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Abstract

Tensor-based techniques for learning allow one to exploit the structure of carefully chosen representations of data.
This is a desirable feature in particular when the number of training patterns is small which is often the case in areas
such as biosignal processing and chemometrics. However, the class of tensor based models is somewhat restricted and
might suffer from limited discriminative power. On a different track, kernel methods lead to flexible nonlinear models
that have been proven successful in many different contexts. Nonetheless, a naı̈ve application of kernel methods does
not exploit structural properties possessed by the given tensorial representations. The goal of this work is to go beyond
this limitation by introducing non-parametric tensor based models. The proposed framework aims at improving the
discriminative power of supervised tensor-based models while still exploiting the structural information embodied in
the data. We begin by introducing a feature space formed by multilinear functionals. The latter can be considered as
the infinite dimensional analogue of tensors. Successivelywe show how to implicitly map input patterns in such a
feature space by means of kernels that exploit the algebraicstructure of data tensors. The proposed tensorial kernel
links to the MLSVD and features an interesting invariance property; the approach leads to convex optimization and
fits into the same primal-dual framework underlying SVM-like algorithms.

Keywords: multilinear algebra, reproducing kernel Hilbert spaces, tensorial kernels, subspace angles

1. Introduction

Tensors [30] are higher order arrays that generalize
the notions ofvectors(first-order tensors) andmatrices
(second-order tensors). The use of these data structures
has been advocated in virtue of certain favorable prop-
erties. Additionally, tensor representations naturally re-
sult from the experiments performed in a number of do-
mains, see Table 1 for some examples.

An alternative representation prescribes toflattenthe
different dimensions namely to represent the data as
high dimensional vectors. In this way, however, impor-
tant structure might be lost. Exploiting a natural 2−way
representation, for example, retains the relationship be-
tween the row space and the column space and allows

NOTICE: this is the authors version of a work that was accepted
for publication in Neural Network Journal. Changes resulting from
the publishing process, such as peer review, editing, corrections, struc-
tural formatting, and other quality control mechanisms maynot be re-
flected in this document. Changes may have been made to this work
since it was submitted for publication. A definitive versionwas subse-
quently published in Neural Networks, Volume 24(8), October 2011,
Pages 861-874; doi:10.1016/j.neunet.2011.05.011.

Table 1: Some examples of tensorial representations in
real-life applications

neuroscience:

EEG data
(time× frequency× electrodes)

fMRI data
(time× x− axis× y− axis× z− axis)

vision:
image (/video) recognition
(pixel× illumination× expression× · · ·)

chemistry:
fluoresce excitation-emission data
(samples× emission× excitation)

one to find structure preserving projections more effi-
ciently [23]. Still, a main drawback of tensor-based
learning is that it allows the user to construct models
which are affine in the data (in a sense that we clar-
ify later) and hence fail in the presence of nonlineari-
ties. On a different track kernel methods [40],[48] lead
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to flexible models that have been proven successful in
many different contexts. The core idea in this case
consists of mapping input points represented as vec-
tors {X1, . . . ,XM} ⊂ RI into a high dimensional inner-
product space (F, 〈·, ·〉F) by means of afeature map
φ : RI → F. Since the feature map is normally cho-
sen to be nonlinear, a linear model in the feature space
corresponds to a nonlinear rule inRI . On the other hand,
the so-calledkernel trickallows one to develop compu-
tationally feasible approaches regardless of the dimen-
sionality ofF as soon as we knowk : RI × RI → R

satisfyingk(X,Y) = 〈φ(X), φ(Y)〉F . When input data
areN−th order arrays, nonetheless, a naı̈ve application
of kernel methods amounts to perform flattening first,
with a consequent loss of potentially useful structural
information.

1.1. Main Contributions
In this paper we elaborate on a possible framework to

extend the flexibility of tensor-based models by kernel-
based techniques. We make several contributions:

• We give a constructive definition of the (feature)
space of infinite dimensional tensors and show the
link with finite dimensional tensors that are used
in multilinear algebra. The formalism gives rise to
product kernels which comprise, as a special case,
the popular Gaussian-RBF kernel.

• The Gaussian-RBF kernel and the linear kernel are
based on the Euclidean distance. However the lat-
ter does not capture the topological structure un-
derlying a number of objects of interests, such as
videos. In turn, such objects often admit a very
natural tensorial representation. We then introduce
a class of structure-preserving product kernels for
tensors that fully exploits the tensorial representa-
tion. This relies on the assumption that the latter is
useful for the learning task of interest.

• We study an invariance property fulfilled by the
proposed kernels and introduce the concept of con-
gruence sets. We highlight the relevance of this
formalism for pattern recognition and explicitly
discuss a class of problems that takes advantage of
the new similarity measure.

• We elaborate on the primal-dual framework used
in Support Vector Machines (SVMs) and related
algorithms and discuss implications of the tensor-
like primal representation. As an additional contri-
bution we detail the rigorous derivation of Least-
Squares SVM (LS-SVM) for classification based
upon results in infinite dimensional optimization.

1.2. Relation with Existing Literature

Tensor-based techniques are mostly based on decom-
positions that to some extent generalize the matrix SVD
[31],[9]. As such, the largest part of the existing ap-
proaches relates to unsupervised methods. Recently,
machine learning and related communities got inter-
ested in tensors and their use for supervised techniques
have also been explored [51],[43]. However with the
exception of very specialized attempts [22], the ex-
isting proposals deal with linear tensor-based models
and a systematic approach to the construction of non-
parametric tensor-based models is still missing. A first
attempt in this direction [42] focused on second order
tensors (matrices) and led to non-convex and compu-
tationally demanding problem formulations. The pro-
posed ideas can be extended to higher order tensors at
the price of an even higher computational complexity.
Here we consider tensors of any order and elaborate on
a different formalism that leads to convex optimization.
The approach fits into the same primal-dual framework
underlying SVM-like algorithms while exploiting alge-
braic properties of tensors in a convenient way.

1.3. Outline

In the next Section we introduce the notation and
some basic facts about finite dimensional tensors and
spaces of functions admitting a reproducing kernel. In
Section 3 we study spaces of infinite dimensional ten-
sors which give rise to product kernels. Successively
in Section 4 we introduce a novel family of structure-
preserving factor kernels for tensors. Section 5 is dedi-
cated to the study of an invariance property possessed by
the new kernels. Special attention is devoted to the case
where input data are temporal or spatial signals repre-
sented via Hankel tensors. In Section 6 we then discuss
estimation of nonparametric tensor-based models in the
framework of primal-dual techniques. Successively we
validate our finding by presenting experimental results
in Section 7. We end the paper by drawing our conclud-
ing remarks in Section 8.

2. Notation and Background Material

We denote scalars by lower-case letters (a, b, c, . . .),
vectors as capitals (A, B,C, . . .) and matrices as bold-
face capitals (A, B,C, . . .). We also use lower-case let-
tersi, j in the meaning of indices and with some abuse
of notation we will useI , J to denote the index upper
bounds. Additionally we writeNI to denote the set
{1, . . . , I }. We writeai to mean thei−th entry of a vector
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A. Similarly we writeai j to mean the entry with row in-
dexi and column indexj in a matrixA. Finally we will
often use gothic letters (A,B,C, . . .) to denote general
sets or spaces, regardless of their specific nature.

2.1. Basic Facts about Finite Dimensional Tensors

In this paper we deal with input data observations rep-
resented as real-valuedN−th order tensors, which we
denote by calligraphic letters (A,B,C, . . .). They are
higher order generalizations of vectors (1−st order ten-
sors) and matrices (2−nd order tensors). Scalars can
be seen as tensors of order zero. We writeai1,...,iN to
denote (A)i1,...,iN . An N−th order tensorA has rank-1
if it consists of the outer product ofN nonzero vectors
U (1) ∈ RI1 , U (2) ∈ RI2 , . . . , U (N) ∈ RIN that is, if

ai1i2...iN = u(1)
i1

u(2)
i2
· · ·u(N)

iN
(1)

for all values of the indices. In this case we writeA =
U (1)⊗U (2)⊗· · ·⊗U (N). The linear span of such elements
forms a vector space, denoted byRI1 ⊗ RI2 ⊗ · · · ⊗ RIN ,
which is endowed with the inner product

〈A,B〉 :=
∑

i1

∑

i2

· · ·
∑

iN

ai1i2···iN bi1i2···iN (2)

and with the Hilbert-Frobenius norm‖A‖F :=√
〈A,A〉. The latter is a straightforward extension of

the usual Hilbert-Frobenius norm for matrices and of the
l2 norm for vectors, denoted simply by‖ · ‖. In the fol-
lowing we will use〈·, ·〉 for anyN ≥ 1 and‖ · ‖F for any
N > 1, regardless of the specific tuple (I1, I2, . . . , IN).
Additionally, notice that for rank-1 tensorsai1i2...iN =

u(1)
i1

u(2)
i2
· · ·u(N)

iN
andbi1i2...iN = v(1)

i1
v(2)

i2
· · · v(N)

iN
it holds that

〈A,B〉 =
〈

U (1),V(1)
〉 〈

U (2),V(2)
〉

· · ·
〈

U (N),V(N)
〉

. (3)

It is often convenient to rearrange the elements of a ten-
sor so that they form a matrix. This operation is referred
to asmatricizationor unfolding.

