1i2i3 = Sl+i2+i3*3 . (28) . ) . . )
Sincekin (]]]lﬁls of positive type, the Moore-Aronszajn
In light of (24) and a fundamental property of the (com- theorem|[l1][4] ensures that there exists only one Hilbert
plex) exponential we now have that can be equiva-  spacef), of functions onX with k as reproducing ker-

lently restated in terms of rank-1 tensors as: nel. The estimation of a non-parametric modeXofan
then be formulated as a variational problem in the func-
2271 2271 28_1 tion spacek. In spite of the infinite dimensionality of
2&_1 2&_1 2&_1 the latter a solution can be found based on finite dimen-
X= Z St ® : ® : - (29) sional optimization as ensured by representer theorems,

| :71 -1 lo-1 see([2b],[[30].
Z. 4 zly Z’
When X is cubic the latter is seen to be a special case _ _
of (25). Theoreni4 means, in this context, that two cu- 6.1. Primal-Dual Techniques
bic Hankel tensors are congruent if the corresponding

signals decompose into the same poles. For the IDFT  ap aiternative approach relies on primal-dual tech-

case this means that the two cubic Hankel tensors aréniques that underlies Support Vector Machines (SVM)
equivalent if the spectra of the corresponding signals 5 related estimatorﬂ4&4m49]. In this case one

share the same support. Hence the proposed kernel ingarts from a primal model representation of the type:
combination with Hankel tensors is well suited for the

case where, within the same class, signals have approx- fro ) (X) = (P, r;b(X))HSF +b. (31)
imately the same spectral content.

The primal problem formulation is then aimed at finding
an optimal *,b*) € HSFx R. Notice that the latter
defines an fiine hyperplane in HSF. Remarkably, (31)
is afine in¢(X) as much ad{6) isfAne inX. However
since is in general a nonlinear mappindy  does

For ease of exposition, i (28) we have chosen to
deal with the simplest notion of Hankel tensors. An
alternative and more powerful definition of Hankel ten-
sors exists for univariate signaE[BG] and also the multi-
channel case can be dealt Wim[35]. Due to its sym- h : . ;
metrical nature, the Hankel tensdiras defined above not _d(_a_pend linearly oi which provides the improved
satisfiesX<1. = X< = X3 which is not the case for erX|b|I|j[y of the model._ _
the alternative definitions. In practice this means that ~Relying on Lagrangian duality arguments the prob-
when applied to this type of Hankel tensors the tenso- |€m is re-parametrized in terms of dual variables

rial kernelk based on factor§24) can be simplified to {@mlmer, and solved in¢.b) € RM**. In comparison
with the methodology based on representer theorems

the primal-dual approach emphasizes the geometrical
aspects of the problem and it is particularly insightful
when®) = {+1, -1} and [31) is used to define a discrim-
inative rule of the type/ = sign(fe« p+)(X)). Addition-

ally, primal-dual techniques are best suited to deal with
supplementary constraints that might be used to encode
prior knowledge. Vapnik's original SVM formulation
[|E] translates into convex quadratic programs. By con-
trast, in least-squares SVM (LS-SVM) [48], a modifica-
tion of the SVM primal problem leads to a considerably
We denoted by the imaginary unit = V-1. simpler estimation problem. In particular, the primal

1 2
_ 1) /@) (WRYIY)
k(X,Y) = exp(—ﬁ HVX,l\/X,lT - Vyn,lvy,lT”F) (30)

where we considered only the first matricization. In
Section[T we will provide explicit examples both for

univariate and multichannel signals. Finally we remark
that a diferent approach for the classification of signals
can be based otumulant tensor@].




formulation for classificatiorl [50] reads in our setting: Table 2: Model estimation with factor kerne[s124)

