Hybrid Clustering of Text Mining and Bibliometrics Applied to Journal Sets

Xinhai Liu *f Shi Yu *f

Yves Moreau!

Bart De Moor’!  Wolfgang Glanzel *

Frizo Janssens's

Abstract

Information contained in text mining and bibliometrics is of-
ten highly correlated and complementary, thus hybrid clus-
tering methods that incorporates textual content and cita-
tion information have become a popular research topic to
improve the clustering effectiveness. In this paper, we inte-
grate text mining and bibliometrics to provide a mapping of
a journal set. Two different approaches of hybrid clustering
methods are applied in this paper. The first category is clus-
tering ensemble, which combines different clustering results
obtained from individual data into a consolidated clustering
result. The second category is kernel fusion, which maps het-
erogeneous data sets into the kernel space and combines the
kernel matrices as an integrated data for clustering. Kernels
can be combined either averagely, or in particular, through
a weighted linear combination that the weights is optimized
w.r.t. the objective function of clustering. In this paper,
we propose a novel adaptive kernel K-means clustering al-
gorithm to combine textutal content and citation informa-
tion for clustering.This paper investigates hybrid clustering
approaches from two categories on a database containing
1869 journals published during 2002-2006. Based on sev-
eral clustering evaluations, the experimental results demon-
strates the effectiveness of our hybrid clustering strategy.

1 Introduction

In information science study, unsupervised learning
methods such as clustering is helpful to get the structure
mapping of science or technology fields. It is also useful
to detect new emerging fields or hot topic in the long
term. Previous researches often based on two types of
data sources: text mining data and citation data [15]. Tt
is noticed that citation analysis is not good at indicating
similarities at the semantic level as textual information
does. On the other hand, clustering solely based on text
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similarities might also be affected by the ambiguities
of vocabularies. Since these two data sources contain
correlated and complementary information, combining
them for clustering analysis (hybrid clustering) seems
to be a promising approach.

Hybrid clustering is a technique to integrate mul-
tiple information sources for clustering. Single dataset
can be regarded as a description of a problem sliced
by a specific conceptual view, combining multiple views
might be helpful to approach a comprehensive under-
standing of the problem. In particular, if the informa-
tion is correlated and complementary, clustering with
multiple data sources might improve the effectiveness
and quality of data partitions. In this paper, various hy-
brid clustering approaches are concluded into two main
categories. The first approach is clustering ensemble,
which combines the partitions of different data sources
into a new consolidate clustering. The second approach
is fusion of similarity data (or distance data) , which
combines multiple data sources as a new individual data
for clustering. Though many methodologies have been
proposed in both of these approaches, unfortunately,
there is relatively few attempts to investigate and com-
pare them in a general framework. Thus in this paper,
we investigate different hybrid clustering methods in a
unified framework. The comparison is addressed on a
real application of integrating text analysis and citation
analysis to obtain the structure mapping of journal sets.
We also discuss the problem of evaluations for hybrid
clustering, which is useful and important in the sense of
extending clustering model comparison and prediction
from single data to multiple data sets.

The organization of this paper is as following.
Section 2 is a brief review of the previous approaches. In
Section 3 and Section 4, we introduce hybrid clustering
methodologies from two main categories: clustering
ensemble and kernel fusion. Section 5 presents the
clustering evaluation methods applied in this paper.
The description of experimental data and analysis of
experimental results are presented in Section 6 and
Section 7 respectively. In section 8, we address some
caveats and ongoing topics in hybrid clustering. The
final conclusion is made in section 9.