Definition 1 (n−mode matricization [28]). Assume a
N−th order tensorA ∈ RI1 ⊗ · · · ⊗ RIN . The n−th
mode matrix unfolding, denoted asA〈n〉, is the ma-
trix RIn ⊗ RJ ∋ A〈n〉 : a(n)

in j := ai1i2...iN where
J := In+1 In+2 · · · IN I1 I2 I3 · · · In−1 and for R :=
[n+ 1n+ 2 · · · N 1 2 3 · · · n− 1] we have: j = 1 +
∑

l∈NN−1

[

(

ir l − 1
)∏

l̂∈Nl−1
Ir l̂

]

.

We conclude this quick excursion on tensors by re-
calling the multilinear singular value decomposition
(MLSVD) [53],[54],[15] that shares many properties

with the matrix singular value decomposition (SVD).
First we introducen−mode products.

Definition 2 (n-mode product [15]). The n−mode
product of a tensorA ∈ RI1 ⊗ RI2 ⊗ · · · ⊗ RIN

by a matrixU ∈ R
Jn ⊗ R

In, denoted byA ×n U, is a
(I1×I2×· · ·×In−1×Jn×In+1×· · ·×IN)−tensor with entries
(A×n U)i1i2···in−1 jnin+1···iN :=

∑

in∈NIn
ai1i2···in−1inin+1···iNu jnin .

2.2. Multilinear Singular Value Decomposition

Theorem 1(MLSVD[15]). AnyA ∈ RI1⊗· · ·⊗RIN can
be written as the product

A = S ×1 U(1) ×2 U(2) ×3 · · · ×N U(N) (4)

in which U(n) =
[

U (n)
1 U (n)

2 · · · U
(n)
In

]

∈ RIn ⊗ RIn is an

orthogonal matrix andS ∈ RI1 ⊗ · · ·⊗RIN is calledcore
tensor.

Notably, as shown in [15], the core tensor features a
number of properties. In practice the matrixU(n) can be
directly found from the SVD decomposition of then−th
unfoldingA〈n〉 = U(n)S(n)V(n)⊤. The core tensorS then
satisfies:S = A ×1 U(1)⊤ ×2 U(2)⊤ ×3 · · · ×N U(N)⊤ .

2.3. Reproducing Kernel Hilbert Spaces of Functions

An important role in this paper is played by (infi-
nite dimensional) spaces of real-valued functions. We
denote such a space byH and we will often write
(H, 〈·, ·〉H) to indicate thatH is endowed with the Hilbert
space (HS) structure defined according to some inner
product〈·, ·〉H. The theory of reproducing kernel Hilbert
spaces (RKHSs) [1],[56] is concerned with HSs of func-
tions defined on an arbitrary abstract setX. We consider
the case whereX ⊆ RI1 ⊗RI2 ⊗ · · · ⊗RIN and denote by
X a generic element ofX. We stress at this point thatX
might equally well denote a subset of scalars, vectors,
matrices or — more generally — tensors of any order.
We recall that a HS (H, 〈·, ·〉H) of functions f : X → R

is a reproducing kernel Hilbert space (RKHS) if for any
X ∈ X the evaluation functional LX : f 7→ f (X) is
bounded. A functionk : X × X → R is calledrepro-
ducing kernelof H if (i) kX := k(·,X) ∈ H for any
X ∈ X (ii) f (X) = 〈 f , kX〉H holds for anyX ∈ X and
f ∈ H. We writeHk instead ofH whenever we want to
stress thatk acts as a reproducing kernel forH. Point
(ii) is the same as saying thatkX is theRiesz represen-
ter [38] of LX. From points(i) and (ii) it is clear that
k(X,Y) = 〈kX, kY〉H ∀(X,Y) ∈ X × X. If we now
let φ(X) := k(X, ·), we can seeH as an instance of the
feature spaceF discussed in the Introduction. Alterna-
tive feature space representations can be stated. Recall
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that given a countable setA, the space ofK−valued
square summable sequences is defined aslK2 (A) :=
{

(xi)i∈A s.t.xi ∈ K ∀ i ∈ A and
∑

i∈A |xi |2 < ∞
}

.

Theorem 2(lK2 (A) feature space, [4]). A function k de-
fined on: X × X is a reproducing kernel if and only if
there existsA andφ : X 7→ lK2 (A) such that

k(X,Y) = 〈φ(X), φ(Y)〉lK2 (A) (5)

for any(X,Y) ∈ X × X.

3. Non-parametric Tensor-based Models

We can now turn to the problem of interest, namely
the definition of non-parametric tensor-based models.
By tensor-based we mean that the input of our model
will be a tensorX. We will refer toX as thedata tensor.
On the other hand we call “non-parametric” a model
that is not affine in the data tensor. Affine models are
those of the type

fF ,b(X) = 〈F ,X〉 + b (6)

that are considered e.g. in [43]. A related approach
found e.g. in [51] considers affine models with a
predefined 1-rank parametrization forF : fi1i2...iN =

v(1)
i1

v(2)
i2
· · · v(N)

iN
. The corresponding supervised technique

is non-convex and results into an alternating scheme to
find b and vectors

{

V(n) ∈ RIn : n ∈ NN

}

. We will com-
pare to this approach later on in the experimental Sec-
tion.

In the next Sections we will discuss a framework
to overcome the limitation entailed by the restrictive
model class in (6). This is achieved by leveraging the
flexibility of kernel methods on the one hand and the
structure of data tensors on the other. Next we discuss
the integration with kernel methods starting from the
simplest cases.

3.1. Naı̈ve Kernels for Data Tensors

Notice that Theorem 2 implies that

k(X,Y) = 〈X,Y〉 (7)

defined upon (2), is a valid reproducing kernel. Indeed
(5) reads herek(X,Y) = 〈vec(X), vec(Y)〉 where vec(·)
denotes vector unfolding and the inner product in the
right hand-side is defined onRI1I2···IN . Equation (7) is an
elementary generalization of the linear kernel defined
onRI . This choice of kernel function is precisely what
leads to model of the type (6). In a similar way other

kernel functions admit a straightforward generalization
to the case where input data are tensors. For instance,
a natural way to generalize the popular Gaussian-RBF
kernel [40] to data tensors is

k(X,Y) = exp

(

− 1
2σ2
‖X − Y‖2F

)

(8)

whereσ is used to set an appropriate bandwitch. How-
ever observe that both (7) and (8) treat tensor data as
mere collections of entries without keeping into account
the underlying structure. In particular notice that (8) can
be equivalently restated as:

k(X,Y) =
∏

p∈NI1×NI2×···×NIN

exp

(

− 1
2σ2

(xp − yp)2

)

(9)

namely as the product of Gaussian-RBF kernels each of
which is defined on the entries of data tensors. Suppose
now thatP denotes an operator that acts on data ten-
sors by permuting their entries according to some fixed
rule. Then we clearly havek(X,Y) = k(P(X),P(Y)).
This type of invariance is not desirable in many practi-
cal situations. For the case of grayscale images, namely
second order tensors, the use of this kernel leads to ig-
noring the relation between each pixel and its neighbors.
For videos , namely third order tensors, it would addi-
tionally neglects the temporal structure.

Notice that (8) is a special case of a more general
class ofproduct kernels. Later we will introduce a dif-
ferent choice of product kernel that conveniently ex-
ploits the algebraic structure of data tensors. First we
show in the next Section that product kernels can be
seen to arise from a space of infinite dimensional ten-
sors. This fact is relevant on its own as it shows that
these kernels are strictly connected to the notion of finite
dimensional tensors on which tensor-based techniques
are grounded. The consequences of this fact will be dis-
cussed in Section 6.2.

3.2. Space of Multilinear Functionals
Assume RKHSs (H1, 〈·, ·〉H1), (H2, 〈·, ·〉H2), . . . ,

(HP, 〈·, ·〉HP) of functions onX and for anyp ∈ NP let
kp : X × X → R be the reproducing kernel ofHp. We
recall that

ψ : H1 × H2 × · · · × HP → R (10)

is a bounded (equivalently continuous) multilinear func-
tional [27], if it is linear in each argument and there ex-
istsc ∈ [0,∞) such that

|ψ(h1, h2, . . . , hP)| ≤ c‖h1‖H1‖h2‖H2 · · · ‖hp‖HP
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for all hi ∈ Hi , i ∈ NP. It is said to beHilbert-Schmidtif
it further satisfies

∑

e1∈E1

∑

e2∈E2

· · ·
∑

eP∈EP

|ψ(e1, e2, . . . , eP)|2 < ∞

for one (equivalently each) orthonormal basisEp of Hp,
p ∈ NP. It can be shown [27] that the collections
of such well behaved Hilbert-Schmidt functionals en-
dowed with the inner product

〈ψ, ξ〉HSF :=
∑

e1∈E1

∑

e2∈E2

· · ·
∑

eP∈EP

ψ(e1, e2, . . . , eP)ξ(e1, e2, . . . , eP) (11)

forms — by completion — a HS that we denote by HSF.

