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Abstract 
 

Genome wide array CGH screening is uncovering pathogenic submicroscopic 

chromosomal imbalances in patients with developmental disorders.  In those patients, 

imbalances appear now to be scattered across the whole genome and most patients 

carry different chromosomal anomalies.  Screening patients with developmental 

disorders can be considered a forward functional genome screen.  The imbalances 

pinpoint the location of genes that are involved in human development.  Since most 

imbalances encompass regions harboring multiple genes, the challenge is (1) to 

identify those genes responsible for the specific phenotype and (2) to disentangle the 

role of the different genes located in an imbalanced region.  In this review, we discuss 

novel tools and relevant databases that have recently been developed to aid this gene 

discovery process.  Identification of the functional relevance of genes will not only 

deepen our understanding of human development but will, in addition, aid in the data 

interpretation and improve genetic counseling. 

 

 

INTRODUCTION 
 

Array CGH is used increasingly often as a primary genetic screening method in 

diagnosis and research [39, 12, 36, 34].  The technique is uncovering pathogenic 

submicroscopic chromosomal imbalances in patients with developmental disorders.  

Most patients carry different chromosomal anomalies, and anomalies occur across the 

whole genome [30, 24, 17, 8, 38].  These imbalances pinpoint the location of genes 

that are involved in human development [49].  Since most imbalances encompass 

regions harboring multiple genes, the challenge is (1) to identify those genes 

responsible for the specific phenotype and (2) to disentangle the role of the different 

genes located in an imbalanced region. 

 

 

The high resolution at which array CGH has been used to define candidate regions for 

putative genes responsible for human genetic diseases is instrumental in defining and 



refining the critical region for a disease or phenotype and reducing the number of 

candidate genes for (an aspect of) the phenotype [39].  This higher resolution has led 

to a dramatic increase in gene identification through molecular karyotyping, and it is 

likely that the function of many more genes will be identified in this way [7]. 

 

However, some specific challenges apply to correlating genotype and phenotype in 

the context of human disease.  Firstly, it is clear that etiology of rare chromosomal 

imbalances greatly benefits from large scale efforts in collection and organization of 

case reports from different genetic testing and research centers around the world.  

Especially for rare diseases, the need for large and well annotated case report 

resources is obvious.   

 

Secondly, the identification of critical genes and pathways involved in a disease or 

biological process is helped by interpreting aberrations within the context of broader 

knowledge [34].  In understanding the functional basis of genetic conditions, it is 

therefore instrumental to incorporate information from different sources, other than 

mere genotype and phenotype information present in case reports.  Integration of 

publicly available data sources pertaining to genome and gene function permits the 

development of bioinformatics methods for candidate gene selection.  Such 

information sources range from the large corpus of biomedical literature to protein-

protein interaction, pathway, and genome annotation databases in general. 

 

In this review, we discuss relevant databases that have recently been developed to 

elucidate the role of genes in different aspects of the phenotype.  We go on by giving 

an overview of published methods and tools that can help in the gene discovery 

process.  Finally, we identify relevant issues in management and use of genotype-

phenotype databases, and elaborate on issues encountered when annotating 

phenotypic characteristics to patient case reports (’phenotyping’). 

 

PUBLIC DATABASES 
 

A group of phenotypically related cases can be used to delineate a minimal genomic 

region that segregates with a clearly defined common part of the phenotype.  Through 

such correlation of components of a phenotype with the loci or genes within the 

affected chromosomal region, novel clinical entities can be defined.  In order for this 

to be possible on a large scale, tools and databases are needed.  Databases need to be 

extensive and publicly accessible, and computational approaches need to be 

compatible with these databases.  Both are necessary tools in large scale studies for 

association of phenotypic information with genomic data. 

 

Collaborative databases of case reports have been set up in support of discovering 

new clinical entities such as deletion and duplication syndromes, and correlating 

aberrant genotypes with phenotypes.  Both global and local case repositories exist; 

some initiatives are closed or consortium-based while others are public.  Although 

these initiatives differ in approach and setup, they share the common goal of 

supporting association studies and efforts in delineating novel syndromes by 

aggregating patient case reports, and in most cases, encouraging data exchange.  

