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Least Squares Projection Onto the
Behavior for SISO LTI Models ⋆
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Abstract: We consider the least squares projection onto the behavior for linear time-invariant
(LTI) single-input single-output (SISO) models, in which the observed input-output data are
modified in a least squares (LS) sense by subtracting so-called misfits, so that the modified
data satisfy a given linear dynamic relation. We show that the LS-criterion of the projection
problem induces an orthogonal decomposition of the ambient data space and we characterize
this decomposition by means of banded (block-) Toeplitz matrices, the elements of which are the
coefficients of the difference equation describing the SISO LTI dynamics. We thereby generalize
earlier results in the literature on autonomous LTI models to the more complicated SISO case.
Additionally, we illustrate that the novel characterization is equivalent (up to a change of model
representation) to results derived using (isometric) state space representations in the literature
on behavioral systems theory.

Keywords: Modeling and identification, linear systems, parametric optimization.

1. INTRODUCTION

System identification translates observed time-series data
into a mathematical model, which typically belongs to
a user-specified model class. In practice, however, the
observed data as such are almost never model-compliant,
i.e., the data do not belong to the behavior of the model,
which is the set of all trajectories that exactly satisfy the
model dynamics [Willems, 1987, Heij, 1989]. There could
be many reasons for this, e.g., measurement inaccuracies,
missing data, observational errors, and model mismatch.
Stochastics are often introduced to explain this discrep-
ancy between the observed data and the model [Aoki
and Yue, 1970, Ljung, 1999]. However, unless one has
a priori information about the nature of the stochastic
disturbances in the observed data, one might want to
avoid making any statistical assumption(s). Instead, a
more natural way to proceed is to modify the observed
data as little as possible, by subtracting so-called misfits,
so that the modified data become model-compliant. The
smaller these misfits, the better the ‘fit’ between the model
and the observed data.

We consider discrete-time causal single-input single-output
(SISO) linear time-invariant (LTI) models of finite order n.
For this model class, input data û = [û0, . . . , ûN−1]

T ∈ RN

and output data ŷ = [ŷ0, . . . , ŷN−1]
T ∈ RN are model-
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compliant if and only if they are exactly related by an nth
order LTI input-output relation,

n∑
i=0

aiŷk−i −
n∑

i=0

biûk−i = 0, ∀k ∈ {n, . . . , N−1}, (1)

where we assume that N > n. The 2(n+1) coefficients
that appear in (1) are the model parameters of the SISO
LTI model, which we will group in the vectors a =
[a0, . . . , an]

T ∈ Rn+1 and b = [b0, . . . , bn]
T ∈ Rn+1. As

such, given an observed input signal u = [u0, . . . , uN−1]
T ∈

RN and output signal y = [y0, . . . , yN−1]
T ∈ RN , the

identification problem consists out of the minimization of
the 2-norm of the difference between the observed and
model-compliant data sequences ũ = u−û and ỹ = y− ŷ,
the so-called misfits, over the variables û, ŷ, and the model
parameters a, b,

min
û,ŷ,a,b

J =

∣∣∣∣∣∣∣∣[y − ŷ
u− û

]∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣[ỹũ
]∣∣∣∣∣∣∣∣2

2

,

subject to Eq. (1) and a0 = 1,

(2)

where the second constraint is a normalization constraint
to ensure uniqueness of the difference relation in (1).
This misfit modeling setup, which is depicted in Figure 1,
corresponds to the pure-misfit-case of the more general
misfit-versus-latency framework proposed in [Lemmerling
and De Moor, 2001]. The problem is also known in the
literature on behavioral systems theory [Willems, 1986],
where it is described as a particular instance of the global
total least squares (GTLS) problem [Roorda and Heij,
1995]: the GTLS formulation is more general than (2) in
the sense that it considers the broader class of multiple-
input multiple-output (MIMO) models.



Plain nonlinear solvers could be used to tackle the con-
strained nonlinear least squares problem (2), but also
dedicated solution approaches exist. The problem can be
reformulated to a structured total least squares problem,
where the (locally) optimal model parameters are to be
retrieved via the non-trivial null space of a structured
matrix approximation of the block-Hankel matrix contain-
ing the observed input-output data [De Moor, 1993, 1994,
Markovsky et al., 2005, 2006].