(W,E,b)ewéngMxR %(‘P, Y)nsk + )’% Yty € input: y, o, training pairs{(X(m),ym) ime NM}.
subject to ym((¥, ¢(X™))se + b) = 1 — ey, me Ny, comment: ComputeQ
(32) for eachm;,m, e Ny and m > m;
wherey > 0 is a user-defined tradefgarameter. It is for eachn € Ny
possible to show that the estimation can be performed V;"Rm «  SVDXY)
solving the following system of linear equations: do ) do V;"()WZ)J — SVD(X'™)
Zw < V(n()mT> V(r?mz)
0 YT b 0 X1 7 x) 1
[ Y Q+1 H @ ]: 1 (33) &« ln-trace@qZq)
y M M (Q)mymy — Yim Yy ©XP(— (81 + 8 + -+ + &)
— M o Q—Q+Q" +1y
\évzh:rﬂgmxé RM(:iLS, ?j’éfi.n’el(i eentlrgy-\,lvilsl\(; by diag(lu) and comment: Find model parameters
Solve [33) for giverf2, Y and parametey .

(@) = yyi D), FXP)se = yiy kX, X1D).

Finally to evaluatefwy- ) at a given test poink, the  present context the interpretation of equatiad (35) sug-

dual model representation is exploited: gests that an additional complexity measure might be
P ) based on some generalized notion of rank [25],[24]. Re-
fes o) (X) = Z YmamK(X™, X) + b . (34) cently the use of the nuclear norm was proposed to de-

TT\ENM

fine convex relaxation for rank constrained matrix prob-

Notice that problem[{32) involves the infinite dimen- !em [37]. This approac;h parallels th_e use of.l:h_eqrm.
sional multilinear functiona¥ € HSF and the results of ~ IN_SParse approximation and cardinality minimization
finite dimensional optimization do not apply rigorously. 1[1€]. Extension of the nuclﬁ] norm to higher or-
Theories of optimization in abstract vector spaces are d€r tensors has been considered.| [43], [33]. Hence we
the subject o 4]@8]@0]|]2] anﬂiG] among others. remark that an interesting extension, that we do not ap-
For Vapnik’s SVM formulation a rigorous primal-dual ~ Proach here, might be to consider a penalty of this type

derivation is discussed i [32]. Similar results for LS- N the infinite dimensional setting of problem {32).

SVM have not been reported, to the best of our knowl-
edge. As an additional contribution we then give a for- 7 Experimental Results
mal derivation irf Appendix C.

The procedure to compute a model with the tenso- 7.1. Classification of Sparsity Patterns
rial kernel is summarized in Tablé 2. It is assumed that
both the parameterin 33) ando in 24) are given. In
practical applications the choice of these parameter is
performed according to some model selection criterion
often based on cross-validation.

The purpose of this experiment is to test the impact of
the invariance property studied in Sect{idn 5 on a classifi-
cation problem. LeE! € R' be thej-th canonical basis
vector defined ag’ := 1if i = j ande’ := 0 otherwise
and letA; € R' ® R' @ R' be the rank-1 tensor defined

6.2. Structure-inducing Penalties as.

It is worth noticing that the optimality conditions of
[32) (seel[CR)) yields We generated data tensorsith® R' ® R' according to

the following model:

Aj=El®E/®E!.

P = g ymd(X™ 35
ﬂg\;m mymd(X) (35) XM — amA1 + bnAg + CnAz + M, if v = +1
T amAs + bnAs + Cndg + EM,if y = -1
which — given the nature of HSF — shows that the opti- (36)

mal multilinear functionaff* has at most rankl where where a,,, by, and ¢, are i.i.d. from a zero-mean
M is the cardinality of the training set. In SVM-like Gaussian distribution with variance 1 52 and the
algorithms the complexity of the model is usually con- entries of the noise tensa&®™ are i.i.d. from a
trolled by a notion ofmargilmS] which is here attached zero-mean Gaussian distribution with variangé

to (¥, ¥)usk, the squared Frobenius norm8f In the We then consider the binary classification problem
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that consists of estimating the underlying label of a 10-fold cross-validated misclassification error. The
given test data tensor. A comparison betwéen (36) and same approach is used for the regularization parameter
(29) reveals that fog? = 0 (noiseless case) the two needed for linear rank-1 models. Table 3 refers to the
classes of tensors correspond to separate congruence

sets, see also Remdrk 1. Additionally, this task can be Table 3: Accuracy on test data fbe 7, g% = 0.05

regarded as the classification of vectorsrot having AUC performance: mean (and standard deviation)

two different types of sparsity patterns, see Fidire 2 for M || tensorial[ID){2K)| Gauss-RBFB)| linear rank-1 [51]

the case wheré = 3. We use the LS-SVMlab tool- o g'gg((g'g‘s‘g 8'232883 8’2288‘3‘;
20 0.88(0.09) 0.61(010) 0.50(002)