2 Related Research

In literature, the idea of combining bibliometric or ci-
tation information with text mining data has been re-
ported in different applications. In information re-
trieval, Plachouras [21] presents a query-based interface
for web ranking. It combines the rank lists obtained
from text-content and from citation analysis on the ba-
sis of Dempster-Shafers evidence theory. By assigning
each source an uncertainty measure between the evi-
dence and the query, it provides a hybrid ranking mech-
anism for web information. In bibliometric mapping,
Braam and his colleagues combine co-citation analy-
sis with word analysis to improve the efficiency of co-
citation based clustering [2]. Kostoff makes a survey
about the integration of full-text based techniques with
bibliometric methodologies [16]. In document cluster-
ing analysis, Modha and Spangler [19] introduce a toric
k-means algorithm to clustering web documents using
terms, out-links and in-links, which actually combines
text and citation information together. Zhang and his
colleagues [29] use genetic programming to optimize the
document classification model which integrates citation-
based information and structural content.

Recently, hybrid clustering has also been applied
to the structure mapping of journal sets or paper
sets. Janssens [15] adopts a clustering method based
on weighted linear combination of distance matrices
(WLCDM) which combines the distance measure of
documents obtained from text and citations. Since
the linear combination of distances might neglect the
differences of distributions of various data sources, an
algorithm based on Fisher’s inverse chi-square (FICSM)
[12] is further proposed to combine p-values instead of
distances from various data sources.

3 Clustering Ensemble

3.1 Definition Clustering ensemble, also known as
clustering aggregation or consensus clustering, combines
different clustering partitions into a consolidated parti-
tion. The consolidated partition is usually obtained by
some consensus functions, for example, to maximize the
average mutual information, or, to minimize the aver-
age squared distance between the consolidated partition
with the individual partitions. Clustering ensemble is
originally proposed for single data only, thus various
individual partitions are usually generated in two sce-
narios: 1) choice of data representation and 2) choice
of clustering algorithms or algorithmic parameters. In
the first scenario, different representations of data may
be produced by: a) employing different pre-processing
or feature extraction methods, which result in different
pattern representations (vectors, strings, graphs, etc.),
b) exploring subspaces of the same data representations,
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Figure 1: A conceptual overview of clustering ensemble
and kernel fusion methods for hybrid clustering analysis

such as using subsets of features or applying different di-
mensionality reduction methods, ¢) randomly perturb-
ing the data, such as bootstrapping or sampling. In
the second scenario, the multiple data partitions may
be obtained by: a) applying different clustering algo-
rithms, b) applying the same school of algorithms but
with different algorithmic parameters, ¢) keep the algo-
rithm and parameter as the same, but using different
dissimilarity measures (for example, different distance
measure) for evaluating inter-pattern relationships.
The concept of clustering ensemble can be straight-
forwardly extended to the hybrid clustering problem,
where the main difference is that various individual par-
titions are now obtained from different data sources.
Within the framework of clustering ensemble, if the in-
formation contained in multiple sources is highly cor-
related, partitions obtained from multiple data sources
should also contain some “common agreement” thus a
consolidated partition can also be obtained.

3.2 Algorithms In this paper, we extend and apply
several well-known ensemble algorithms proposed in the
literature to hybrid clustering. A conceptual overview of
these algorithms is shown in Figure 1 and various algo-
rithms mainly vary on the choice of different consensus
functions.

HGPA, CSPA, MCLA Strehl and Ghosh [23] for-
mulate the optimal consensus as the partition that
shares the most information with the partitions
to combine, as measured by the Average Normal-
ized Mutual Information. They use three heuris-
tic consensus algorithms based on graph partition-
ing, called Cluster-based Similarity Partitioning
Algorithm (CSPA), Hyper Graph Partitioning Al-



gorithm (HGPA) and Meta Clustering Algorithm
(MCLA) to obtain the combined partition.

QMI Topchy [25] formulates the combination of par-
titions as a categorical clustering problem. His
method adopts a category utility function [18] that
evaluates the quality of a “median partition” as a
summary of the ensemble. He proves that maximiz-
ing this category utility function implies the same
clustering ensemble criterion as maximizing the
generalized mutual information based on quadratic
entropy. Furthermore, the maximization of the cat-
egory utility function is equivalent to the square-
error based clustering criterion when the number
of clusters is fixed. The final consensus partition
is obtained by applying the K-Means algorithm on
the feature space transformed by category utility
function.