Proposition 1. The multilinear functional associated to
any P−tuple (h1, h2, . . . , hP) ∈ H1 × H2 × · · · × HP and
defined by

ψh1,h2,...,hP( f1, f2, . . . , fP) :=

〈h1, f1〉H1〈h2, f2〉H2 · · · 〈hP, fP〉HP (12)

belongs toHSF. Furthermore it holds that

〈ψh1,h2,...,hP, ψg1,g2,...,gP〉HS F =

〈h1, g1〉H1〈h2, g2〉H2 · · · 〈hP, gP〉HP . (13)

In particular for anyX ∈ X the multilinear functional

ψk1
X,k

2
X ,...,k

P
X
( f1, f2, . . . , fP) :=

〈k1
X, f1〉H1〈k2

X, f2〉H2 · · · 〈kP
X, fP〉HP =

f1(X) f2(X) · · · fP(X) (14)

belongs toHSF. Finally we have for anyX ∈ X and
Y ∈ X,

〈ψk1
X ,k

2
X,...,k

P
X
, ψk1

Y ,k
2
Y,...,k

P
Y
〉HSF =

k1(X,Y)k2(X,Y) · · ·kP(X,Y) . (15)

Proof. See Appendix Appendix A.

3.3. Link with Finite Dimensional Tensors

A comparison between rank-1 elements (1) and (12)
and between (13) and (3) clarifies the relation between
the finite dimensional case and its infinite dimensional
extension. Notice that starting from (12) one can let

h1 ⊗ h2 · · · ⊗ hP := ψh1,h2,...,hP (16)

and define the tensor product spaceH1 ⊗ H2 ⊗ · · · ⊗ HP

as the completion of the linear span

span{h1 ⊗ h2 ⊗ · · · ⊗ hP : hi ∈ Hi , i ∈ NP} .

This approach gives rise to a space of infinite dimen-
sionalP−th order tensors. The construction mimics the
wayRI1 ⊗ RI2 ⊗ · · · ⊗ RIN was constructed based upon
elements (1). However in the next Subsection we give
a different derivation which emphasizes the role of re-
producing kernels, a key feature to construct practical
algorithms.

3.4. Reproducing Kernel Hilbert Space Induced by
Multilinear Functionals

Recall from (14) the definition of the multilinear
functionalψk1

X ,k
2
X,...,k

P
X
. Let

φ̃ : X → HSF
X 7→ ψk1

X ,k
2
X,...,k

P
X

(17)

and definek : X × X→ R by

k(X,Y) := 〈φ̃(X), φ̃(Y)〉HSF . (18)

Notice that according to (15),k can be equivalently
stated as the product kernel

k(X,Y) = k1(X,Y)k2(X,Y) · · ·kP(X,Y) (19)

where forp ∈ NP, kp denotes the reproducing kernel
of Hp. In the following, in light of (18), we callk the
tensorial kernel. Notice thatk is positive definite since
it arises from the well-defined inner product〈·, ·〉HSF

and inner products define positive kernels [4]. As well
known, a key feature of kernel methods is that it is not
needed to define the feature map — which is nowφ̃ —
explicitly. Rather, one can choose a positive kernelk
and exploit the so-calledkernel trick. In turn, since by
(19) the tensorial kernelk is obtained by the product
of the factor kernels{kp}p∈NP

, choosingk amounts to
choose the factors.

4. Factor Kernels for Data Tensors

It is important to stress at this point that, as equa-
tion (9) shows, the Gaussian-RBF kernel is also a ten-
sorial kernel with factors that depend upon the entry-
wise evaluation of data tensors. However, as discussed

See e.g. [40, Definition 2.5] for a formal definition of positive
definite kernel.
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in Section 3.1, this tensorial kernel does not take advan-
tage of the additional structure ofRI1 ⊗ RI2 ⊗ · · · ⊗ RIN .
More generally, the naı̈ve kernels that were considered
in Subsection 3.1 act on the data tensors as if they were
vectors ofRI1I2···IN . In this way one defines the distance
between two tensorsX andY as the length‖X − Y‖F
of the straight line segment connecting them. It is well
known that many objects of interest live in low dimen-
sional manifolds embedded in high dimensional vector
spaces. In all these cases the Euclidean metric is subop-
timal to capture the topology of the input patterns. To
cope with such cases we will now introduce, as factors,
a new class of kernel functions based upon the chordal
distance on the Grassmannian manifolds of matrix un-
foldings. As we will show this links to the MLSVD and
possesses an interesting invariance property. In general
the choice of a kernel function should be addressed case
by case depending on the specific aspects of the problem
of interest. Nonetheless we will show in Section 5 that,
in virtue of its properties, the proposed family of ker-
nels especially suits certain tasks involving the analysis
of temporal (or spatial) signals.

4.1. Distance Between Matrix Unfoldings

Next we address the problem of defining a similar-
ity measure taking advantage of the algebraic struc-
ture of input tensors. This can be achieved regarding
tensors as the collection of linear subspaces coming
from each matricization (see Definition 1). Assume for
now that Ip < Ip+1 Ip+2 · · · IN I1 I2 I3 · · · Ip−1 and de-
note byR(W) the row space of a matrixW ∈ RI1 ⊗ RI2,
R(W) :=

{

W⊤A : A ∈ RI1
}

⊆ RI2. More precisely we
can define for someσ ∈ R+

kp(X,Y) := exp

(

− 1
2σ2

d(X<p>,Y<p>)2

)

(20)

where d(X<p>,Y<p>) denotes a suitable distance be-
tweenR(X<p>) and R(Y<p>) on theGrassmann man-
ifold corresponding to the set ofIp dimensional sub-
spaces in a (Ip+2 · · · IN I1 I2 I3 · · · Ip−1)−dimensional
vector space.

The idea of using subspaces has already been ex-
ploited to establish a similarity between matrices [21].
This choice has been shown to be relevant in a num-
ber of tasks such as face recognition, see e.g. [3] and
reference therein. The choice of using an exponential
in (20) is to a large extent arbitrary. In fact, one has

For instance, the space of linear dynamical systems, which are
determined only up to a change of basis, has the structure of aStiefel
manifold.

only to ensure that the factor kernels are positive definite
which in turn guarantees that (19) is a valid reproducing
kernel. This, in particular, imposes restrictions on the
choice of the distance functiond. Notably, however,
the definition in (20) implies that the product kernelk
in (19) can be equivalently restated as the RBF kernel
k(X,Y) = exp(−1/(2σ2)dT(X,Y)2) that closely resem-
bles (8) but differs in that the Euclidean norm is replaced
by the non-Euclidean distance function defined as:

dT(X,Y) =
√

∑

n∈NN

d(X<n>,Y<n>)2 . (21)

In (20) we have usedp to index a generic matrix unfold-
ing — and notn — to stress that we can consider, as
factors, kernels based on matricizations indexed by any
subsetP ⊆ NN. The choice of factors to be retained can
be guided by suitable information criteria such as the
kernel-target alignment [12]. In the following we will
assume for simplicity thatP = NN and usen instead
of p. Later we will show that this case enjoys a special
invariance property.

4.2. Relation with Principal Angles

It turns out that any unitarily invariant metric
on a Grassmannian manifold connects to the no-
tion of principal angles. Let us recall that for
R = min {dim(R(X<n>)), dim(R(Y<n>))} the prin-
cipal angles θ(n)

1 , θ
(n)
2 , . . . , θ

(n)
R between R(X<n>) and

R(Y<n>) can be defined recursively by cos(θ
(n)
r ) :=

max
X∈R(X<n>),Y∈R(Y<n>)

〈X,Y〉 = 〈X(r),Y(r)〉 subject to‖X‖ =

‖Y‖ = 1 and 〈X,X(i)〉 = 〈Y,Y(i)〉 = 0 for i ∈ Nr−1.
Among the various distance measures arising from
the principal angles [17] a suitable distance between
R(X<n>) andR(Y<n>) is theprojection Frobenius norm
(also known aschordal distance[7]). It relies on the
one-to-one correspondence between a subspaceA and
the associated orthogonal projectionΠA and is defined
by:

dpF(X<n>,Y<n>) :=
∥

∥

∥ΠR(X<n>) − ΠR(Y<n>)

∥

∥

∥

F
=

√
2
∥

∥

∥sinθ(n)
∥

∥

∥

2
(22)

where sinθ(n) is the vector obtained taking the sine of
each one of the principal angles between then−th ma-
trix unfoldingsX<n> andY<n>. This specific choice of
distance gives rise to positive definite kernels.

Theorem 3. If the distance function d corresponds to
the projection Frobenius norm(22) then the tensorial
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kernel k obtained from the product of factors(20) is pos-
itive definite.