) ) 28 0.92(0.02) 0.60(010) 0.50(002)

5 5 42 0.94(0.02) 0.63(0.10) 0.50(002)

o o 60 0.95(0.02) 0.69(008) 0.50(001)

: : 80 0.96(0.02) 0.73(007) 0.50(001)

1 1 110 0.96(0.01) 0.80(005) 0.50(001)
,\0;)5 VL,‘ ‘o RN ,\0;)5 IT? . T R, 150 0.97(0.01) 0.84(004) 0.50(001)
;J-O.SI P’ 1 AM‘L%L T % S 3 LR B ) L 200 0.97(0.01) 0.88(003) 0.50(001)

-1 -1
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Figure 3: Synthetic examplé,= 10, 2 = 0.005 and

0 5 10 15 20 25 0 5 10 15 20 25 . . .
i i increasing number of training examples. Boxplots of

(b) class 2 AUC obtained over the same 200 test patterns for for the
Gaussian-RBF kern€l 3{a) and for the tensorial kernel

Figure 2: By vector unfolding the experiment of Section [3(b).
[Z.2 can be interpreted as the classification of sparsity ) ]
patterns of (noisy) vectors. As an example we take here @€ of increasing values bf, | =7 andg” = 0.05. We
| = 3 and plot the 27 elements of the vectorized version '€Ported the mean value and standard deviation of the
of data tensors generated accordingd (36). The solid Aréa under_ the receiver operating charac?erlstlc Curve
green dots in plots 2a) arfid 2(b) represent two hypo- (AUC) obtained across 100 random experiments. Each

thetical index sets of non-zero entries before corruption AYC was computed based upon the predicted labels
by gaussian noise with variangé of the same 200 test patterns. Similar results were

obtained for the case whele= 10 ands? = 0.005. For

box  (www.esat.kuleuven.be/sista/lssvmlab, this case Figurgl3 reports the box plots of AUCs for the
[13]) and perform training withM input-output pairs  two RBF-type kernels. In all our experiments the linear
{(X(m),ym) : meNy{. We compared the naive rank-1 models consistently achieved random guessing

Gaussian-RBF kernel functiofill(8) (Gauss-RBF in the performance. The same behavior was observed for the
tables) — which corresponds to vectorizing the tensors linear kernel[(¥) (not reported in Taljlé 3). The tensorial
— with the tensorial kernel based on factofs](24) kernel outperforms the Gaussian-RBF kernel showing
(tensorial in the tables) for increasing valued\wbf We that the proposed approach is useful even when the
also compared withfine tensor-based models (6) with  classes are only approximated by congruence sets (due
fixed rank-1 parametrization (linear rank-1). We use to the fact thais> # 0). In general, the quantitative
guadratic loss as for the kernel-based classifiers and findmeasure of kernel-target alignment proposedm [12]
the model via the alternating approach proposemh [51]. can reveal before training how well ftBrent kernel

For the kernel-based procedures we tune the kernelfunctions capture the structures of the problem. A good
parameter- and regularization parametgbased upon  alignment often results in visually detectable patterns,
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www.esat.kuleuven.be/sista/lssvmlab

(@

(b)

Figure 4: Classification of sparsity patterpé & 0.05
andl = 10). Here kernel-target alignment appears from
the pattern of i-diagonal entries of kernel matricgs.](a)
the 1-rank matrixy Y™ obtained from training label¥.

the tensorial kernel matrix leading to superior clas-
sification accurady (f) the Gaussian-RBF kernel.

see Figurd 4. In general we observed that models
based on the Gaussian-RBF kernel (whichiméversal
[@]) also reach perfect classification accuracy when
M is suficiently large. This shows that exploiting the
underlying invariance property is relevant especially for
small sample size problems.