DECIPHER and ECARUCA are considered the two most important databases for 

constitutional cytogenetics.  An overview of chromosomal aberration databases is 

given in Table 1.  Usually, the data mining facilities of these databases are limited to 



search and retrieval.  Features such as clustering and gene prioritization are planned in 

future releases of at least some of these tools. 

 

DECIPHER (DatabasE of Chromosomal Imbalance and Phenotype in Humans using 

ENSEMBL Resources, www.sanger.ac.uk/PostGenomics/decipher) has 

been inspired by the need to distinguish clinically significant imbalances from 

transmitted imbalances or polymorphisms detected using microarrays.  One of the 

aims of this project is facilitating research on genetics in human development and 

health.  The database collects information about clinical cases of submicroscopic 

chromosomal imbalances.  Submitted clinical and genetic information is mapped onto 

the human genome through the ENSEMBL Genome Browser.  DECIPHER has 

already supported the identification of new syndromes. 

 

 

ECARUCA (European Cytogeneticists Association Register of Unbalanced 

Chromosome Aberrations, www.ecaruca.net) is a European database that covers 

both common and rare chromosome aberrations.  It contains details of thousands of 

published cytogenetic imbalances and is prospectively gathering rare cytogenetic and 

molecular cytogenetic aberrations, bringing together cytogenetic, molecular and 

clinical data [11]. 

 

 

COMPUTATIONAL APPROACHES IN CORRELATING 

GENOTYPE AND PHENOTYPE 
 

A primary goal in the context of constitutional cytogenetics is elucidating the role of 

genes in different aspects of a phenotype without falsely associating normal variations 

to disease.  While the above mentioned databases enable associations between 

phenotype and genotype to be stored, queried, annotated and exchanged, they fall 

short in identifying the genes underlying the phenotypic anomalies.  Many tools and 

methods have been set up to filter high probability candidates.  In what follows, we 

provide a list of the most important resources and published computational 

methodologies to generate genotype-phenotype leads and select gene candidates for 

further investigation. 

 

Querying genotype-phenotype correlations in literature databases 
 

With a focus on human as organism of interest, a primary resource for connecting 

genes to disease related phenotypes in a general rather than case based manner is the 

Online Mendelian Inheritance in Men database (OMIM).  It contains curated records 

of genetically inherited human disorders with references to causative genes or genetic 

loci.  Despite the highly reliable information it contains, its usefulness in 

computational analyses remains limited due to the unstructured way in which the 

phenotypes are described.  Therefore, several approaches have arisen to transform the 

information in OMIM to be amenable for computational analysis.  van Driel et al. 

[47], for example, created a human phenotype similarity map by text mining OMIM.  

Starting from an OMIM record or disease name, their MimMiner application retrieves 

the most phenotypically similar disorders.  Based on the observation that similar 

phenotypes are often caused by functionally related or interacting genes, a researcher 

can easily go through the list of genes associated with similar phenotypes to select 



leads for further investigation.  Most of the methods for computational prioritization 

of disease genes described in this review (see Table 2) make use of the information in 

OMIM, either as a starting point to further investigate genotype-to-phenotype 

associations [16, 18, 1, 46], or as a reference to benchmark their proposed method [3, 

33, 13, 44, 25, 32]. 

 

Akin to OMIM, the MEDLINE database of biomedical literature contains a large 

amount of useful information on genotype-phenotype relations in free-text format.  

Here too, several published approaches exist to quickly guide researchers to 

information relevant to their research interest.  The iHOP resource created by 

Hoffmann et al. [23] provides an intuitive access to the published literature by 

hyperlinking abstracts and sentences via the gene or protein symbols and names they 

contain.  The approach taken by Van Vooren et al. [48] uses overrepresentation 

statistics to correlate specific biomedical terms from various targeted biomedical 

vocabularies with cytogenetic bands cited in MEDLINE abstracts.  Through a web 

application named aBandApart, researchers can easily fetch the most relevant 

concepts for a genetic region of interest, look up chromosomal bands associated with 

a query term, and retrieve related literature.  Another rich source of phenotypical 

information about genes is provided by Entrez Gene’s GeneRIFs (Gene References 

into Function) [31].  These direct associations between genes and published literature 

allow construction of accurate textual representations of a gene using standard text 

mining techniques [19, 20].  Yet only Aerts et al. [3] and Lage et al. [25] make use of 

this valuable information source for candidate gene prioritization. 