Alternatively, the methods proposed in [Roorda, 1995]
exploit the observation that (2) is a double minimization
problem: 1. for given observed data and model parameters,
the minimal norm misfits that make the observed data
model-compliant are to be retrieved (the inner minimiza-
tion), 2. the model parameters itself are to be optimized
(the outer minimization). In particular, the fact that the
optimal solution to the inner-problem is given by a linear
transformation, allows one to substitute the closed-form
solution into the outer problem, thereby eliminating the
2N decision variables û, ŷ from the optimization problem.
A similar approach has been taken in [De Moor, 2020,
Lagauw et al., 2023], where the misfit modeling problem
for autonomous LTI models is considered: the optimal
misfits are expressed as the orthogonal projection of the
observed data onto a linear subspace, which is completely
determined 1 by the parameters of the autonomous model.

In this paper, we study the inner minimization problem:
the least squares projection onto the behavior for SISO LTI
models. Our contribution is twofold:

(1) In Section 2, we show that the least squares criterion
induces an orthogonal decomposition of the ambient
data space. We completely characterize this decom-
position using banded (block-) Toeplitz matrices, the
elements of which are the coefficients of the difference
equation describing the SISO LTI dynamics (1). We
thereby generalize the results from [De Moor, 2020,
Section 4] to the more complicated SISO case. Several
optimality properties are obtained (e.g., the optimal
misfits are structured, in the sense that they are itself
generated by an nth order LTI model), which shed
new light on results obtained in previous work [De
Moor, 1994, De Moor and Roorda, 1994].

(2) In Section 3, we reconsider the projection onto the
behavior using an (isometric) state space representa-
tion to model the SISO LTI dynamics, instead of the
difference relation in (1), similar to the framework
proposed in [Roorda and Heij, 1995]. We demonstrate
that the orthogonal decomposition of the ambient
space as established in Section 2 can also be charac-
terized in this setting, thereby providing a state space
based alternative to the results obtained in Section 2.
The combination of both perspectives allows for a
more intuitive understanding of the obtained results.

In practice, depending on the particular use-case, one of
the two alternative characterizations of the optimal solu-

1 The behavior of the model corresponds to the right null space of
a banded Toeplitz matrix, which is constructed from the coefficients
of the difference equation describing the autonomous LTI dynamics.
The least squares optimal misfits are shown to belong to the
orthogonal complementary subspace of this behavior, i.e., the row
space of the banded Toeplitz matrix [De Moor, 2020].
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a(z)
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+ +
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Fig. 1. The observed input-output signals u,y ∈ RN ,
respectively, are decomposed into a model-compliant
part û, ŷ, and so-called misfits ũ, ỹ, the 2-norm of
which is to be minimized. The coefficients a, b ∈ Rn+1

of the nth degree polynomials a(z) and b(z) in the
forward-shift z, are the model parameters.

tion can be preferred. In future work, we want to exploit
the obtained expression(s) to derive a novel, globally op-
timal approach for SISO LTI misfit modeling.

Notation We denote scalars by lowercase letters, e.g., a,
and tuples/vectors by boldface lowercase letters, e.g., a.
Matrices are characterized by boldface uppercase letters,
e.g., A. The transpose, and Hermitian transpose of a are
indicated by aT and aH, respectively. The 2-norm of a
vector or matrix is denoted by ||·||2 and the pseudo-inverse

of the matrixA is denoted byA†. Furthermore, to ease the
notation, we introduce the observed trajectory w ∈ R2N ,
which comprises the input-output data,

w =
[
wT

0 . . . wT
N−1

]T
= [y0 u0 . . . yN−1 uN−1]

T
,

such that wk = [yk uk]
T
, and we define ŵ and w̃ similarly.

The partial derivative of a scalar function f(. . . ) with
respect to wk will be denoted as,

∂f(. . . )

∂wk
=

[
∂f(. . . )

∂yk

∂f(. . . )

∂uk

]T
.