7.2. Recognition of Signals

We now present a simple example to illustrate Sub-
section[5.B. We generated two classes of real-valued
signals corrupted by noise. Each class consisted of sig-
nals with diferent spectral content. Specifically, each
signal S was a sequence of the tygey, 1, , S57)
where

anda € R was a vector of i.i.d. random variable
drawn from a normal distribution. Notice tha§ in the
previous is defined upon the signal’s label. In turn, the
latter was taken to be i.i.d. from a Bernoulli distribu-
tion with probability 05. Finally e was a white noise
sequence with normal distribution. Following this ap-
proachM signal-label pairs where generated for train-
ing. The 57-dimensional vector corresponding to the
m-th training signaB(™ was either fed directly into ker-
nels for vectors:

k(s(ml), S(mz)) - exp(_o_z st - S(mz)||2) (37)

k(S(ml)’ S(mz)) - <S(m1)’ S(mz)> (38)

1
101

ify=+1

s = Z ay Cos(Ayntk/10) + 0.5¢, Ay = ify=-1

kENlO

called respectively Gauss-RBF vec and linear vec, or
first converted into an Hankel tens¥if™ e R?0x R?0x
R?° as explained in Sectidn 5.3. For this latter tenso-

simplified version of tensorial kernel that holds for Han-
kel tensors[(30) (tensorial). We also consideréiha
tensor-based models (6) with fixed rank-1 parametriza-
tion (linear rank-1). The accuracy of the corresponding
models, measured on the same set of 200 test patterns,
were reported in Tabld 4. As in the previous example the
tensorial kernel leads to far more accurate predictions in
the low range oM. All the affine models (linear, lin-
ear vec, linear rank-1) achieve random guessing perfor-
mance. Finally notice that Gauss-RBF vec outperforms
Gauss-RBF. This is expected since vectorized Hankel
tensors contain the same information as the vectors they
are generated upon. In turn their dimensionality is con-
siderably higher.

Table 4: Accuracy for the signals example

AUC performance: mean (and standard deviation)

M tensorial[30) Gauss-RBH{B)| linear rank-1 [51]
10 0.88(0.04) 0.54(006) 0.50(002)
14 0.9(0.03) 0.55(007) 0.50(003)
20 0.93(0.05) 0.64(009) 0.50(002)
28 0.94(0.09) 0.71(0.10) 0.50(002)
42 0.97(0.01) 0.77(012) 0.50(002)
60 0.98(0.01) 0.86(0.09) 0.50(002)
80 0.98(0.01) 0.73(007) 0.50(001)
110 0.99(0.01) 0.81(020) 0.50(001)
150 0.99(0.01) 0.83(020) 0.50(002)
200 0.99(001) 0.90(0.18) 0.50(002)
M Gauss-RBF ved(37)| linear vec[[(38) linear [)
10 0.57(007) 0.50(003) 0.50(003)
14 0.64(008) 0.50(003) 0.50(003)
20 0.69(0.09) 0.50(003) 0.50(003)
28 0.75(009) 0.50(003) 0.50(004)
42 0.87(005) 0.50(003) 0.50(004)
60 0.93(003) 0.50(004) 0.50(005)
80 0.96(002) 0.50(0.04) 0.50(004)
110 0.98(001) 0.50(0.04) 0.50(004)
150 0.99(0.01) 0.50(004) 0.50(004)
200 1.00(0.00) 0.50(003) 0.50(004)

7.3. Libras Movement Data

Next we consider the Libras Movement Data Sel [19]
that contains dferent classes of hand movementtype of
LIBRAS (the Brazilian sign language). Each class con-
sists of 24 bidimensional trajectories performed by the
hand in a period of time (45 time instants for each hand
movement). So each input pattern is ax42 matrix.