 

Other noteworthy resources include PhenomicDB [21] and PhenoGO [27].  

PhenomicDB’s value lies in how it integrates phenotype information from multiple 

speciesoriented databases into one repository.  Phenotype-genotype associations are 

grouped based on gene orthology to allow exploration across different species.  

PhenoGO is mentioned here because it is a good example of how more advanced text 

mining techniques can help to bridge the gap between functional annotations of genes 

and phenotype descriptions [27].  The PhenoGO system uses Natural Language 

Processing of MEDLINE abstracts to connect phenotypic contextual information with 

GO annotations (and hence genes) and other biomedical ontologies. 

 

Finding phenotype-rich genotypic features 
 

Apart from retrieval of phenotype information from databases, also certain aspects (or 

features) of the gene or protein sequence can be used to infer or predict associated 

phenotypes.  For instance, it is known that disease genes tend to code for longer 

proteins and are in general evolutionary more highly conserved.  Both López-Bigas 

and Ouzounis [26] and Adie et al. [2] take this approach to calculate the correlation 

between genes and disease.  Both started from the list of genes known to be involved 

in hereditary disease in the morbid map table of OMIM to define discriminating 

features, and subsequently classified all known human genes using a decision tree-

based model.  López-Bigas and Ouzounis used information about length, phylogenetic 

extent, degree of conservation, and paralogy of proteins in their Disease Gene 

Prediction (DGP) method.  For their Prospectr method, Adie at al. used a more 

elaborate feature set that reflects the structure, content, and evolutionary conservation 

of both the DNA and protein sequence.  The outcome of both methods is a score that 

indicates the probability of a gene to be disease causing. 



 

While these kinds of methods provide valuable information, their applicability in 

connecting genes to specific phenotypes or diseases remains limited.  This is mainly 

because they do not rely on the existing knowledge of a particular disease, contrary to 

the methods described in the following paragraph. 

 

Pinpointing phenotype-related genes: guilt-by-association 
 

The published methods described here can be broadly divided in three categories.  An 

overview of methods is presented in Table 2.  The first category covers ab initio 

methods.  These try to identify genes by defining whether their characteristics or 

features are related to a specific disease.  Examples of such features are genomic 

location (e.g., within a linkage region), sequence features, sequence phylogeny, 

functional annotation, gene expression, etc.  Most methods take into account a 

combination of features to prioritize the candidates.  The method by Turner et al. [45], 

POCUS, calculates statistical overrepresentation of Gene Ontology annotations and 

InterPro protein domains for genes in a given set of genomic loci to identify 

successful leads.  GeneSeeker is a web application implemented by van Driel et al. 

[46] that filters the genes in a certain region based on user-specified characteristics of 

interest (tissues, phenotypic features of a syndrome, etc.).  The Genes2Diseases 

(G2D) application presented by Perez-Iratxeta et al. [33] calculates the association 

between a gene and a disease based on the co-occurrence in a set of MEDLINE 

abstracts of MeSH terms in the ’Diseases’ and ’Chemical and Drugs’ categories with 

the gene’s Gene Ontology annotations.  Other methods in this category include 

TEAM [14], the method by Tiffin et al. [44], and the genomic convergence approach 

described by Hauser et al. [22]. 

 

A second category of methods to link genes and phenotypes are network methods.  

Here, the emphasis is on the creation of an interaction network of genes or proteins.  

The rationale behind these methods is that similar phenotypes are often caused by 

functionally related genes, (i.e., genes that belong to the same functional process, take 

part in related pathways, or code for proteins that are part of the same protein 

complex).  They differ mainly in the way the protein network is constructed and how 

interactions partners of known disease proteins are associated with known disease 

phenotypes.  Franke et al. [13] created a Bayesian classifier to first predict protein-

protein interactions not present in a gold-standard data set, using GO annotation, gene 

coexpression, and protein-protein interaction data.  Then, their Prioritizer application 

establishes whether candidate genes in known disease loci are closer together in the 

network than expected.  Oti et al. [32] used a hybrid protein-protein interaction 

network to find interaction partners of known disease proteins.  They went on by 

checking whether the genes coding for these partners were in a disease associated 

locus for which no genes were previously identified.  Lage et al. [25] follow a similar 

approach by constructing a quality-controlled human protein interaction network and 

deriving candidate protein complexes that contains the product of each of the 

candidate genes from it.  The input phenotype is then compared to phenotypes of 

disease causing proteins present in these complexes and the protein coding candidate 

genes are scored accordingly using a Bayesian predictor. 