2. PROJECTION ONTO THE BEHAVIOR

In the projection problem, a given sequence of observed
data w has to be projected onto the linear dynamics of
a given model (i.e., the model parameters a, b of (1) are
known), so that the 2-norm of the obtained misfits w̃ is
minimal. With l = [l0, . . . , lN−n−1]

T ∈ RN−n and λ ∈ R
Lagrange multipliers, the Lagrangian of this projection
problem becomes,

L(ŵ, l, λ) =

N−1∑
k=0

||wk − ŵk||22 + λ(a0 − 1)

+

N−1∑
k=n

lk−n

(
n∑

i=0

aiŷk−i −
n∑

i=0

biûk−i

)
. (3)

The first order necessary conditions for optimality, which
can be obtained by equating all partial derivatives of (3)
to zero, allow to derive the following results.

The behavior Writing out the linear relation from (1) for
all k = 0, . . . , N − 1, gives,

T̃ Tŵ = 0, (4)



where T̃ ∈ R(2N)×(N−n) a banded block-Toeplitz matrix,
the transpose of which is defined 2 as,

T̃ T =


an −bn an−1 −bn−1 . . . . . . a0 −b0

an −bn . . . . . . a1 −b1 a0 −b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
an −bn . . . . . . a1 −b1 a0 −b0

 .

Equation (4) shows that the model-compliant data ŵ must

lie in the (right) null space of T̃ T, i.e., the behavior of the

model from (1) corresponds to null(T̃ T). The latter is an
(N+n)-dimensional subspace of R2N , since a0 = 1 ensures

that T̃ is of full-column rank. The banded block-Toeplitz

structure of T̃ T allows us to construct a basis for its null
space by hand, leading to the matrix T̂ ∈ R(2N)×(N+n):

T̂ =



bn . . . b1 b0
an . . . a1 a0

. . .
... b1 b0

. . .
... a1 a0

. . .

bn
...

...
. . . b0

an
...

... a0

bn bn−1

... b0

an an−1
. . .

... a0

bn
. . . bn−1

...
. . .

an
. . . an−1

...
. . .

. . . bn bn−1 . . . b0
an an−1 . . . a0



.

If we assume that the model in (1) is minimal, such that
the polynomials a(z) and b(z) are coprime, the columns

of T̂ are guaranteed to be linearly independent (this is a
consequence of [Legat et al., 2023, Lemma 3.3]). Combined
with (4), we find that,

ŵ ∈ null(T̃ T) = range(T̂ ).

We can conclude that the (N+n)-dimensional subspace

range(T̂ ) corresponds to the behavior associated to the
model described by the input-output dynamics from (1).
Unsurprisingly, the dimensionality of the behavior cor-
responds to the degrees of freedom (dofs) that one has
to construct the trajectory ŵ: when simulating an nth
order SISO model for k = 0, . . . , N−1, there are n initial
conditions and N inputs that can be chosen freely.

The misfit space It is straightforward, though notation-
ally tedious, to show that equating ∂L(. . . )/ŵk to zero for
all k = 0, . . . , N−1, leads to,

w̃ = T̃ l, (5)

indicating that the optimal output misfits ỹ can be ex-
pressed as the convolution of the vectors a and l, and simi-
larly that the optimal input misfits ũ are obtained from the
convolution of −b and l. Furthermore, it can be seen that
the misfit trajectory w̃ ‘resides’ in the (N−n)-dimensional

subspace spanned by the columns of the matrix T̃ . We will
call this subspace the misfit space.

Orthogonality The orthogonal complementarity between
the row and (right) null space of a matrix imply that the
model- and misfit spaces are orthogonal complementary

subspaces in R2N . Indeed, the matrix product T̃ TT̂ is zero
by construction. By consequence, the first-order necessary

2 Notice that this banded block-Toeplitz matrix is the SISO gener-
alization of the banded Toeplitz matrix derived in [De Moor, 2020].

conditions for optimality of the data projection problem,
and thus also of (2), induce an orthogonal decomposition
of the ambient data space,

R2N = range(T̂ )︸ ︷︷ ︸
behavior

⊕ range(T̃ )︸ ︷︷ ︸
misfits

. (6)

This decomposition implies that the optimal trajectories
ŵ and w̃ are mutually orthogonal,

ŵ ⊥ w̃. (7)

As shown in [De Moor, 1994], one can alternatively de-
rive (7) by substituting (5) in (4), after multiplying (4)

from the left with lT.