EACAL Fred and Jain [8] introduce the concept of ev-
idence accumulation clustering (EAC) that maps
the individual data partitions as a clustering en-
semble by constructing a co-association matrix.
The entries of the co-association matrix is inter-
preted as votes on the pairwise co-occurrences of
objects, which is computed as the number of oc-
currences each pair of objects appears in the same
cluster of a individual partition. Then the final
consensus partition is obtained by applying single-
link (SL) and average-link (AL) methods on the
co-association matrix. According to their experi-
ments, average linkage performs better than single
linkage so in this paper we apply EAC-AL for com-
parison.

adacVote Ayad and Kamel propose [1] a “cumulative
vote weighting method” to compute a empirical
probability distribution summarizing the ensemble.
The goal of this ensemble is to minimize the aver-
age squared distance between the mapped parti-
tions and the combined partition. The cumulative
voting method seeks an adaptive reference partition
and incrementally updates it by averaging other
partitions to relax the dependence of the combined
partition on the selected reference. In the adaptive
cumulative voting (ACV) algorithm they proposed,
the partitions are combined in decreasing order of
their entropies.

The software contains HGPA, CSPA and MCLA
algorithms is download from the author’s website. We
implement QMI, EAC-AL and adacVote algorithms in
MATLAB. In our experiments, the individual partitions
are all obtained by K-means clustering. All the experi-

mental results presented in this paper, if without special
note, are obtained from 50 random repetitions.

4 Kernel Fusion Algorithms

The main difference of kernel fusion approach is that
the integration is carried in kernel space before cluster-
ing algorithm is applied (early integration) while clus-
tering ensemble fuses partitions after clustering (late
integration). Kernel method provides an elegant way
to combine data because kernel mapping resolves the
heterogeneities of data sources and represents them as
same-size kernel matrices. Moreover, if we assume that
the importance of each data source is equivalent, we
can combine the kernels in an average manner, thus the
issue of data integration is then transparent to the pat-
tern analysis problem. The averagely combined kernel
can be regarded as a new individual data source and
the partition can be obtained by standard clustering
algorithms in kernel space. A more machine-intelligent
approach is to couple the optimization problem of kernel
learning with the objective function of pattern analysis
so that the weights assigned on each data source can be
adjusted adaptively during the clustering procedure [4].
In this section, we propose a novel adaptive kernel K-
means algorithm to do clustering and weights learning
simultaneously. We also propose algorithms based on
average combination of kernels.

4.1 Adaptive
ing(AKKC)

Kernel K-means Cluster-

4.1.1 Objective Function The standard K-means
hard clustering algorithm adopt squared Euclidean dis-
tance to measure the dissimilarity between vectors x;
and cluster representatives #;. Assuming the member-
ship coefficient u;;, which indicates whether the i-th
sample belongs to the j-th cluster, is either 1 or 0. Then
the cost function of K-means clustering becomes

n k
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For clustering based on data integration, the Ma-
halanobis distance is preferred because it is invariant to
any nonsingular linear transformation [26]. It scales the
distance between two objects by the inverse covariance
matrix,

(4.1)

(4.2)  du(wi,zy) = (i — 2;) O @i — 25)] 2,

where C' is the covariance matrix defined as follows,

(4.3)



and g = 13" | 2; is the mean of {a;}1 .
To avoid the singularity of the covariance matrix, a
regularized covariance matrix is often used as

(4.4) — )T+

where I is the identity matrix and A > 0 is the
regularization parameter.

Using the distance measure defined above, K-
means-like clustering can be regarded as partitioning
the data {z;}7_, into k disjoint clusters, {l1,l2, ..., 1k},
which minimize the Within Clusters Sum of Square Er-
ror(WSSE),

k
Z Z da (i, 1),

Jj=1lz;€l;

(45)  WSSE({l;}%

where dps(-,-) is the Mahalanobis distance defined in
(4.2) and p; is the mean of the j-th cluster [;. For a
given data set, the summation of all pairwise distance
is a constant value hence the minimization of WSSE is
equal to the maximization of Between Clusters Sum of
Square Error(BSSE) defined as follows,

Zu s (12, 1),

where |l;| is the cardinality of samples in cluster j, p;
is the mean of the j-th cluster /;, and [ is the global
mean of {x;}7 ;.