Proof. The proof is given in Appendix

4.3. Factors, Tensor Dimensions and Degeneracy

At the beginning of Subsection 4.1 for ease of presen-
tation we made a precise assumption on the dimensions
of then−th matrix unfolding. We shall now discuss all
the three possible situations for the case where factors
are defined upon the chordal distancedpF:

case 1: In < In+1 In+2 · · · IN I1 I2 I3 · · · In−1. This
is the case that we considered above. It holds that
dpF(X<n>,Y<n>) > 0 and hencekn(X,Y) < 1 un-
lessX<n> andY<n> span the same row space.

case 2:In > In+1 In+2 · · · IN I1 I2 I3 · · · In−1. In this
case we definekn in (20) based upon a distance
between column spaces instead of row spaces.

case 3:In = In+1 In+2 · · · IN I1 I2 I3 · · · In−1. Under
this condition we have thatkn(X,Y) = 1 unless
bothX<n> andY<n> are rank deficient. In practice
when dealing with real-life noisy data this event
does not occur. Thus, in general, then−th matri-
cization is uninformative and we can avoid com-
putingkn since it does not contribute to the prod-
uct kernel (19). Notice, however, that the case of
square matrix unfolding can occur at most for a
single running indexn ∈ NN: the remainingN − 1
are guaranteed to be non-square and informative.

As a concrete example of the third case letX ∈ R9 ⊗
R3 ⊗R3. The first matrix unfolding is square and hence
in general uninformative whereasR(X<2>) andR(X<3>)
are both 3-dimensional subspaces ofR27 and we can
conveniently compute their similarity based upon the in-
formation they share.

We conclude noticing that, in particular, case 3 never
arises forcubic tensors namely for elements ofRI1 ⊗
RI2 ⊗· · ·⊗RIN whereI1 = I2 = · · · = IN = I . In practice,
as in Subsection 5.3, the tensor representation is often
enforced by the user for instance to take advantage of
certain characteristics of data, such as their dynamical
nature. In these situations the dimensions of the tensor
representation can be chosen and hence one can avoid
degenerate cases. Next we clarify the relation with the
MLSVD of section 2.2.

4.4. Link with the MLSVD

Recall that, at a matrix level, the MLSVD ofX boils
down to the SVD of the matrix unfoldingsX〈n〉, where

Figure 1: An illustration of the tensorial kernelk based
upon factors (24). For 3−rd order tensorsX andY it
requires to compute the SVD of the matrix unfoldings
X<n> andY<n>.

n ∈ NN. The latter can be stated in block-partitioned
form as:

X〈n〉 =
(

U(n)
X,1 U(n)

X,2

)

(

S(n)
X,1 0
0 0

)












V(n)⊤
X,1

V(n)⊤
X,2













(23)

where entries on the diagonal ofS(n)
X,1 are assumed to be

ordered in a decreasing manner. A well known property
of the SVD decomposition states now that the orthogo-
nal projection operator ontoR(X<n>) is given by

ΠR(X<n>) = V(n)
X,1V(n)⊤

X,1 .

Hence computing the tensorial kernel based on the pro-
jection Frobenius norm, corresponds to computing the
MLSVD (equivalently finding the SVD of the matrix
unfoldings) and let the factor kernel be

kn(X,Y) = exp

(

− 1
2σ2

∥

∥

∥

∥

V(n)
X,1V(n)⊤

X,1 − V(n)
Y,1V(n)⊤

Y,1

∥

∥

∥

∥

2

F

)

.

(24)
Figure 1 illustrates the computation of the tensorial
kernel based on the SVD’s of the matrix unfoldings.
Simple matrix algebra shows that (24) is equivalent
to kn(X,Y) = exp

(

− 1
σ2 (In − trace(Z⊤Z)

)

where Z =

V(n)⊤
X,1 V(n)

Y,1. This formula is more efficiently computed
than the right hand-side of (24).

5. Congruent Data Tensors and Invariance Property

How to describe the intrinsic geometry of mani-
folds in learning problems is an important issue that
involves the understanding of certaininvariance prop-
erties [5]. In this Section we consider cubic data ten-
sors and study the invariance property that follows from

7



regarding tensors as the collection of linear subspaces
spanned by each matricization. As in the previous Sec-
tions we shall assume that the tensorial kernel is defined
upon the projection Frobenius normdpF: k(X,Y) =
exp(−1/(2σ2)

∑

n∈NN
dpF(X<n>,Y<n>)2).

5.1. Congruence Sets and Invariance

In the following two data tensorsX andY are called
congruentif k(X,Y) = 1. Additionally if k(X,Y) = 1
for any pairX,Y ∈ X, then we callX a congruence
set. A characterization of tensors by means of subspaces
[14] shows that congruence sets arise, in particular, in
the following case.

Theorem 4 (Congruence Classes of Data Tensors).
Assume matricesA = [A1,A2, · · · ,AR], B =

[B1, B2, · · · , BR], C = [C1,C2, · · · ,CR] ∈ RI ⊗ RR with
full rank R. A setX ⊂ RI ⊗ RI ⊗ RI is a congruence set
if for anyX ∈ X

X =
∑

r∈NR

dr Ar ⊗ Br ⊗Cr (25)

for some D= (d1, . . . , dR) ∈ CR.

Before proceeding it is important to stress that con-
gruence set membership of a data tensorX is invariant
with respect to the specific value of the multiplier vec-
tor D in (25). Notice that the result holds also for the
case where elements ofX are general complex-valued
tensors. A formal proof of Theorem 4 requires addi-
tional technical material and is beyond the scope of this
manuscript. Further details are found in [14] that ac-
tually deals with a broader specification of equivalence
classes. Our next goal is to highlight the significance of
this result for pattern recognition.

5.2. Implications for Pattern Recognition

A first important remark pertains the nature of con-
gruence sets.

Remark 1. If X1 and X2 are congruence sets corre-
sponding to matrices{A1, B1,C1} and {A2, B2,C2} re-
spectively, then{A1, B1,C1} , {A2, B2,C2} implies that
the two sets do not intersect (X1 ∩ X2 = ∅).

In light of this, the machinery of congruence sets is seen
to have an immediate application for pattern recogni-
tion. In fact, suppose that we want to discriminate be-
tween classes that are known to coincide with separate
congruence sets. In this limiting case we are guaran-
teed that the within class distance is exactly zero and
the between class distance is strictly positive. The use

of factor kernels (24) ensures that perfect class sepa-
ration is achieved. For practical problems, however,
one does not know in advance if classes are well ap-
proximated by congruence sets. The question is then
if the embedding implied by factor kernels still cap-
tures the structure of the learning tasks of interest. In
fact, in the statistical learning literature several results
exist showing that generalization takes place if this is
the case. This type of insight can be achieved, for in-
stance, based upon kernel-target alignment [12]. As-
sume we are given a training set ofM input-output pairs
{(

X(m), ym

)

∈ X ×Y : m ∈ NM

}

. Recall the definition
of inner product (2) for tensors of arbitrary order. Then
the (empirical) kernel-target alignmentA(K,Y) is

A(K,Y) =
〈K,YY⊤〉

M
√
〈K, K〉

(26)

and represents the agreement between the kernel matrix
(K)i j = k(X(i),X( j)) and the set of labelsY. A concentra-
tion bound shows that this empirical quantity is concen-
trated around its population counterpart; in turn it can be
shown that if the population alignment is high then there
always exists a good classification hyperplane [11].

Equation (26) only depends upon the kernel matrixK
and the training labels. Hence the alignment can be used
as a criterion to compare different similarity measures
before training the corresponding models. Finally it is
important to remark that the alignment is clearly task
dependent: for the general case it is hard to grasp be-
fore computing the kernel matrix if the similarity mea-
sure does capture the structure of the problem. In prac-
tice it is expected that the factor kernels (24) outperform
general purpose similarity as soon as classes are well
approximated by congruence sets. The purpose of the
next Subsection is then to illustrate a special case where
this situation arises.

5.3. The Special Case of Hankel Tensors

In this section we consider a specific class of tensorial
representations. We focus of the case where input ten-
sors with Hankel structure were constructed based upon
univariate signals. Let{s0, s1, · · · , sT−1} be a sequence
of T real-valued numbers that represent a signalS on
a time (or space) domain. We shall assume that the we
can write

st =

T−1
∑

k=0

ξkz
t
k (27)

where {ξ0, ξ1, · · · , ξT−1} is a sequence of
T complex-valued numbers that represent
weights and

{

z0
k, z

1
k, · · · , zT−1

k

}

are powers of
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zk = exp((i2π fk − dk)∆t), the k-th pole of the sig-
nal. One specific situation arise whendk = 0, fk = k
and finally∆t = 1

T in which case (27) is the Inverse
Discrete Fourier Transform (IDFT) [8]. The weights
collectively form the spectrumof the original sig-
nal S. Assume now integersI1, I2 and I3 satisfying
I1+I2+I3 = T+2. TheHankel tensorX ∈ RI1⊗RI2⊗RI3

of the signalS [35] can be defined entry-wise by

xi1i2i3 := si1+i2+i3−3 . (28)

In light of (27) and a fundamental property of the (com-
plex) exponential we now have thatX can be equiva-
lently restated in terms of rank-1 tensors as:

X =
∑

k∈NT

ξk−1



































z0
k−1

z1
k−1
...

zI1−1
k−1



































⊗



































z0
k−1

z1
k−1
...

zI2−1
k−1



































⊗





































z0
k−1

z1
k−1
...

zI3−1
k−1





































. (29)

WhenX is cubic the latter is seen to be a special case
of (25). Theorem 4 means, in this context, that two cu-
bic Hankel tensors are congruent if the corresponding
signals decompose into the same poles. For the IDFT
case this means that the two cubic Hankel tensors are
equivalent if the spectra of the corresponding signals
share the same support. Hence the proposed kernel in
combination with Hankel tensors is well suited for the
case where, within the same class, signals have approx-
imately the same spectral content.