Structured misfits Counterintuitively, a natural conse-
quence of the data orthogonality (7) is that besides the
model-compliant data, also the optimal input-output mis-
fits ũ, ỹ, are structured. In particular, the (n+1)th equa-
tion up until the Nth equation 3 in,

T̂ Tw̃ = 0, (8)

show that the input-output misfits satisfy a linear differ-
ence relation of the following form,

n∑
i=0

bn−iỹk−i +

n∑
i=0

an−iũk−i = 0, ∀k ∈ {n, . . . , N−1}.

Characterizing these misfit dynamics in the z-domain
(where z denotes the forward-shift: zyk = yk+1) leads to,

H̃(z) = −ar(z)

br(z)
=

bnz
n + · · ·+ b1z + b0

anzn + · · ·+ a1z + a0
, (9)

with the ‘reversed-coefficients’-polynomials defined as
ar(z) = zna(z−1) and br(z) = znb(z−1). The transfer
function in (9) mapping the inputs ũ to the outputs ỹ
can be interpreted as the ‘inverse’ of the transfer function
of the model governed by (1),

Ĥ(z) =
b(z)

a(z)
=

b0z
n + · · ·+ bn−1z + bn

a0zn + · · ·+ an−1z + an
.

Alternatively, assuming that the given model (1) is stable,
one can derive (9) immediately from (7) by expressing the
orthogonality 4 in the z-domain, giving,

⟨ b(z)
a(z)

Û(z), Ỹ (z)⟩+ ⟨Û(z), Ũ(z)⟩ = 0

⇐⇒ 1

2πi

∮
|z|=1

[
Ỹ (z)

b(z−1)

a(z−1)
+ Ũ(z)

]
Û(z−1)dz = 0

⇐⇒ Ỹ (z) =
−a(z−1)

b(z−1)
Ũ(z) =

−ar(z)

br(z)
Ũ(z).

3 Notice the difference compared to the model-compliant data: the
first and last n equations in (8) additionally constrain w̃. We will
see in Section 3 that these constraints ensure that the initial (k = 0)
and final (k = N−1) state of the misfit model is zero.
4 The transfer (matrix) function of causal, stable, discrete-time LTI
models can be considered as an element of the Hardy space H2 of
functions analytic on the exterior of the unit-disc. The inner-product
⟨F (z),G(z)⟩ of two (matrix) functions F (z),G(z) ∈ H2 is defined
as:

⟨F (z),G(z)⟩ =
1

2πi

∮
T
F H(1/zH)G(z)

dz

z
, (10)

with T the unit circle: |z| = 1. Note that in the context of
LTI systems, the function F (z) corresponds to a transfer (matrix)
function with real-valued impulse response, such that F H(1/zH) =
FT(1/z) [Wahlberg, 2003].



The relation in (9) was also obtained in [De Moor and
Roorda, 1994, De Moor, 1994], albeit without proof.

Optimal projection It is a consequence of the orthogonal
decomposition of the ambient space in (6) that the least-
squares optimal decomposition of the observed input-
output data w = ŵ + w̃ for a given model (a, b) boils
down to an orthogonal projection problem: the minimal
norm misfits w̃ are obtained via the orthogonal projection

of w onto the misfit space, range(T̃ ),

w̃ = (T̃ T)
†
T̃ Tw = T̃ (T̃ TT̃ )−1T̃ Tw,

or equivalently, the optimal regular data ŵ can be com-
puted via the orthogonal projection of w onto range(T̂ ),

ŵ = (I − (T̃ T)
†
T̃ T)w.

3. THE STATE SPACE DUAL

Inspired by the framework developed in [Roorda and Heij,
1995], in which the least-squares misfit modeling problem
has been studied from a ‘behavioral’ point of view, we
reconsider the projection onto the behavior in this Section
using a state space model to parametrize the SISO LTI
dynamics, instead of the difference equation from (1).
Unsurprisingly, we find the same results as in Section 2,
albeit that they appear in a different form due to the state
space representation.