 

We identify similarity methods as a third category, because here, prioritization of 

candidate genes is based on similarity between candidate and known disease genes, 



rather than on putatively involved features or on their presumed disease causing 

interaction partners.  The Endeavour application by Aerts et al. [3] uses a sound 

statistical framework based on order statistics to reconcile a large number of different 

data sources.  Used data includes both existing knowledge (literature, functional 

annotations, pathway information, etc.) and experimentally derived data (gene 

expression, protein interaction, etc.) to balance out a bias towards known genes.  

Candidate genes are compared to a user-selected or automatically retrieved list of 

training genes that represents the disease or phenotype under study, and prioritised 

according to their similarity with the training set thus obtained.  It is worth noting that 

Endeavour is one of the only computational methods with which an in vivo validated 

new disease gene was revealed.  Adie et al. [1] devised a similar method named 

SUSPECTS.  Here, a more generic candidate gene scoring approach is used.  Contrary 

to Endeavour, the set of training genes can not be customised, only four data sources 

can be included in the analysis, and the method shows no flexibility towards filtering 

the candidate genes at a user-defined locus.  A new method, CAESAR, is described 

by Gaulton et al. [18] and is the most recent addition to similarity based methods.  It 

also takes a more generic approach in scoring candidates.  CAESAR uses a myriad of 

different data sources and integrates similarity measures from these different 

information spaces through the use of four different arithmetic operations.  Although 

already an older method, the approach of Freudenberg and Propping [16] is also worth 

a mention in this category.   

  

It must be noted that some approaches can be classified under more than one 

category.  This is, for instance, the case with the CGI method of Ma et al. [29] in 

which ab initio derived gene-condition coexpression biclusters are combined with 

data from a protein interaction network.  Endeavour also takes into account data from 

known protein interaction networks (BIND and Kegg) and, like SUSPECTS, from 

disease probabilities described earlier (DGP and Prospectr). 

 

An upcoming trend in computational gene identification is the use of a concert of 

prioritization methods based on a combination of prioritization results.  This approach 

was presented by Tiffin et al. [43] and Elbers et al. [9] who both conducted a study to 

find genes commonly associated with obesity and type II diabetes. 

 

CHALLENGES FOR AUTOMATED GENOTYPE-PHENOTYPE 

CORRELATIONS 
 

As more and more biological data are stored on computers, the problem of efficient 

retrieval and analysis of these data becomes the most important scientific bottleneck.  

This problem is particularly acute in biology because biological data are notorious for 

their complex form and semantics [41].  Case report databases can only provide value 

when the data is of sufficient quality and is rigorously evaluated, annotated, and 

interpreted within the richest possible context [34].  This is not a straightforward task.  

In a review paper on novel computational tools that allow researchers to amass, 

access, integrate, organize and manage phenotypic databases, Lussier and Liu [28] 

state that the development of phenotypic databases lags behind the advance in 

genomic databases, and creates the need for novel computational methods to unlock 

gene-disease relationships.  In the next section, we will discuss database quality issues 

with regard to phenotyping in the context of chromosomal aberration and phenotype 



databases.  We also discuss some specific challenges in gene prioritization for 

constitutional cytogenetics. 

 

To avoid an inconsistent evaluation of a phenotype by multiple clinical geneticists, a 

single observer can be designated so that classification criteria can be uniformly 

applied (for example, Zhang et al. [50]).  In their genotype-phenotype mapping efforts 

for Cri du Chat Syndrome, Zhang et al. attributed inconsistent results in previous 

mapping efforts partly to issues regarding inconsistent evaluation of the phenotype by 

multiple observers and lack of consideration for age dependence of prominence of 

phenotypic characteristics. 

 

Appointing a single observer is clearly impossible for studies on rare disorders where 

case reports are gathered from a multitude of genetic research and testing centers.  