We considered binary discrimination betweefiefient
pairs of hand movement types. On the one hand each
matrix was vectorized and fed into the same kernels for
vectors considered in the previous Subsection (Gauss-
RBF vec and linear vec). On the other hand based upon
each row of the input matrix, a 8 40 Hankel matrix
was formed. The & 40 x 2 tensor obtained stacking
together these 2 matrices has a partial Hankel structures

rial representations we then used the Gaussian kernell3€] and features similar properties as the Hankel tensor

(B) (Gauss-RBF), the linear kernél (6) (linear) and the
12

we discussed in Sectidn 5.3 for the case of univariate



signals. This tensor representation was then used within
kernels Gauss-RBF, linear and tensorial. Also rank-1
affine models were considered. For each binary classifi-
cation task we compared the AUC curve obtained over
100 runs of LS-SVMIlab. For each run we considered a
different splitting into training and test set of the 48 time
series available. In particular we take 8 for training and
40 for testing. Results for tferent pairs of classes are

reported in TablEJ5. W T,
p -n L{ ‘
Table 5: Accuracy on test data for Libras ‘ e -

(b) class 9 (jumping)

AUC performance: mean (and standard deviation)

task || tensorial[ID)H2¥) Gauss-RBH{B) linear rank-1 [51] .
Tvs2 0.830.07) 0.76(011) 0.68(016) Figure 5: Examples of frames taken from low-
1vss T 08000 oseare resolution videos of human activities.
1vs5 1(0) 0.97(006) 0.87(012)
1vs6 1(0) 0.95(007) 0.85(013)
task linear [2) Gauss-RBF ve§(37)| linear vec[(3B)
Ivs2 0.77(012) 0.75(011) 077(012) obtained centering the columns of the 2801 matrix
1vs3 0.94(009) 0.98(0.05) 0.95(008) 5 L .
1vs4 0.94(008) 0.98(003) 0.95(007) X5 . We compute from thé/ x M empirical covari-
ivsg 82;%(813) 88;(882) 8’22(8(1)3) ance matrix 1129X_3. X", the 4 principal eigenvec-
v 88(010) 195(000) 86(010) torsE = [Ey, -+ , E4] € RM ® R* and finally obtain the
10 x 13 x 4 data tensoX from reshapingX’ , E. As
7. 4. Aerial Views a result of this normalization procedure for each binary
classification task we are left with 24 3013 x 4 input
Table 6: Accuracy on test data for Aerial Views tensors and corresponding target labels. For each task

we considered 8 tensors for training and the remaining

AUC performance: mean (and standard deviation) 16 for testing. We compared the linear and Gaussian-

k ial Gauss-RB . . .

1&,232 ‘6”3322"0,%” a2 %9735(025”8’ RBF kernel with the tensorial kerndl[ (19)-(24), linear
3vs9 1(0) 0.70(025) kernel [7) and rank-1 modelﬂSl]. As before we av-
5vs 6 0.99(0.02) 061(018) X :
7vs8 0.95(0.05) 058(017) eraged the performances over 100 replicates obtained

task linear [3) linear rank-1 [51] from_ random s.plitting of training and test set. Results
Tvs2 0.950.06) 0.79(020) for different pairs of classes are reported in Table 6.
3vs9 0.99(004) 0.99(005)
5Vvs 6 0.86(012) 0.82(014)
7vs 8 0.92(009) 0.70(019)

8. Conclusion

In this paper we have introduced a new framework
These experiments are about the Aerial View Activ- to go beyond the class offane models considered in
ity Classification Dataseﬂ[6]. The goal is to discrim- the existing supervised tensor-based methods. This was
inate between pairs of human actions from the given achieved by exploiting the flexibility of kernel meth-
low-resolution grayscale videos, 12 per action. Each ods on the one hand and the structure of data tensors
video is a 3-rd order tensor where the first two dimen- on the other. We began by showing that product ker-
sions represent number of pixels of each frame and thenels, among which the popular Gaussian-RBF kernel,
third dimension is the number of frames, see Figure arise from the space HSF of infinite dimensional ana-
B. As a preprocessing step we normalize the videos logue of finite dimensional tensors. This realization is
in the datasets. Each frame of each video is resam-important on its own as it shows that kernels are closely
pled to match the common size of %013 pixels. To connected with the seemingly distinct domain of tensor-
cope with the dierent number of frames per video, we based techniques. We then turned to the problem of im-
perform dimensionality reduction along the time mode plicitly mapping data tensor into HSF by defining suit-
and extract 4 eigen-images separately for all the videos. able factor kernels. Contrary to naive kernels, the tenso-
More precisely letX denotes the 1& 13 x M tensor rial kernel we proposed keeps into account the intrinsic
consisting ofM frames. Denote by’ . the matrix geometry of data tensors by leveraging the Grassman-