Behavioral system theoretic models Alternative to the
relation in (1), we can enforce the nth order SISO LTI
dynamics on the model-compliant data ŵ by requiring
the data to satisfy the following behavioral state space
recurrence relations,

x̂k+1 = Ax̂k +Bv̂k
ŵk = Cx̂k +Dv̂k,

for k = 0, . . . , N − 1, (11)

with A ∈ Rn×n, B ∈ Rn, C ∈ R2×n, D ∈ R2. Contrary
to a standard input-output state space representation,
which maps inputs û to outputs ŷ, the model in (11)
maps a sequence of auxiliary variables v̂ ∈ RN to the
trajectory ŵ. The auxiliary variables v̂ have no immediate
physical interpretation, and one should not consider them
as ‘inputs’ [Willems, 1986]. Rather, they represent the
degree of freedom in the trajectory ŵ, at each time step
k, that originates from the SISO structure of (1).

Besides the standard basis change of the state vector x̂k,
which makes up the similarity transform of standard input-
output state space models, also the addition of static
feedback and a change of basis 5 of the auxiliary vari-
ables v̂k can be performed without altering the behavior
of (11) [Roorda and Heij, 1995]. In particular, it has
been shown that, assuming minimality and stability of
the original input-output relation modeled by (11), one
can always perform a similarity transformation on the
behavioral model (11) so that the resulting model becomes
isometric [Roorda and Heij, 1995],[

A B
C D

]T [
A B
C D

]
= In+1.

5 Note that the auxiliary variables are scalar in the SISO case,
thereby excluding the possibility of this change of basis.

Therefore, to simplify our derivations, we can assume
without loss of generality that the behavioral state space
model (A,B,C,D) in (11) is isometric.

Given an observed trajectory w and model (A,B,C,D),
the projection onto the behavior now consists of finding
the minimal norm widetildew such that the obtained
ŵ = w − w̃ is model-compliant with respect to (11).
Using the Lagrange multipliers λk ∈ Rn and µk ∈ R2

for k = 0, ..., N−1, we can write the Lagrangian of the
projection problem as,

L(ŵ, x̂, v̂,λ,µ) =
1

2

N−1∑
k=0

||ŵk −wk||22

+

N−1∑
k=0

λT
k(x̂k+1−Ax̂k−Bv̂k)+

N−1∑
k=0

µT
k(ŵk−Cx̂k−Dv̂k).

Behavior The structure of the behavioral state space
model allows us to easily construct a basis for the behavior
in which ŵ resides. Writing out the recurrence relation
in (11) for k = 0, . . . , N−1, gives,

ŵ = Ĥv̂ + Γx̂0,

where Ĥ ∈ R2N×N is the matrix build from the Markov
parameters of the model,

Ĥ =



D 0 . . . . . . . . . 0
CB D 0 . . . . . . 0
CAB CB D 0 . . . 0

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

CAN−2B CAN−3B . . . . . . CB D


(12)

and Γ ∈ R2N×n denotes its (extended) observability
matrix,

Γ =
[
CT (CA)T . . . (CAN−1)T

]T
.

Because of the isometry and minimality of (11) we know

that the rank of
[
Γ, Ĥ

]
is equal to N+n, indicating that

the union of range(Γ) and range(Ĥ) serves as a basis for
the (N+n)-dimensional behavior of the model in (11),

ŵ ∈
[
range(Ĥ) ⊕ range(Γ)

]
. (13)

Structured misfits Equating the partial derivatives of the
Lagrangian with respect to the state vectors x̂k and the
auxiliary inputs v̂k to zero for all k = 0, . . . , N−1, imme-
diately shows that the sequence of Lagrange multipliers
µk equals the misfits w̃k = wk − ŵk. In turn, we can
use the partial derivatives with respect to the state x̂k

and the auxiliary variables v̂k to show that the Lagrange
multipliers λk satisfy a particular backward recursion,[

∂L/∂x̂k

∂L/∂v̂k

]
= 0 ⇐⇒

[
λk−1

0

]
=

[
AT CT

BT DT

] [
λk

w̃k

]
, (14)

where we substituted µk by w̃k and defined λ(−1) = 0,
so that the relation in (14) holds for k = 0, ..., N−1.
Additionally, ∂L/∂x̂N = 0 implies that λN−1 = 0.