However, for case reports to be amenable to large scale data integration, exchange, 

and mining, phenotypic annotations need to be uniform and unbiased.  Formalizations 

are crucial for organizing and executing experiments, as well as storing and sharing 

the experiment results [41]. 

 

In a context that spans multiple diagnostic or research entities (cross-departmental, 

cross-clinic, or in international collaborations), the proper use of dedicated ontologies 

can partly address this issue, allowing clinical geneticists to use a uniform vocabulary 

of clearly defined phenotype features to annotate case reports.  Sound ontologies are 

instrumental to mapping function to gene products in the genome [42, 10].  However, 

even if a detailed and highly descriptive standardized vocabulary of phenotype 

characteristics is available, some important issues remain.  Firstly, phenotypic traits 

can be age dependent or linked to a certain developmental stage, and can evolve over 

time.  Secondly, phenotypes can vary in penetrance or severity, leading to the need for 

qualifiers and not just concepts.  Thirdly, across databases, phenotype annotations 

often happen at different levels of granularity, in different formats, and with different 

aims [28]. 

 

Representation of phenotypic information is more complicated than biological data, 

and consequently there are few data standards and models for managing phenotypes 

within human repositories [28].  With OMIM as an example, Lussier et al. state that 

while OMIM has the largest collection of human diseases [40], the unstructured 

narrative content of its phenotypes makes it unsuitable for computational analysis, 

data mining and fusion, and integration between databases, as was mentioned before.  

It is clear that, in addition to proper interpretation of clinical features, unambiguous 

and complete identification and annotation of developmental anomalies, dysmorphic 

features, and any phenotype aspect in general is crucial for databases to be useful and 

interoperable.  Several common terminologies to describe phenotypic aspects of a 

patient are presently available.  Some of them can be licensed or obtained under 

certain conditions, others are freely available.  Some well known ontologies and 

vocabularies are listed in Table 3. 

 

DECIPHER and CGHGate (a database tool for storage, reporting and mining Array 

CGH Case reports, www.esat.kuleuven.be/cghgate) make use of a 

structured vocabulary present in LNDB (London Neurology Database), a hierarchical 

list of human dysmorphology concepts.  Although LNDB is adequate for describing 

human dysmorphology in the context of constitutional developmental disorders, this 



vocabulary has some issues with regard to disambiguation between concepts and 

uniqueness and consistency of identifiers.  It was not designed to be used as a 

standard for phenotype annotation amenable to mining, database integration and 

automated annotation. 

 

OMD LNDB is not the only vocabulary that suffers from such issues.  Soldatova [41] 

states that ontologies are often primarily designed to provide biologists with a 

common vocabulary for standard annotation purposes, and are not always structured 

with standard practice in mind.  This approach is not compatible with the increasing 

use of computational reasoning in biology and its dependence on ontological data.  

Soldatova further states that although expert biologists may be able to deal with 

poorly designed and inconsistent ontologies, this is not currently possible for 

computer programs that do machine learning or text mining.  As such programs are 

set to dominate the analysis and retrieval of biological data, Soldatova argues that 

biological ontologies should be designed with these needs in mind as well. 

 

Some challenges are specific to gene prioritization for human development and 

constitutional cytogenetics.  For one, it is important to note that phenotype 

characteristics are often complex traits that are not a function of state, but rather an 

end or even intermediate point that can be reached trough different and very unrelated 

developmental processes.  In short, variations or mutations in different genes may 

yield identical or related phenotypes.  This contributes to the complexity of gene 

prioritization for phenotype traits.  Secondly, environment interactions during human 

development are likely to be an important cause of heterogeneity in phenotype.  

Attribution of phenotype traits not only to the genotype but also to the environment 

(nature vs. nurture) increases the order of complexity of the task at hand.   

 

While parts of a phenotype can be explained by the action of a single gene, other 

characteristics are caused by multiple genes.  For this reason, it is important that tools 

for phenotype based candidate gene prioritization are conceived with complex 

disorders in mind.   

 

Positional or epigenetic effects may play a role in developmental disorders, so that 

genes responsible for the phenotype may actually lie outside the aberrant region.   