<3>
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nian nature of matrix unfoldings. We have elaborated on [13] De Brabanter, K., Karsmakers, P., Ojeda, F., AlzateD@.Bra-
an |nvar|ance property possessed by the proposed factor banter, J., Pelckmans, K., De Moor, B., Vandewalle, J., and

kernels and introduced the concept of congruence sets.

From a pattern recognition viewpoint this is important

Suykens, J. A. K. (2010). LS-SVMlab toolbox user’s guide-ver
sion 1.8.Internal Report 10-146, ESAT-SISTA, K.U.Leuven (Leu-
ven, Belgium)

because as soon classes are well approximated by conf14] De Lathauwer, L. (2011). Characterizing higher-ortersors

gruence sets, improved classification accuracy is to be

expected. This is in line with statistical learning results
showing that good generalization takes place if simi-

by means of subspacemternal Report 11-32, ESAT-SISTA, K.U.
Leuven (Leuven, Belgium)

[15] De Lathauwer, L., De Moor, B., and Vandewalle, J. (2008)
multilinear singular value decompositio81AM Journal on Matrix

larity measures do capture the structure of the learning  Analysis and Application21(4):1253-1278.
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Appendix A. Proof of Proposition[]

The reader is referred tﬂZ?, Proposition 2.6.2] for a
proof of the first two statements. Here we proof the re-
maining assertions that are specific to our context. First
of all notice that the multilinear functional defined in
(I3) is clearly bounded as it follows from the definition
of RKHS. In order to prove tha,t/k{”kf\’ ,,,,, K indeed be-
longs to HSF we need to show that it is Hilbert-Schmidt.
This is the case since we have:

e1e€y ey epelp

D D Kk €00, (K o), - (KR, p)s =

e1e€y ey epelp

IKYIZ, - KR <o (AD)

By the definition of inner product i (11) we now have:

Z Z Z Ky, €1)5, (K2, €205, - -

e €€y ey epeCp
(K, €p) (ks €16, (K, €205, - (K, €p) 5 =
D7 (6 e, (@), ) -+ D (R @) (KT )5, ) =

€€y epeCp

(K K)oy -+ (K K )i = KHXL V) - KO (X, )
that proves[(15).

(A.2)

Appendix B. Proof of Theorem[3

To show thak is positive definite it is enough to show
that the factors are positive definité [4]. Let

Rig...@RN — R(|1|2"'|N)2
X vec(lrx.,))

Yn':

and introduce the kernel function

g: ROl ROtz Iy
(X.Y)

- R
— exp((X, Y)/o-z) .

(B.1)
We first show that the latter is positive definite. To see
this, notice that the exponential function can be arbitrar-
ily well approximated by polynomials with positive co-
efficients and hence is a limit of kernels. Since the pos-
itive definiteness is closed under taking pointwise limit,
the result follows (see e. 1, Proposition 3.24, point
ii]). Additionally also

gn(X’ Y) = gYn(X), yn(Y))

is positive definite since the kernel matr&x" aris-
ing from evaluatingg at any arbitrary T—tuple

(B.2)



(zﬁn (X(l)),zﬁn (X(Z)),m Un (X(T))) is such. Now ob-
serve that fomgy > g"(X) = ¢g"(X,-) the normalized
evaluation functionag™(X) = 1/(llg"(X)llsn0"(X))
gives rise to the positive definite kerng!(X,Y) =

(GN(X), "M og = % . Replacing[[B:2)

into the latter and keeping into accouni(B.1) we obtain

g(X.Y) B
VIX.X) oW, Y)

exp((Wn(X). yn(¥) /o) )
Vexp((Wn(X). Un(X))/2) \exp(Wn(¥). bn(¥)) /D)

1 1
eXB{ 25U o) 55 0. )

1 1
s U ) = 080 - 5 0e(0) = )

By definition ofy, the last member corresponds now to

1
eXp(—p MR ) = TR
proof.

i) which concludes the

Appendix C. LS-SVM and Optimization in Infinite
Dimensional Spaces

We first recall the results that we need in a general
HS setting. Successively, we detail the derivation of LS-
SVM for classification starting froni (32).