The BSSE can be expressed in a compact matrix
form as

(4.6)  BSSE({l;}:_

(4.7) BSSE({l;}/_,) = trace(L" X"C™'X L),
where X is the data matrix, L is the weighted cluster
indicator matriz L = [l1,ls, ..., 1l;] defined as

(4.8) L=FFTF) 2,
where F' is the n x k cluster indicator matrix defined as
follows,

1 ifz; € lj
(4.9) F = fij. . Wheref; ; = {0 gl
4.1.2 Kernel Extension The objective function de-
fined in (4.7) can be extended into kernel space by a
mapping implicitly specified by a symmetric kernel func-
tion €2, which computes the inner product of the pair-
wise data in kernel space, that is

(4.10) Q(xi, ;) = (9(:), p(x5)),

where x;, x; are data points in the original space,
¢(+) is the kernel mapping. Let denote ¢q(X) as the
data matrix in kernel space defined by kernel mapping
Q, therefore in kernel space the objective function for
clustering can be formulated as the following trace
maximization problem:

(4.11) IgaLxtrace(Lqu)Q(X)Tq;lgbg(X)L).

We assume that the data in feature space has been
centered, so the regularized covariance matrix has the
form as,

(4.12) Co = ¢ (@)de ()" + M = Q+ AL,

where () is the centered kernel matrix on X. For sim-
plicity, from now on we denote €2 as the centered kernel
matrix on X. The problem of clustering can also be ad-
dressed in the framework of kernel fusion. Given a set
of p centered kernel matrices, the optimal kernel matrix
O that optimizes the objective function

(4.13)

max trace (LT¢Q(I)T (¢a(z)pa(z)" + /\I)il ¢n($)L) )
is defined as the convex linear combination of p centered
kernel matrices

p
Q= {Z /LiQ
i=1

where p; is the weight assigned on each data source.

p
i Z/W% =1,p; >0, = trace(Qi)} ;

i=1

4.1.3 Algorithm Now the task of clustering by data
fusion is to find the optimal partition of data L* and
the optimal combination of kernels 2 that maximizes
the objective function defined in (4.13). Solving L* and
Q" simultaneously is very difficult, so an alternative
minimization framework [5] is applied to solve L and
Q) iteratively.

Algorithm 4.1: ADAPTIVEKMEANS(Q1, Q2,...,Qp, K, \)

L) «+ KERNEL K-MEANS CLUSTERING(Q2s), s € 1,...,p
comment: obtain an initial partition
while <lconvergence >
{stepl : Q < ADAPTIVE WEIGHING(L 3y, Q1,Q2, ..., Qp, A)
step2 : L(;41) « KERNEL K-MEANS CLUSTERING(2, K)
comment: i is the counter of iteration

return (L;41)

It can be proved that the proposed algorithm con-
verges locally because the step 1 and step 2 are optimiz-
ing toward the same objective function. The adaptive



weighing procedure is related to many existing meth-
ods in supervised learning since the label information is
contained in L [17, 27]. The solution is represented in
the following theorem and it is formulated as a QCQP
problem and solved in MOSEK toolbox.

THEOREM 4.1. Let L be the weighted cluster indicator
matriz of multiple clusters as mentioned in (8), ¢(x) as
the data matriz in kernel space, Q) as the kernel Gram
matriz defined as Q;; = ¢(xi)p(x;)T, X > 0 as the
regularization parameter on covariance matrix, given o
set of n centered kernel matrices Qy, ... Q,, the optimal
kernel matriz €2 as the convex linear combination of
n matrices which optimize the objective function Iy of
clustering

(4.14)
F, = max trace (LTgb(:c)T (p(z)p(z)" + /\1)71 (b(x)L) ,

can be found by solving the following convexr QCQP
problem:

k 1aT 1 k T
max =31 16 B~ axt+ X Al
'
k .
s.t. tZ%ijlﬁfQiﬁj, 1=1,...,n,

(4.15) B;>0, j=1,... .k

Due to the length, we omit the proof of this theorem
in this paper. The detailed proof of the relevant problem
is available in [27].