For ease of exposition, in (28) we have chosen to
deal with the simplest notion of Hankel tensors. An
alternative and more powerful definition of Hankel ten-
sors exists for univariate signals [36] and also the multi-
channel case can be dealt with [35]. Due to its sym-
metrical nature, the Hankel tensorX as defined above
satisfiesX<1> = X<2> = X<3> which is not the case for
the alternative definitions. In practice this means that
when applied to this type of Hankel tensors the tenso-
rial kernelk based on factors (24) can be simplified to

k(X,Y) = exp

(

− 1
2σ2

∥

∥

∥

∥
V(1)
X,1V(1)⊤

X,1 − V(n)
Y,1V(1)⊤

Y,1

∥

∥

∥

∥

2

F

)

(30)

where we considered only the first matricization. In
Section 7 we will provide explicit examples both for
univariate and multichannel signals. Finally we remark
that a different approach for the classification of signals
can be based oncumulant tensors[44].

We denoted byi the imaginary uniti =
√
−1.

6. Model Estimation

We now turn to the general learning problem of inter-
est. We want to estimate a modelf to predict a target
variabley ∈ Y ⊆ R from an input patternX ∈ X given
a training set ofM input-output pairs

{(

X(m), ym

)

∈ X ×Y : m ∈ NM

}

.

Sincek in (19) is of positive type, the Moore-Aronszajn
theorem [1],[4] ensures that there exists only one Hilbert
spaceHk of functions onX with k as reproducing ker-
nel. The estimation of a non-parametric model ofX can
then be formulated as a variational problem in the func-
tion spaceHk. In spite of the infinite dimensionality of
the latter a solution can be found based on finite dimen-
sional optimization as ensured by representer theorems,
see [29], [39].

6.1. Primal-Dual Techniques

An alternative approach relies on primal-dual tech-
niques that underlies Support Vector Machines (SVM)
and related estimators [48],[47],[49]. In this case one
starts from a primal model representation of the type:

f(Ψ,b)(X) := 〈Ψ, φ̃(X)〉HSF+ b . (31)

The primal problem formulation is then aimed at finding
an optimal (Ψ⋆, b⋆) ∈ HSF× R. Notice that the latter
defines an affine hyperplane in HSF. Remarkably, (31)
is affine in φ̃(X) as much as (6) is affine inX. However
since φ̃ is in general a nonlinear mapping,f(Ψ,b) does
not depend linearly onX which provides the improved
flexibility of the model.

Relying on Lagrangian duality arguments the prob-
lem is re-parametrized in terms of dual variables
{αm}m∈NM

and solved in (α, b) ∈ RM+1. In comparison
with the methodology based on representer theorems
the primal-dual approach emphasizes the geometrical
aspects of the problem and it is particularly insightful
whenY = {+1,−1} and (31) is used to define a discrim-
inative rule of the type ˆy = sign(f(Ψ⋆ ,b⋆)(X)). Addition-
ally, primal-dual techniques are best suited to deal with
supplementary constraints that might be used to encode
prior knowledge. Vapnik’s original SVM formulation
[10] translates into convex quadratic programs. By con-
trast, in least-squares SVM (LS-SVM) [48], a modifica-
tion of the SVM primal problem leads to a considerably
simpler estimation problem. In particular, the primal
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formulation for classification [50] reads in our setting:

min
(Ψ,E,b)∈HSF×RM×R

1
2〈Ψ,Ψ〉HSF+ γ

1
2

∑

m∈NM
e2

m

subject toym(〈Ψ, φ̃(X(m))〉HSF+ b) = 1− em, m ∈ NM

(32)
whereγ > 0 is a user-defined trade-off parameter. It is
possible to show that the estimation can be performed
solving the following system of linear equations:

[

0 Y⊤

Y Ω + 1
γ

IM

] [

b
α

]

=

[

0
1M

]

(33)

where 1M = (1, 1, . . . , 1) ∈ RM , IM = diag(1M) and
Ω ∈ RM ⊗ RM is defined entry-wise by

(Ω)i j = yiy j〈φ̃(X(i)), φ̃(X( j))〉HSF = yiy jk(X(i),X( j)) .

Finally to evaluatef(Ψ⋆,b⋆) at a given test pointX, the
dual model representation is exploited:

f(Ψ⋆ ,b⋆)(X) =
∑

m∈NM

ymα
⋆
mk(X(m),X) + b⋆ . (34)

Notice that problem (32) involves the infinite dimen-
sional multilinear functionalΨ ∈ HSF and the results of
finite dimensional optimization do not apply rigorously.
Theories of optimization in abstract vector spaces are
the subject of [34],[18],[20],[2] and [26], among others.
For Vapnik’s SVM formulation a rigorous primal-dual
derivation is discussed in [32]. Similar results for LS-
SVM have not been reported, to the best of our knowl-
edge. As an additional contribution we then give a for-
mal derivation in Appendix C.

The procedure to compute a model with the tenso-
rial kernel is summarized in Table 2. It is assumed that
both the parameterγ in (33) andσ in (24) are given. In
practical applications the choice of these parameter is
performed according to some model selection criterion
often based on cross-validation.

6.2. Structure-inducing Penalties

It is worth noticing that the optimality conditions of
(32) (see (C.8)) yields

Ψ⋆ =
∑

m∈NM

α⋆mymφ̃(X(m)) (35)

which — given the nature of HSF — shows that the opti-
mal multilinear functionalΨ⋆ has at most rankM where
M is the cardinality of the training set. In SVM-like
algorithms the complexity of the model is usually con-
trolled by a notion of margin [55] which is here attached
to 〈Ψ,Ψ〉HSF, the squared Frobenius norm ofΨ. In the

Table 2: Model estimation with factor kernels (24)

input: γ, σ, training pairs
{(

X(m), ym

)

: m ∈ NM

}

.

comment:ComputeΩ

for each m1,m2 ∈ NM and m2 > m1

do



























































for each n ∈ NN

do







































V(n)

X(m1) ,1
← SVD(X(m1)

<n> )

V(n)

X(m2) ,1
← SVD(X(m2)

<n> )

Z(n) ← V(n)⊤
X(m1) ,1

V(n)

X(m2) ,1

an ← In − trace(Z⊤(n) Z(n))

(Ω)m1m2 ← ym1ym2 exp
(

− 1
σ2 (a1 + a2 + · · · + aN)

)

Ω← Ω +Ω⊤ + IM

comment:Find model parameters

Solve (33) for givenΩ,Y and parameterγ .

present context the interpretation of equation (35) sug-
gests that an additional complexity measure might be
based on some generalized notion of rank [25],[24]. Re-
cently the use of the nuclear norm was proposed to de-
fine convex relaxation for rank constrained matrix prob-
lem [37]. This approach parallels the use of thel1 norm
in sparse approximation and cardinality minimization
[52],[16]. Extension of the nuclear norm to higher or-
der tensors has been considered in [43], [33]. Hence we
remark that an interesting extension, that we do not ap-
proach here, might be to consider a penalty of this type
in the infinite dimensional setting of problem (32).

7. Experimental Results

7.1. Classification of Sparsity Patterns

The purpose of this experiment is to test the impact of
the invariance property studied in Section 5 on a classifi-
cation problem. LetE j ∈ RI be thej-th canonical basis
vector defined asej

i := 1 if i = j andej
i := 0 otherwise

and let∆ j ∈ RI ⊗ RI ⊗ RI be the rank-1 tensor defined
as:

∆ j := E j ⊗ E j ⊗ E j .