By exploiting the fact that (11) is isometric, all solutions
of (14) can be described as,[

A B
C D

] [
λk−1

0

]
+

[
B̃

D̃

]
ṽk =

[
λk

w̃k

]
(15)



where ṽ ∈ RN and the matrices B̃ ∈ Rn and D̃ ∈ R2

come from the unitary completion of the behavioral model
in (11), such that,[

A B B̃

C D D̃

] [
A B B̃

C D D̃

]T
= In+2. (16)

Substitution of x̃k = λk−1 for k = 0, . . . , N−1, and
rewriting (15) leads to the state space representation of
the misfit model,[

x̃k+1

w̃k

]
=

[
A B̃

C D̃

] [
x̃k

ṽk

]
, k = 0, . . . , N−1. (17)

Similarly as in Section 2, we can conclude that the optimal
misfit is highly structured. In particular, the misfit itself
is generated by an nth order LTI model.

Misfit space Equation (17) allows us to derive a basis for
the linear subspace in which the misfit w̃k resides. Con-
trary to (13), we do not need to consider the observability
matrix of the misfit model because we know that x̃0 = 0.

That leaves us with the matrix H̃ ∈ R2N×N , which is

defined similarly as in (12) but using the matrices A, B̃,C

and D̃. However, we cannot take any linear combination
of its columns to generate w̃ as there is an additional
constraint that needs to be satisfied: x̃N = 0. For this
constraint to be true, ṽ needs to be an element of the null

space of ∆̃r, where ∆̃r ∈ Rn×N is the reversed extended
controllability matrix of the misfit model,

∆̃r =
[
AN−1B̃ . . . AB̃ B̃

]
.

Because of the minimality of (11), the matrix ∆̃r will be
of rank n, such that its null space Z ∈ RN×(N−n),

∆̃rZ = 0,

is (N−n)-dimensional. Finally, we find the basis for the

(N−n)-dimensional misfit space as range(H̃Z).

We conclude that the first-order necessary conditions for
optimality of the state space projection onto the behavior
problem once more induce an orthogonal decomposition of
the ambient space,

R2N = (range(H) ⊕ range(Γ))︸ ︷︷ ︸
behavior

⊕ range(H̃Z)︸ ︷︷ ︸
misfits

. (18)

The orthogonal complementarity of both subspaces follows
from the isometric construction of the model (11) and the
misfit model (17).

Optimal projection Because of (18), we can express the
minimal norm w̃ as the orthogonal projection of w onto

the column space of H̃Z,

w̃ = H̃Z[(H̃Z)TH̃Z]−1(H̃Z)Tw = H̃Z(H̃Z)Tw, (19)

where we used the fact that H̃Z is a semi-orthogonal

matrix, such that: (H̃Z)TH̃Z = IN−n.

From (17) and the fact that x̃0 = 0, we know that

w̃ = H̃ṽ. Combine this with (19) to see that we can
compute the sequence ṽ which minimizes the 2-norm of
w̃ via,

ṽ = ZZTH̃ Tw. (20)

The adjoint model There is a alternative way to inter-
pret (20). By combining (11) and (17) and taking xk+1 =
x̂k+1 + x̃k+1, we get that,[

xk+1

wk

]
=

[
A B B̃

C D D̃

] [xk

v̂k
ṽk

]
, k = 0, . . . , N − 1.

We can now use the isometry (16) to derive that the
sequences of auxiliary variables v̂ and ṽ can be obtained
from a backward recursion 6 using the observed data w,[

xk

v̂k
ṽk

]
=

A
T CT

BT DT

B̃
T
D̃

T

[xk+1

wk

]
, k = 0, . . . , N − 1. (21)

Writing out the backward recursion from (21) gives,

ṽ = H̃ Tw + (∆̃r)
Tx̂N , (22)

where we substituted xN with x̂N since x̃N = 0. Since
||w̃||22 = ||ṽ||22 due to the isometry, the optimal ṽ, which
generates the minimal norm misfit w̃, can be found by
choosing x̂N such that ||ṽ||22 is minimal,

0 =
∂ ||ṽ||22
∂x̂N

⇐⇒ 0 = ∆̃r(∆̃r)
Tx̂N + ∆̃rH̃

Tw

⇐⇒ x̂N = −(∆̃r(∆̃r)
T)−1∆̃rH̃

Tw, (23)

where we used that,

||ṽ||22 = wTH̃H̃ Tw + x̂N
T∆̃r(∆̃r)

Tx̂N + 2wTH̃(∆̃r)
Tx̂N .