The clustering procedure (step 2) can be achieved
by standard kernel K-means clustering proposed in
[9]. If the objective function defined in (4.13) stops
increasing, the iteration stops. The complexity of
the adaptive K-means algorithm is determined by the
QCQP problem where complexity is O(pk3n?). Since
the adaptive K-means algorithm is locally optimized,
the performance is strongly dependent on the starting
point. Practically, we use multiple starting points from
all the individual kernel €4, ...,€, to obtain the initial
partition L) and then run the overall algorithm from
different initial partitions and selected the best result
with the maximum object function value. The overall
complexity of the total algorithm is then O(p*k3n?).
The regularization parameter \ of covariance matrix is
selected empirically, in our approach we set A to 0.01.
In some cases, it is necessary to regularize the weights
of data sources to avoid overfitting. In our application,
we also benchmark the regularization effect by setting
different minimal boundaries of weights on data sources.
However, the influence of the regularization on data
sources was not significant and thus, we do not want to
mention the regularization in the discussion of results.

4.2 Average Combination of Kernels Instead of
the complicate approach of tuning the weights in kernel

fusion, one can also combine the kernels averagely as,

Regarding € as a new individual data which equally
combines information of multiple data sources, one
could apply standard clustering algorithms on this new
combined data in kernel space. In this paper, we
apply 6 standard clustering algorithms on the averagely
combined kernel. Since these methods have been well
studied in the literature, we omit the discussion of their
formulations here.

4.2.1 Kernel K-means The kernel K-means algo-
rithm applied on the average kernel can be regarded
as a simplified version of AKKC algorithm, which only
contains the kernel K-means clustering step.

4.2.2 Hierarchical Clustering In order to apply
hierarchical clustering methods in feature space, we first
transform the kernel matrix into distance matrix by
calculating the distances between feature vectors [24],
(4.16)

I ¢(2)=o(2) 1= (6(x), () ~2(b(x), (2))+{(2), $(2)).-

Then we apply standard linkage clustering methods
(single linkage, average linkage, complete linkage and
ward linkage) on the transformed distance matrix and
obtain the partitions by hierarchical clustering. In
particular, the ward linkage clustering algorithm based
on average combination of kernels can be regarded as
a special case of Janssen’s WLCDM method [13]. In
WLCDM, the weights assigned on data sources are
determined empirically, while in our paper, the weights
are set as equal.

4.2.3 Spectral Clustering The spectral clustering
algorithm we apply in this paper is proposed by Jordan
and Weiss [14]. In our experiment, the Laplacian is
constructed on the averaged kernel matrix.

5 Clustering Evaluation

The quality of clustering result is evaluated by differ-
ent indices. These indices can be categorized as two
groups: internal validation and external validation. In
the context of hybrid clustering, we highlight their main
differences as following. Internal validation usually re-
quires two inputs: the clustering partitions obtained by
algorithm and the original data set. Since internal vali-
dation is calculated on data set as a “goodness” of par-
titions, it is often data dependent. In other words, in-
ternal validation can be affected by the data structure,
the dimensionalities, and the scale of the data set. So it



is often difficult to compare internal validations across
heterogeneous data sets. On some data, such as gene
sequence data, internal validation is also difficult to be
computed directly. On the other hand, external val-
idation compares the clustering partitions obtained by
algorithm with a reference partition (usually assumed as
ground-truth labels) so it is independent to the struc-
ture, dimensionality and scale of data source. For hy-
brid clustering, performing model prediction and com-
parison based on external validation is easier because
it gives out a unique score, while when using internal
validations one has to consider the affect of data het-
erogeneities.