We generated data tensors inRI ⊗RI ⊗RI according to
the following model:

X(m) =

{

am∆1 + bm∆2 + cm∆3 + E(m), if ym = +1
am∆4 + bm∆5 + cm∆6 + E(m), if ym = −1

(36)
where am, bm and cm are i.i.d. from a zero-mean
Gaussian distribution with variance 1− β2 and the
entries of the noise tensorE(m) are i.i.d. from a
zero-mean Gaussian distribution with varianceβ2.
We then consider the binary classification problem
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that consists of estimating the underlying label of a
given test data tensor. A comparison between (36) and
(25) reveals that forβ2 = 0 (noiseless case) the two
classes of tensors correspond to separate congruence
sets, see also Remark 1. Additionally, this task can be
regarded as the classification of vectors ofRI3

having
two different types of sparsity patterns, see Figure 2 for
the case whereI = 3. We use the LS-SVMlab tool-

X
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Figure 2: By vector unfolding the experiment of Section
7.2 can be interpreted as the classification of sparsity
patterns of (noisy) vectors. As an example we take here
I = 3 and plot the 27 elements of the vectorized version
of data tensors generated according to (36). The solid
green dots in plots 2(a) and 2(b) represent two hypo-
thetical index sets of non-zero entries before corruption
by gaussian noise with varianceβ2.

box (www.esat.kuleuven.be/sista/lssvmlab,
[13]) and perform training withM input-output pairs
{(

X(m), ym

)

: m ∈ NM

}

. We compared the naı̈ve
Gaussian-RBF kernel function (8) (Gauss-RBF in the
tables) — which corresponds to vectorizing the tensors
— with the tensorial kernel based on factors (24)
(tensorial in the tables) for increasing values ofM. We
also compared with affine tensor-based models (6) with
fixed rank-1 parametrization (linear rank-1). We use
quadratic loss as for the kernel-based classifiers and find
the model via the alternating approach proposed in [51].
For the kernel-based procedures we tune the kernel
parameterσ and regularization parameterγ based upon

10-fold cross-validated misclassification error. The
same approach is used for the regularization parameter
needed for linear rank-1 models. Table 3 refers to the

Table 3: Accuracy on test data forI = 7, β2 = 0.05

AUC performance: mean (and standard deviation)

M tensorial (19)-(24) Gauss-RBF (8) linear rank-1 [51]
10 0.86(0.04) 0.53(0.07) 0.50(0.04)
14 0.88(0.03) 0.53(0.05) 0.51(0.03)
20 0.88(0.09) 0.61(0.10) 0.50(0.02)
28 0.92(0.02) 0.60(0.10) 0.50(0.02)
42 0.94(0.02) 0.63(0.10) 0.50(0.02)
60 0.95(0.02) 0.69(0.08) 0.50(0.01)
80 0.96(0.02) 0.73(0.07) 0.50(0.01)

110 0.96(0.01) 0.80(0.05) 0.50(0.01)
150 0.97(0.01) 0.84(0.04) 0.50(0.01)
200 0.97(0.01) 0.88(0.03) 0.50(0.01)
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(b)

Figure 3: Synthetic example,I = 10, β2 = 0.005 and
increasing number of training examples. Boxplots of
AUC obtained over the same 200 test patterns for for the
Gaussian-RBF kernel 3(a) and for the tensorial kernel
3(b).

case of increasing values ofM, I = 7 andβ2 = 0.05. We
reported the mean value and standard deviation of the
Area under the receiver operating characteristic Curve
(AUC) obtained across 100 random experiments. Each
AUC was computed based upon the predicted labels
of the same 200 test patterns. Similar results were
obtained for the case whereI = 10 andβ2 = 0.005. For
this case Figure 3 reports the box plots of AUCs for the
two RBF-type kernels. In all our experiments the linear
rank-1 models consistently achieved random guessing
performance. The same behavior was observed for the
linear kernel (7) (not reported in Table 3). The tensorial
kernel outperforms the Gaussian-RBF kernel showing
that the proposed approach is useful even when the
classes are only approximated by congruence sets (due
to the fact thatβ2

, 0). In general, the quantitative
measure of kernel-target alignment proposed in [12]
can reveal before training how well different kernel
functions capture the structures of the problem. A good
alignment often results in visually detectable patterns,
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(a) (b) (c)

Figure 4: Classification of sparsity patterns (β2 = 0.05
andI = 10). Here kernel-target alignment appears from
the pattern of off-diagonal entries of kernel matrices. (a)
the 1-rank matrixYY⊤ obtained from training labelsY.
(b) the tensorial kernel matrix leading to superior clas-
sification accuracy (c) the Gaussian-RBF kernel.

see Figure 4. In general we observed that models
based on the Gaussian-RBF kernel (which isuniversal
[46]) also reach perfect classification accuracy when
M is sufficiently large. This shows that exploiting the
underlying invariance property is relevant especially for
small sample size problems.

7.2. Recognition of Signals

We now present a simple example to illustrate Sub-
section 5.3. We generated two classes of real-valued
signals corrupted by noise. Each class consisted of sig-
nals with different spectral content. Specifically, each
signal S was a sequence of the type{s0, s1, · · · , s57}
where

st =
∑

k∈N10

αk cos(2∆yπtk/10)+ 0.5ǫt, ∆y =

{

1 if y = +1
1.01 if y = −1

andα ∈ R10 was a vector of i.i.d. random variable
drawn from a normal distribution. Notice that∆y in the
previous is defined upon the signal’s label. In turn, the
latter was taken to be i.i.d. from a Bernoulli distribu-
tion with probability 0.5. Finally ǫ was a white noise
sequence with normal distribution. Following this ap-
proachM signal-label pairs where generated for train-
ing. The 57-dimensional vector corresponding to the
m-th training signalS(m) was either fed directly into ker-
nels for vectors:

k
(

S(m1),S(m2)
)

= exp
(

−σ2
∥

∥

∥S(m1) − S(m2)
∥

∥

∥

2
)

(37)

k
(

S(m1),S(m2)
)

=
〈

S(m1),S(m2)
〉

(38)

called respectively Gauss-RBF vec and linear vec, or
first converted into an Hankel tensorX(m) ∈ R20×R20×
R

20 as explained in Section 5.3. For this latter tenso-
rial representations we then used the Gaussian kernel
(8) (Gauss-RBF), the linear kernel (6) (linear) and the

simplified version of tensorial kernel that holds for Han-
kel tensors (30) (tensorial). We also considered affine
tensor-based models (6) with fixed rank-1 parametriza-
tion (linear rank-1). The accuracy of the corresponding
models, measured on the same set of 200 test patterns,
were reported in Table 4. As in the previous example the
tensorial kernel leads to far more accurate predictions in
the low range ofM. All the affine models (linear, lin-
ear vec, linear rank-1) achieve random guessing perfor-
mance. Finally notice that Gauss-RBF vec outperforms
Gauss-RBF. This is expected since vectorized Hankel
tensors contain the same information as the vectors they
are generated upon. In turn their dimensionality is con-
siderably higher.

Table 4: Accuracy for the signals example

AUC performance: mean (and standard deviation)

M tensorial (30) Gauss-RBF (8) linear rank-1 [51]
10 0.88(0.04) 0.54(0.06) 0.50(0.02)
14 0.91(0.03) 0.55(0.07) 0.50(0.03)
20 0.93(0.05) 0.64(0.09) 0.50(0.02)
28 0.94(0.09) 0.71(0.10) 0.50(0.02)
42 0.97(0.01) 0.77(0.12) 0.50(0.02)
60 0.98(0.01) 0.86(0.09) 0.50(0.02)
80 0.98(0.01) 0.73(0.07) 0.50(0.01)

110 0.99(0.01) 0.81(0.20) 0.50(0.01)
150 0.99(0.01) 0.83(0.20) 0.50(0.02)
200 0.99(0.01) 0.90(0.18) 0.50(0.02)

M Gauss-RBF vec (37) linear vec (38) linear (7)
10 0.57(0.07) 0.50(0.03) 0.50(0.03)
14 0.64(0.08) 0.50(0.03) 0.50(0.03)
20 0.69(0.09) 0.50(0.03) 0.50(0.03)
28 0.75(0.09) 0.50(0.03) 0.50(0.04)
42 0.87(0.05) 0.50(0.03) 0.50(0.04)
60 0.93(0.03) 0.50(0.04) 0.50(0.05)
80 0.96(0.02) 0.50(0.04) 0.50(0.04)

110 0.98(0.01) 0.50(0.04) 0.50(0.04)
150 0.99(0.01) 0.50(0.04) 0.50(0.04)
200 1.00(0.00) 0.50(0.03) 0.50(0.04)

7.3. Libras Movement Data

Next we consider the Libras Movement Data Set [19]
that contains different classes of hand movement type of
LIBRAS (the Brazilian sign language). Each class con-
sists of 24 bidimensional trajectories performed by the
hand in a period of time (45 time instants for each hand
movement). So each input pattern is a 45× 2 matrix.
We considered binary discrimination between different
pairs of hand movement types. On the one hand each
matrix was vectorized and fed into the same kernels for
vectors considered in the previous Subsection (Gauss-
RBF vec and linear vec). On the other hand based upon
each row of the input matrix, a 6× 40 Hankel matrix
was formed. The 6× 40× 2 tensor obtained stacking
together these 2 matrices has a partial Hankel structures
[36] and features similar properties as the Hankel tensor
we discussed in Section 5.3 for the case of univariate
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signals. This tensor representation was then used within
kernels Gauss-RBF, linear and tensorial. Also rank-1
affine models were considered. For each binary classifi-
cation task we compared the AUC curve obtained over
100 runs of LS-SVMlab. For each run we considered a
different splitting into training and test set of the 48 time
series available. In particular we take 8 for training and
40 for testing. Results for different pairs of classes are
reported in Table 5.