 

Redon et al. recently showed the large extent to which non-pathogenic copy number 

variations are present throughout the human genome through analysis of Array CGH 

and SNP genotyping data [35].  Hurles et al. [35] have shown that this affects 12 per 

cent of the human genome, around the same level as SNP variation.  Understanding 

benign copy number polymorphism is further complicated by the fact that some so-

called normal variation may underlie a phenotypic characteristic such as disease 

susceptibility [34] or involvement in a late onset phenotype.   

 

CONCLUSIONS 
 

Array CGH is increasingly being used to define candidate regions for putative genes 

responsible for human genetic diseases.  The increase in gene identification through 

molecular karyotyping will be driven by building, operating, extending, and 

disclosing genotype-phenotype databases, by integration of these databases and by 



making them interoperable, searchable, and amenable to large scale data mining 

initiatives.  Ontologies and standardization of data can support these efforts.   

 

Currently, there is a gap between existing candidate gene prioritization tools and 

existing case report and genotype-phenotype correlation databases.  It can be expected 

that future prioritization tools will increasingly make use of publicly available case 

report repositories, and that database efforts in turn will move towards offering tools 

for intelligent search, clustering, candidate gene prioritization and data mining in 

general.   

 

Standardization of ontologies, conventions on storage and annotation of raw 

experiment data to make them available to the community in a useful way (such as the 

MGED (www.mged.org) initiative MIAME (Minimum information about a 

microarray experiment) [6, 4]) and the use of novel data mining algorithms for data 

integration will improve the automated gene annotation processes of chromosomal 

aberrations and the delineation of novel and complex clinical entities.  The tools and 

databases being developed to identify the functional relevance of genes will not only 

deepen our understanding of human development but will, in addition, aid in the data 

interpretation and improve genetic counseling.   
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TABLES (3 in total) 

 

 

 
Catalogue of Unbalanced Chromosome Aberration in Man - Albert Schinzel’s comprehensive catalogue of chromosomal 

aberrations in man in book form. The catalogue is a standard reference for clinicians treating patients with autosomal 

chromosome aberrations and for physicians and biologists working in cytogenic laboratories and human genetic institutes [37]  

Chromosome Abnormality Database (www.ukcad.org.uk/cocoon/ukcad/) - The UK Association of Clinical 

Cytogeneticists (ACC) Chromosome Abnormality Database (CAD) is a collection of both constitutional and acquired abnormal 

karyotypes reported by UK Regional Cytogenetics Centres. It is open to all Genetics Professionals, and available for searches on 

different abnormalities and karyotypes in both a clinical context as for medical research 

Chromosome Anomaly Collection (www.ngrl.org.uk/Wessex/collection. htm) - a catalogue of unbalanced 

structural chromosome abnormalities (USCA) without phenotypic effect. The Collection also includes the cytogenetically visible 

euchromatic variants as part of the continuum of copy number variation in the human genome 

DECIPHER (www.sanger.ac.uk/PostGenomics/decipher) - DatabasE of Chromosomal Imbalance and Phenotype 

in Humans using ENSEMBL Resources, see text  

Database of Chromosome Aberrations in Cancer (cgap.nci.nih.gov/ Chromosomes/Mitelman) – the Mitelman 

catalog for cancer cytogeneticists is a standard reference database that compiles information on chromosome changes identified 

in human neoplasms. The electronic version supports searches by karyotype, reference, tumor type, and location 

ECARUCA (www.ecaruca.net) - European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations, 

see text  

The Human Phenome Project - a proposed international effort to create comprehensive phenomic databases of systematically 
collected phenotypic information, and to develop approaches for analyzing such phenotypic data  [15]  

Mendelian Cytogenetics Network DataBase (www.mcndb.org) - an online database on disease associated balanced 

chromosomal rearrangements, containing information on breakpoints and clinical features and disease potential. Aims at 

initiating collaborative studies of specific disorders 

Online Database of Chromosomal variation in man (www.wiley.com/legacy/ 

products/subject/life/borgaonkar/access.html) - a systematic collection of important citations from the 

world’s literature reporting on all common and rare chromosomal alterations, phenotypes, and abnormalities in humans. The 

database is organized by variations and anomalies, numerical anomalies, and chromosomal breakage syndromes [5]  

Progenetix (www.progenetix.de) - a database of published cytogenetic abnormalities in human malignancies, mostly from 

CGH experiments 

Table 1 – an overview of chromosomal aberration databases. These efforts aim at aggregating chromosomal aberration 

information at various levels of resolution and annotate the genome with case reports, congenital anomalies or phenotypes.  