Appendix C.1. Generalized fgrential and Gradient

In the following ($, (:, -)s) will denote a HS and
a functional on$j, namely a mapping of the typg :
$H — R. We recall thatf is convex if domf) := {h €
$ : |f(h)] < oo} is a convex set anti(ah; + (1-a)hy) <
af(h)) + (1 - a)f(hy) . Notice that the latter is implied
in particular if f is linear or dfine.

Definition 3 (Subgradient and Subdiferential [IE]).
Let f : § — R be a convex functional. An element
g € $ is calledsubgradienbf f athy € dom(f) if for
anyh e dom(f) we havef(h) > f(ho) + (g.h— hp)g .
The set of all subgradients of at hy is called the
subdjfferentialof f athg and it is denoted by f (ho).

Remark 2. Before proceeding we remark that the HS

setting we consider here translates into simpler results
and definitions than those stated in terms of Banach

spacesJE4]m|8ﬂ2]. In particular, the fact that HS’s are
reflexive implies that subgradients of functionals can be
considered as elements of the same space and the use
more general duality pairings can be avoided.
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Definition 4 (Gateaux Differential). Letf : § —» R
be a convex functional. We cafl differentiable in a
directions at a pointh € dom(f) if the following limit
exists:

f'(h;s) = lim l (f(h+as) - f(h) . (C.1)
al0
If there existh* € § such that
f'(h9) = (s h*>ﬁ Vse (C.2)

we say thatf is Gateaux-dfferentiableat h, call h* the
Gateaux-dfferentialof f ath and denote it byf’(h).

Many properties of dierentials from finite-dimensional
calculus can be extended to the present generalized no-
tion of differentials. For example it can be shown (see
e.g. [18]) that iff is Gateaux-dferentiable ah € §
thenaf(h) = {f’(h)}. Conversely, iff is continuous and
possesses unique subgradigath € dom(f), thenf is
Gateaux-dterentiable ah andf’(h) = g.

Remark 3. If f is a continuous linear functional, then
by the Riesz theorem there exists such thatf(h) =
(h,h*)s for anyh € §. It is immediate to see now
that f'(h; s) = lim,yo % (f(h+as)— f(h)) = (s h*)g
and hence thah* is the Gateaux-diierential ath for
anyh € $. Similarly if f is a continuousfiine func-
tional: f(h) = <h, h*)s +bthen agaih* is the Gateaux-
differential ath for anyh € §.

Remark 4. If f(h) = (h,h)s simple calculus shows
that equation{Cl1) reads(h; s) = 2(s hy . Hence by
equation[[CR)’(h) = 2h.

Appendix C.2. The Case of Composite Spaces

Given two HS's($1, (-, -)s,) and(92, (-, -)s,) We can
consider the product spagg x £, consisting of ordered
pairs 1, hy). Such a space can be turned into a HS
$ based upon the inner produghy, hy), (01, 92)) s =
(h1,01)5, + (h2,02)5, . A separablefunctional ons$)
is now a functional of the typé((hs, hy)) = fi(hy) +
fa(h) . If such a functional is dferentiable, by[{Cl1)
it is immediate to see that:f’((hy, hp); (s1, S2))
f;(hs; s1) + f5(he, s1) .Additionally, (C.2) becomes now

F((h. o) (s %) = (su. )+ (22.h3), V(sns2) €
(C.3)

nd the Gateaux-fierential is thenf’((hy, hy))

)

(i 7.h3) . These facts can be extended to the general

T—fold product$; x 2 x - - - X H7 in a straightforward
manner.