5.1 Internal Validations Being aware of the data
dependency problem, we apply different internal valida-
tions for different data sets separately and only compare
internal validations on the same data set.

Mean Silhouette Value (MSV) The Silhouette
value of a clustered object (e.g., journals) measures
its similarities with objects within the cluster
versus the objects outside of the cluster [22].MSV
is defined as follows:

min(B(i,C;) — W (7))

max[min(B(i, C;)), W (i)]

(5.17) S(i) =
where W (i) is the average distance from object i
to all other objects within its cluster, and B(i, C;)
is the average distance from object ¢ to all objects
in another cluster C; . The mean Silhouette value
for all objects is an intrinsic measurement about
the overall quality of a clustering solution and it
varies with the number of clusters, which can also
be used to find the optimal cluster number. In
this paper, we have two different data sources so
correspondingly we need two MSV indices. The
MSV calculated on text data is denoted as TMSV
while the one calculated on citation data is called
LMSV.

Modularity Modularity [20]is a graph based evalua-
tion of clustering. Up to a multiplicative constant,
modularity calculates the number of intra-cluster
citations minus the expected number in an equiva-
lent network with the same clusters but with cita-
tions given at random. .

5.2 External Validations

Normalized Mutual Information(NMI) , mutual
information is a symmetric measure to quantify the
statistical information shared between two distribu-
tions. Let {¢;}7, and {l;}!, be the set of indica-
tors and the ground truth labels, respectively. The

normalized mutual information is defined as:

2 x H({ei}, {li})
H({e:H)H{lL})’

where H({c¢;},{l;}) is the mutual information be-
tween {¢; }7; and {I;}",, H({c¢;}) and H({l;}) are
the entropy of indicators and labels. For a bal-
anced clustering problem, if the indicators and the
labels are independent, the mutual information ap-
proaches 0.

(5.18) NMI =

Rand Index , for the samples {z;}" ,, let the vectors
{c;}_, (denoted as C) and {l;}!_, (denoted as P)
be the corresponding cluster indicators and ground
truth labels, respectively. Consider a pair of vectors
(¢i,li). We refer to it as (1) a the number of pairs
if both vectors belong to the same cluster in C and
to the same group in P, (2) b the number of pairs if
both vectors belong to different clusters in C and to
the different groups in P. (3) ¢ the number of pairs
if the vectors belong to the same cluster in C and
to different groups in P, and (4) d if the vectors
belong to different clusters in C and to the same
group in P. Rand Index is defined as [11]:

a+b

5.19 _—.
( ) a+b+c+d

RI =

6 Dataset

6.1 Data Sources and Data Processing The
main dataset contains more than 6,000,000 publications
(articles, letters, notes and reviews) indexed by the
Web of Science (WoS) database of ThomsonScientific
(Philadelphia,PA,USA)from year 2002 till 2006. In the
preprocessing step, the ambiguities of journal names
spelling, change of journal names, spelling of author
names, bibliographic data and citations are resolved.
We only keep the journals with more than 50 papers and
more than 30 references or citations. After that prepro-
cessing, we get 8,305 types of journals, which contain 22
field categories according to ESI classification[7]. From
these 22 categories, we select 7 categories (1869 types
of journals) as our journal set.

6.2 Text Mining Analysis The titles, abstracts
and keywords of these 1869 journals are indexed by a
text mining program using Jakarta Lucene API with-
out controlled vocabulary. The index result contains
9,473,061 terms and we cut the Zipf curve of terms at
the head and the tail to remove the rare terms, stop-
words and common words. After Zipf cut, 669,860
meaningful terms are used to represent the journal in
the vector space model (text data) and the weights of
terms are calculated by TF-IDF weighting scheme.



. Molecular Biology and Genetics
. Multidisciplinary

. Neurosicence

. Pharmacology Toxicology

. Physics

. Plant and Animal Science

. Psychology /Psychiatry
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Table 1: 7 science categories of journals labeled by
Essential Science Indicator (ESI)

6.3 Citation Analysis We only consider citations
between papers from 2002 till 2006 and aggregate all
paper-level citations into journal-by-journal citations.
The direction of citations is ignored and a symmetric
citation data is obtained.