Computational 

methods 

Available 

online 

Used resources Application to 

complex traits 

Supported 

species 

In-vivo 

validation 

Data integration 

method 

Website and reference 

POCUS (2003) No InterPro, GO, UniGene - Human No Overrepresentation 

statistics 

Turner [45] 

 

TEAM (2004) Yes 

(download) 

GO, gene expression data Yes Human No Filtering 

functionality 

humgen.med.uu.nl/~lude/t

eam 

Francke et al. [14] 

(Tiffin et al. 

2005) 

No MEDLINE, eVOC - Human No Term co-occurrence 

statistics 

www.sanbi.ac.za/tiffin_e

t_al 

Tiffin et al. [44] 

GeneSeeker 

(2005) 

Yes MGD, GDB, MEDLINE, OMIM, UniProt, GXD - Human, 

mouse 

No Boolean logic www.cmbi.ru.nl/GeneSeeke

r/ 

van Driel et al. [46] 

G2D (2005) Yes MeSH, MEDLINE, GO Yes Human No Fuzzy set theory www.ogic.ca/projects/g2d

_2/ 

Perez-Iratxeta et al. [33] 

(Freudenberg & 

Propping 2002) 

No OMIM, GO - Human No Generic scores Freudenberg et al. [16] 

SUSPECTS 

(2006) 

Yes OMIM, HGMD, GAD, Prospectr, InterPro, GO, 

gene expression data,  

- Human No Generic scores www.genetics.med.ed.ac.u

k/suspects/ 

Adie et al. [1] 

Endeavour 

(2006) 

Yes 

(download) 

MEDLINE, EST, KEGG, GO, TRANSFAC, 

Jaspar, InterPro, BIND, DGP, Prospectr, gene 

expression data 

Yes Human, 

mouse, fly 

Yes 

 

Order statistics www.esat.kuleuven.be/end

eavour/ 

Aerts et al. [3] 

Caesar (2007) No MP, eVOC, GO, OMIM, Entrez Gene, 

EnsEMBL, UniProt, InterPro, BIND, HPRD, 

KEGG, MGD, GAD 

Yes Human No Generic scores visionlab.bio.unc.edu/ca

esar/ 

Gaulton et al. [18] 

(Oti et al. 2006) No HPRD, DIP, interactions from high-throughput 

experiments 

- Human No Generic approach Oti et al. [32] 

Prioritizer 

(2006) 

Yes 

(download) 

BIND, HPRD, Reactome, KEGG, GO, SMD, 

GEO, GeneNetwork 

Yes Human No Bayesian classifier www.prioritizer.nl 

Franke et al. [13] 

CGI (2007) No Yeast gene expression compendia (knock-out, 

stress response, and cell cycle), MPPI, GO 

Yes Yeast, 

human 

No Markov Random 

Field theory 

Ma et al. [29] 

(Lage et al. 

2007) 

No MINT, BIND, IntAct, KEGG PPrel, KEGG 

ECrel, Reactome 

Yes Human No Bayesian classifier Lage et al. [25] 

Table 2. Overview of published methodologies for gene prioritisation. Remarks: the Used resources column only contains the data sources used in the prioritisation 

methodology, not the data sources used to validate or benchmark the approach; the column Application to complex traits contains Yes if the paper describing the method 

explicitly mentioned it’s applicability to or application on complex traits, a dash otherwise; the Supported species column contains the species the method was applied on 

previsously, not necessarily all species the method could be applied on. 



 
GO Gene Ontology, a systematic terminology for functional features of genes and 

proteins 

ICD-9 International Classication of Diseases Clinical Modification 

LDDB, 

LNDB 

Oxford Medical Dictionary London Dysmorphology and Neurology Databases 

MPO Mammalian Phenotype Ontology 

SNOMED Systematized Nomenclature of Medicine 

UMLS Unified Medical Language System, groups and links a host of ontologies 

Table 3. Well known and widely used ontologies and vocabularies relating to phenotypic traits and 

human disease. 

 