Appendix C.3. Lagrange Multipliers Theorem and form e Ny, the dfine functional

In here we recall the Lagrange multiplier theorem that .
we need in deriving the set of linear equations corre- m((¥. E. b)) := (¥, E.b), (ymd(X™), E™, ym))s — 1
sponding to the LS-SVM primal problem. More gen- (C.5)
eral results of this type are found i [2] arid|[34]. For Wwhere form € Ny, E™ e RM is defined in terms of
m e Ny anda, € § consider the fine functional  the Kronecker delta bg™ = 6mj, j € Ny. With these
rm: $ — R defined byrm(h) = (h, am) + bnfor some definitions problerT[(EZS can be restated as
B € RM. Let f andgs, for s € Ng, denote convex and )
continuous functionals os. Consider the following s {(f((¥.E.D) : rm((¥,E, D)) =0, me Ny} .
constrained problem:
It is easy to see thét is Gateaux-dterentiable at any

Minhes,  f(h) (¥, E, b). We have:

such that rm(h) =0, meNy (C.4)
0s(h)<0, seNs.

The corresponding Lagrange functional L

of((¥.E.b) = {f'((¥.E. b))} = {(¥.7E,0)} (C.6)

dom(f) x RS x RM — R is: L(hA,0) - where we used the basic fact§ of Appendix|C.2 on com-
f(h) + YengAs9s() + Cmen, @mrm(n) . Addi- posite spaces and Remftk 4. By equafionl(C.5), Remark
tionally, let § := dom(f) n dom@s) and 2 := @ and Appendix CJ2 we have

SelNs
the$H : rm(h)y=0¥me Ny, gs(h) <0V se Ng}. P (. E. D)) = (Ve (XM EM
The next Theorem is a restatement/df [2, Theorem 1.2 (. E.B)) = Omd(XT). BT, ym)
and Theorem 1.3]. Now since the sublierential in [C5) is a singleton,

Theorem 5 (Lagrange Multiplier Theorenl [2])Sup-  Pointain Theorenib becomes, simply:

pose that .

1.) gs(h) < 0V se Ng for some point ke 2 (P*,yE*,0) = Z n(Ymd(X™), E™, yim)
2)0 e int{(r(h), ra(h), ... rm(h) : he3) . meRiw

Then i € 2 is an optimal solution tdC.4)if there exist

or, equivalently:
for any se Ng a real numberts, and for any me Ny q y

a real numbewy, such that: P = Z alymd(X™) (C.7)
a.) 0€ A (M) + Dsewg A30Gs(*) + Smeny, Al () =
1

b.) A% >0 ey = —am, me Ny (C.8)
c.) 2g«(h*) = 0. Y

*Ym=0. C.9

Appendix C.4. Derivation of LS-SVM for Classification n%:M @mYm (9)

We now base ourselves upon Theoreém 5 in order _
to derive the optimality condition of the equality con- Finally, notice that the sefl of Theorem[b reads

strained probleni{32): here 24 = {rn((¥.E,b))=0, me Ny}. Making
rm((*Y, E, b)) = 0 explicit form € Ny, we obtain the
min SOV, WHsk + 73 Simeny & additional set of conditions:

(¥,E,b)eHSFXxRMxR

such thatym((¥, $(X™))use+b) = 1 — em, me Ny . Y(CF*, HX™)pse+ b*) = 1—e*, me Ny . (C.10)

The problem involves finding an optimal ordered pair
(¥*, E*, b*) in the product space HSERM x R. This
space, denoted by for convenience of notation, can be
turned into a HS by means of the inner product

Replacing[[CJr) and{Q.8) into the latter to eliminate the
primal variable?* and E*, and keeping into account
(C.9), one obtains the system of linear equati¢n$ (33)
where } = (1,1,...,1) € RM, Iy = diag(1ly) and
(¥,E.b),(E, F, s = (¥, Dysr + (E, F) + b. Q ¢ RM @ RM is defined entry-wise by

Let us define now the separable functional (@)ij = Viyi(dXD), dXD)nse = yiyk(XO, XD) .

1 1
f((¥,E, b)) = §<\P,\P>HSF+7§ Z &,

meNy
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