Substituting (23) in (22) shows that the optimal ṽ is equal
to,

ṽ = H̃ Tw − (∆̃r)
T(∆̃r(∆̃r)

T)−1∆̃rH̃
Tw,

=
(
I − (∆̃r)

T(∆̃r(∆̃r)
T)−1∆̃r

)
H̃ Tw.

Thus, the optimal ṽ can be obtained as the orthogonal
projection of the backwards-filtered observed data w onto
range(Z), which corresponds to the orthogonal comple-

ment of row(∆̃r), leading to the same conclusion as (20).

The z-domain It is straightforward to show that when
the isometric model in (11) describes the same dynamics as

the input-output relation in (1), the transfer matrix Ĥ(z)
of the isometric model (11), mapping the z-transform of
the auxiliary inputs v to the z-transform of the model-
compliant trajectory ŵ, is given as,

Ĥ(z) =
c

d(z)

[
b(z)
a(z)

]
,

where c ∈ R and d(z) a monic polynomial of degree n,
satisfying d(z)dr(z) = c2(ar(z)a(z)+br(z)b(z)). The latter

ensures that Ĥ(z) is lossless, in the sense that,

⟨Ĥ(z), Ĥ(z)⟩ = 1,

with the inner-product defined as in (10). It now comes
as no surprise that, similarly as in Section 2, the ‘reversed
polynomial’ relation between the z-transforms of ỹ and ũ
is also found when one constructs the transfer matrices
of the state space models discussed above. The transfer
6 We call the state space models

(AT,CT,BT,DT) and (AT,CT, B̃
T
, D̃

T
),

the adjoint model and adjoint misfit model, respectively.



function of the misfit model (17) follows from the lossless
embedding H(z) [Genin et al., 1983] of the rational matrix

function Ĥ(z),

H(z) =
[
Ĥ(z) H̃(z)

]
=

c

d(z)

[
b(z) ar(z)
a(z) −br(z)

]
,

such that,

⟨H(z),H(z)⟩ = I2.

Since H̃(z) describes the mapping from the auxiliary
variables to the misfit w̃, the mapping from ũ to ỹ can
be derived as:[

Ỹ (z)

Ũ(z)

]
= H̃(z)Ṽ (z) =

c

d(z)

[
ar(z)
−br(z)

]
Ṽ (z)

⇐⇒ Ỹ (z) = −ar(z)

br(z)
Ũ(z),

which agrees with our findings from Section 2.

4. CONCLUSIONS AND FUTURE WORK

In this paper we considered the projection onto the be-
havior for linear time-invariant (LTI) single-input single-
output (SISO) models, which arises in the context of misfit
modeling. We characterized the orthogonal decomposi-
tion of the ambient data space, which is induced by the
least squares optimality criterion, using banded (block-
) Toeplitz matrices (Section 2). Then, in Section 3, we
showed that similar results are obtained when an (iso-
metric) behavioral state space representation is used to
model the SISO LTI dynamics instead of the difference
equation that was used in Section 2, thereby establishing
two equivalent (up to a change in the model parametriza-
tion) descriptions of the optimal solution. Depending on
the particular use-case, one of these two alternative for-
mulations can be preferred: e.g., the difference equation
considered in Section 2 has, if one fixes a0 = 1, a minimal
number of parameters (2n+ 1) which can be favorable in
the context of optimization. On the other hand, whereas
a state space model is inherently overparametrized, the
characterization developed in Section 3 allows for a more
intuitive interpretation of the results, compared to the
formulation given in Section 2.

Due to the non-convex nature of the misfit modeling
problem (2), the solution approaches described in the
literature [De Moor, 1993, 1994, Roorda, 1995, Markovsky
et al., 2005, 2006] are heuristic in the sense that con-
vergence to the globally optimal model(s) can generally
not be guaranteed. In future work, we want to exploit
the results of this paper to develop a methodology that
allows to identify the globally optimal solutions of (2),
thereby generalizing results from [De Moor, 2020], where
it has been shown that the globally optimal solution(s) of
the misfit modeling problem for autonomous LTI models
can be retrieved via a (large) multiparameter eigenvalue
problem (MEVP), to the SISO case. Additionally, since
the characterization obtained in [Roorda and Heij, 1995]
holds for the broader class of MIMO models, we believe
that one must be able to generalize the ‘banded block-
Toeplitz’ framework presented in Section 2 to this broader
class of models.
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