Table 5: Accuracy on test data for Libras

AUC performance: mean (and standard deviation)
task tensorial (19)-(24) Gauss-RBF (8) linear rank-1 [51]

1 vs 2 0.83(0.07) 0.76(0.11) 0.68(0.16)
1 vs 3 0.92(0.04) 0.98(0.05) 0.94(0.13)
1 vs 4 1(0) 0.98(0.05) 0.86(0.15)
1 vs 5 1(0) 0.97(0.06) 0.87(0.12)
1 vs 6 1(0) 0.95(0.07) 0.85(0.13)

task linear (7) Gauss-RBF vec (37) linear vec (38)
1 vs 2 0.77(0.12) 0.75(0.11) 0.77(0.12)
1 vs 3 0.94(0.09) 0.98(0.05) 0.95(0.08)
1 vs 4 0.94(0.08) 0.98(0.03) 0.95(0.07)
1 vs 5 0.91(0.11) 0.97(0.06) 0.92(0.09)
1 vs 6 0.88(0.10) 0.95(0.06) 0.86(0.10)

7.4. Aerial Views

Table 6: Accuracy on test data for Aerial Views

AUC performance: mean (and standard deviation)
task tensorial (19)-(24) Gauss-RBF (8)

1 vs 2 0.95(0.03) 0.71(0.20)
3 vs 9 1(0) 0.70(0.25)
5 vs 6 0.99(0.02) 0.61(0.18)
7 vs 8 0.95(0.05) 0.58(0.17)

task linear (7) linear rank-1 [51]
1 vs 2 0.95(0.06) 0.79(0.20)
3 vs 9 0.99(0.04) 0.99(0.05)
5 vs 6 0.86(0.12) 0.82(0.14)
7 vs 8 0.92(0.09) 0.70(0.19)

These experiments are about the Aerial View Activ-
ity Classification Dataset [6]. The goal is to discrim-
inate between pairs of human actions from the given
low-resolution grayscale videos, 12 per action. Each
video is a 3−rd order tensor where the first two dimen-
sions represent number of pixels of each frame and the
third dimension is the number of frames, see Figure
5. As a preprocessing step we normalize the videos
in the datasets. Each frame of each video is resam-
pled to match the common size of 10× 13 pixels. To
cope with the different number of frames per video, we
perform dimensionality reduction along the time mode
and extract 4 eigen-images separately for all the videos.
More precisely letX̃ denotes the 10× 13 × M tensor
consisting ofM frames. Denote byX̄′

<3> the matrix

(a) class 3 (digging)

(b) class 9 (jumping)

Figure 5: Examples of frames taken from low-
resolution videos of human activities.

obtained centering the columns of the 130× M matrix
X̃′
<3>. We compute from theM × M empirical covari-

ance matrix 1/129X̄<3>X̄′<3> the 4 principal eigenvec-
torsE = [E1, · · · ,E4] ∈ RM ⊗ R4 and finally obtain the
10× 13× 4 data tensorX from reshapingX̄′

<3>E. As
a result of this normalization procedure for each binary
classification task we are left with 24 10× 13× 4 input
tensors and corresponding target labels. For each task
we considered 8 tensors for training and the remaining
16 for testing. We compared the linear and Gaussian-
RBF kernel with the tensorial kernel (19)-(24), linear
kernel (7) and rank-1 models [51]. As before we av-
eraged the performances over 100 replicates obtained
from random splitting of training and test set. Results
for different pairs of classes are reported in Table 6.

8. Conclusion

In this paper we have introduced a new framework
to go beyond the class of affine models considered in
the existing supervised tensor-based methods. This was
achieved by exploiting the flexibility of kernel meth-
ods on the one hand and the structure of data tensors
on the other. We began by showing that product ker-
nels, among which the popular Gaussian-RBF kernel,
arise from the space HSF of infinite dimensional ana-
logue of finite dimensional tensors. This realization is
important on its own as it shows that kernels are closely
connected with the seemingly distinct domain of tensor-
based techniques. We then turned to the problem of im-
plicitly mapping data tensor into HSF by defining suit-
able factor kernels. Contrary to naı̈ve kernels, the tenso-
rial kernel we proposed keeps into account the intrinsic
geometry of data tensors by leveraging the Grassman-
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nian nature of matrix unfoldings. We have elaborated on
an invariance property possessed by the proposed factor
kernels and introduced the concept of congruence sets.
From a pattern recognition viewpoint this is important
because as soon classes are well approximated by con-
gruence sets, improved classification accuracy is to be
expected. This is in line with statistical learning results
showing that good generalization takes place if simi-
larity measures do capture the structure of the learning
tasks of interest.
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Appendix A. Proof of Proposition 1

The reader is referred to [27, Proposition 2.6.2] for a
proof of the first two statements. Here we proof the re-
maining assertions that are specific to our context. First
of all notice that the multilinear functional defined in
(14) is clearly bounded as it follows from the definition
of RKHS. In order to prove thatψk1

X,k
2
X,...,k

P
X

indeed be-
longs to HSF we need to show that it is Hilbert-Schmidt.
This is the case since we have:

∑

e1∈E1

∑

e2∈E2

· · ·
∑

eP∈EP

|ψk1
X ,k

2
X ,...,k

P
X
(e1,e2, . . . ,eP)|2 =

∑

e1∈E1

∑

e2∈E2

· · ·
∑

eP∈EP

|〈k1
X,e1〉H1〈k2

X,e2〉H2 · · · 〈kP
X,eP〉HP |2 =

‖k1
X‖2H1

· · · ‖kP
X‖2HP

< ∞ . (A.1)

By the definition of inner product in (11) we now have:

〈ψk1
X ,k

2
X ,...,k

P
X
, ψk1

Y ,k
2
Y ,...,k

P
Y
〉HSF =

∑

e1∈E1

∑

e2∈E2

· · ·
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eP∈EP

〈k1
X, e1〉H1〈k2
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(

〈k1
X,e1〉H1〈k1
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· · ·
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eP∈EP

(

〈kP
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=

〈k1
X, k

1
Y〉H1 · · · 〈kP

X, k
P
Y〉HP = k1(X,Y) · · · kP(X,Y) (A.2)

that proves (15).

Appendix B. Proof of Theorem 3

To show thatk is positive definite it is enough to show
that the factors are positive definite [4]. Let

ψn : RI1 ⊗ · · · ⊗ RIN → R(I1I2···IN)2

X 7→ vec(ΠR(X<n>))

and introduce the kernel function

g : R(I1I2···IN)2 × R(I1I2···IN)2 → R

(X,Y) 7→ exp
(

〈X,Y〉/σ2
)

.

(B.1)
We first show that the latter is positive definite. To see
this, notice that the exponential function can be arbitrar-
ily well approximated by polynomials with positive co-
efficients and hence is a limit of kernels. Since the pos-
itive definiteness is closed under taking pointwise limit,
the result follows (see e.g. [41, Proposition 3.24, point
ii]). Additionally also

gn(X,Y) := g(ψn(X), ψn(Y)) (B.2)

is positive definite since the kernel matrixGn aris-
ing from evaluating g at any arbitrary T−tuple
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(

ψn

(

X(1)
)

, ψn

(

X(2)
)

, · · · , ψn

(

X(T)
))

is such. Now ob-
serve that forHgn ∋ gn(X) := gn(X, ·) the normalized
evaluation functional ¯gn(X) := 1/(‖gn(X)‖Hgn gn(X))
gives rise to the positive definite kernel ¯gn(X,Y) :=
〈ḡn(X), ḡn(Y)〉Hgn =

gn(X,Y)√
gn(X,X)

√
gn(Y,Y)

. Replacing (B.2)

into the latter and keeping into account (B.1) we obtain

gn(X,Y)
√

gn(X,X)
√

gn(Y,Y)
=

exp
(

〈ψn(X), ψn(Y)〉/σ2
)

√

exp
(〈ψn(X), ψn(X)〉/σ2

)

√

exp
(〈ψn(Y), ψn(Y)〉/σ2

)

=
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1
σ2
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2σ2
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1
2σ2
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− 1
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)

.

By definition ofψn the last member corresponds now to

exp
(

− 1
2σ2

∥

∥

∥ΠR(X<n>) − ΠR(Y<n>)

∥

∥

∥

2

F

)

which concludes the

proof.

Appendix C. LS-SVM and Optimization in Infinite
Dimensional Spaces

We first recall the results that we need in a general
HS setting. Successively, we detail the derivation of LS-
SVM for classification starting from (32).

Appendix C.1. Generalized Differential and Gradient

In the following (H, 〈·, ·〉H) will denote a HS andf
a functional onH, namely a mapping of the typef :
H → R. We recall thatf is convex if dom(f ) := {h ∈
H : | f (h)| < ∞} is a convex set andf (αh1+(1−α)h2) ≤
α f (h1) + (1− α) f (h2) . Notice that the latter is implied
in particular if f is linear or affine.

Definition 3 (Subgradient and Subdifferential [18]).
Let f : H → R be a convex functional. An element
g ∈ H is calledsubgradientof f at h0 ∈ dom(f ) if for
anyh ∈ dom(f ) we havef (h) ≥ f (h0) + 〈g, h− h0〉H .

The set of all subgradients off at h0 is called the
subdifferentialof f at h0 and it is denoted by∂ f (h0).

Remark 2. Before proceeding we remark that the HS
setting we consider here translates into simpler results
and definitions than those stated in terms of Banach
spaces [34],[18],[2]. In particular, the fact that HS’s are
reflexive implies that subgradients of functionals can be
considered as elements of the same space and the use of
more general duality pairings can be avoided.

Definition 4 (Gateaux Differential). Let f : H → R

be a convex functional. We callf differentiable in a
directions at a pointh ∈ dom(f ) if the following limit
exists:

f ′(h; s) = lim
α↓0

1
α

( f (h+ αs) − f (h)) . (C.1)

If there existsh⋆ ∈ H such that

f ′(h; s) =
〈

s, h⋆
〉

H
∀s ∈ H (C.2)

we say thatf is Gateaux-differentiableat h, call h⋆ the
Gateaux-differentialof f at h and denote it byf ′(h).

Many properties of differentials from finite-dimensional
calculus can be extended to the present generalized no-
tion of differentials. For example it can be shown (see
e.g. [18]) that if f is Gateaux-differentiable ath ∈ H

then∂ f (h) = { f ′(h)}. Conversely, iff is continuous and
possesses unique subgradientg ath ∈ dom(f ), then f is
Gateaux-differentiable ath and f ′(h) = g.

Remark 3. If f is a continuous linear functional, then
by the Riesz theorem there existsh⋆ such thatf (h) =
〈h, h⋆〉H for any h ∈ H. It is immediate to see now
that f ′(h; s) = limα↓0

1
α

( f (h+ αs) − f (h)) = 〈s, h⋆〉H
and hence thath⋆ is the Gateaux-differential ath for
any h ∈ H. Similarly if f is a continuous affine func-
tional: f (h) = 〈h, h⋆〉H+b then againh⋆ is the Gateaux-
differential ath for anyh ∈ H.

Remark 4. If f (h) = 〈h, h〉H simple calculus shows
that equation (C.1) readsf ′(h; s) = 2〈s, h〉H . Hence by
equation (C.2)f ′(h) = 2h.

Appendix C.2. The Case of Composite Spaces

Given two HS’s
(

H1, 〈·, ·〉H1

)

and
(

H2, 〈·, ·〉H2

)

we can
consider the product spaceH1×H2 consisting of ordered
pairs (h1, h2). Such a space can be turned into a HS
H based upon the inner product〈(h1, h2), (g1, g2)〉H :=
〈h1, g1〉H1 + 〈h2, g2〉H2 . A separablefunctional onH
is now a functional of the typef ((h1, h2)) = f1(h1) +
f2(h2) . If such a functional is differentiable, by (C.1)
it is immediate to see that: f ′((h1, h2); (s1, s2)) =
f ′1(h1; s1) + f ′2(h1, s1) .Additionally, (C.2) becomes now

f ′((h1, h2); (s1, s2)) =
〈

s1, h
⋆
1

〉

H1
+

〈

s2, h
⋆
2

〉

H2
∀(s1, s2) ∈ H

(C.3)
and the Gateaux-differential is then f ′((h1, h2)) =
(h⋆1 , h

⋆
2 ) . These facts can be extended to the general

T−fold productH1 ×H2 × · · · ×HT in a straightforward
manner.

16



Appendix C.3. Lagrange Multipliers Theorem
In here we recall the Lagrange multiplier theorem that

we need in deriving the set of linear equations corre-
sponding to the LS-SVM primal problem. More gen-
eral results of this type are found in [2] and [34]. For
m ∈ NM and am ∈ H consider the affine functional
rm : H → R defined byrm(h) = 〈h, am〉H + bmfor some
B ∈ RM. Let f andgs, for s ∈ NS, denote convex and
continuous functionals onH. Consider the following
constrained problem:

minh∈H f (h)
such that rm(h) = 0, m ∈ NM

gs(h) ≤ 0, s ∈ NS .

(C.4)

The corresponding Lagrange functional L :
dom(f ) × RS × RM → R is: L(h, λ, α) =

f (h) +
∑

s∈NS
λsgs(h) +

∑

m∈NM
αmrm(h) . Addi-

tionally, let F := dom(f ) ∩
s∈NS

dom(gs) and A :=

{h ∈ H : rm(h) = 0 ∀m ∈ NM , gs(h) ≤ 0 ∀ s ∈ NS} .
The next Theorem is a restatement of [2, Theorem 1.2
and Theorem 1.3].

Theorem 5 (Lagrange Multiplier Theorem [2]). Sup-
pose that
1.) gs(h) < 0 ∀ s ∈ NS for some point h∈ A
2.) 0 ∈ int {(r1(h), r2(h), . . . , rM(h)) : h ∈ F} .
Then h⋆ ∈ A is an optimal solution to(C.4) if there exist
for any s∈ NS a real numberλ⋆s , and for any m∈ NM

a real numberα⋆m, such that:

a.) 0 ∈ ∂ f (h⋆) +
∑

s∈NS
λ⋆s∂gs(h⋆) +

∑

m∈NM
α⋆mr ′m(h⋆)

b.) λ⋆s ≥ 0

c.) λ⋆s gs(h⋆) = 0 .

Appendix C.4. Derivation of LS-SVM for Classification
We now base ourselves upon Theorem 5 in order

to derive the optimality condition of the equality con-
strained problem (32):

min
(Ψ,E,b)∈HSF×RM×R

1
2〈Ψ,Ψ〉HSF+ γ

1
2

∑

m∈NM
e2

m

such thatym(〈Ψ, φ̃(X(m))〉HSF+ b) = 1− em, m ∈ NM .

The problem involves finding an optimal ordered pair
(Ψ⋆,E⋆, b⋆) in the product space HSF× RM × R. This
space, denoted byH for convenience of notation, can be
turned into a HS by means of the inner product

〈(Ψ,E, b), (Ξ, F, c)〉H = 〈Ψ,Ξ〉HSF+ 〈E, F〉 + bc .

Let us define now the separable functional

f ((Ψ,E, b)) :=
1
2
〈Ψ,Ψ〉HSF+ γ

1
2

∑

m∈NM

e2
m

and form ∈ NM the affine functional

rm((Ψ,E, b)) := 〈(Ψ,E, b), (ymφ̃(X(m)),E(m), ym)〉H − 1
(C.5)

where form ∈ NM, E(m) ∈ RM is defined in terms of
the Kronecker delta bye(m)

j = δm j, j ∈ NM. With these
definitions problem (32) can be restated as

min
(Ψ,E,b)∈H

{ f ((Ψ,E, b)) : rm((Ψ,E, b)) = 0, m ∈ NM} .

It is easy to see thatf is Gateaux-differentiable at any
(Ψ,E, b). We have:

∂ f ((Ψ,E, b)) =
{

f ′((Ψ,E, b))
}

= {(Ψ, γE, 0)} (C.6)

where we used the basic facts of Appendix C.2 on com-
posite spaces and Remark 4. By equation (C.5), Remark
3 and Appendix C.2 we have

r ′m((Ψ,E, b)) = (ymφ̃(X(m)),E(m), ym) .

Now since the subdifferential in (C.6) is a singleton,
pointa in Theorem 5 becomes, simply:

(Ψ⋆, γE⋆, 0) =
∑

m∈NM

α⋆m(ymφ̃(X(m)),E(m), ym)

or, equivalently:

Ψ⋆ =
∑

m∈NM

α⋆mymφ̃(X(m)) (C.7)

e⋆m =
1
γ
α⋆m, m ∈ NM (C.8)

∑

m∈NM

α⋆mym = 0 . (C.9)

Finally, notice that the setA of Theorem 5 reads
here A = {rm((Ψ,E, b)) = 0, m ∈ NM}. Making
rm((Ψ,E, b)) = 0 explicit for m ∈ NM, we obtain the
additional set of conditions:

ym(〈Ψ⋆, φ̃(X(m))〉HSF+ b⋆) = 1− e⋆m, m ∈ NM . (C.10)

Replacing (C.7) and (C.8) into the latter to eliminate the
primal variableΨ⋆ and E⋆, and keeping into account
(C.9), one obtains the system of linear equations (33)
where 1M = (1, 1, . . . , 1) ∈ RM , IM = diag(1M) and
Ω ∈ RM ⊗ RM is defined entry-wise by

(Ω)i j = yiy j〈φ̃(X(i)), φ̃(X( j))〉HSF = yiy jk(X(i),X( j)) .
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