6.4 Labels of Standard Categories We reference
the Essential Science Indicators (ESI) classification cre-
ated by Thomson Scientific to get the ground-truth la-
bels of journal assignment[7]. The ESI labels are used
in the calculation of external validations. The 7 ESI
labels of 1869 types of journals in our data is presented
in Table 1.

7 Experimental Results

7.1 Clustering by Fusing 2 Datasets: Text Min-
ing and Bibliometrics Data We first cluster the text
mining data and bibliometrics data separately in their
original dimensions. Then we apply clustering ensemble
methods to combine the partitions obtained from text
and bibliometrics data into a consensus partition. We
also take the kernel fusion approach by mapping the
data into kernel space and apply adaptive kernel fusion
and average fusion clustering algorithms to obtain the
partition. We first fix the number of clustering to 7,
which is the same number as the categories defined by
ESI labels. The clustering results are evaluated by 5 dif-
ferent evaluations and compared across different hybrid
clustering strategies in the left side figures of Figure 2.

When using single dataset for clustering, text min-
ing data provides more accurate journal partitions than
citation data. The RI and NMI score of text data
(0.8618, 0.6627) is much higher than citation data
(0.7383, 0.4844). When combining text data and ci-
tation data by hybrid clustering, different strategies get
quite diverse results. Clustering ensemble algorithms
(only results of 3 algorithms with best performances
are shown in the figure) do not perform well when com-
bining 2 partitions. After hybrid approach, their RI

and NMI scores are compromised between the individ-
ual performance of text data and citation data. On
the contrary, kernel fusion methods (results of 4 best
algorithms are shown in the figure) show satisfying per-
formances, which hybrid approach performs as same as
the best performance obtained on individual data set.
For the proposed algorithm (AKKC), the mean values
of weights learned from hybrid clustering in 50 random
repetitions are: 0.6139 on text data and 0.3861 on cita-
tion data. The adaptive algorithms automatically bias
towards text dataset (the “useful” data or “relevant”
data). Kernel fusion results based on averagely com-
bined kernel are also good, this is probably because the
kernel created on text data is dense while the kernel
constructed on the citation data is very sparse. When
theses two kernels are averagely combined, the effect of
the sparse kernel matrix (citation data which has low
performance) is overwhelmed by the dense kernel ma-
trix (text data which has good performance).

According to the results of three internal validations
(TMSV is applied on text data, LMSV and MOD are
applied on citation data), the trend is consistent with
external validations. Clustering ensemble methods do
not perform well since their TMSV scores are even lower
than text data alone. Kernel fusion methods again
get satisfying results: the TMSV obtained by AKCC
partition is 0.1974, which is almost the same as text
data alone. In particular, spectral clustering applied
on averagely combined kernel gets the highest TMSV
score (0.2082). The results on citation data tell the
same stories, especially, its internal validation indices
(LMSV and MOD) are significantly improved by hybrid
clustering.

7.2 Clustering by Fusing 4 Datasets: Text Min-
ing and Bibliometrics Data and their Projections
after Dimensionality Reduction We notice the fact
that clustering ensemble methods do not perform well
when combing 2 datasets for clustering. This is proba-
bly because clustering ensemble was originally proposed
to combine various partitions derived from one data set.
So it expects and relies on the “agreement” among var-
ious partitions to find the optimal consensus partition.
In previous experiment, according to evaluations, one
dataset is relevant and another one is comparably less
relevant, so the insufficient number and inconsistency
of partitions probably prevent clustering ensemble ap-
proach to find the optimal partition. In this experiment
we involve 2 new datasets. The new data is obtained
by applying latent semantic indexing (LSI) [6] on text
and citation data. We trace the eigenvalues during di-
mensionality reduction and find in the 100-dimensional
space spanned by principal components, about 90% of
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Figure 3: Clustering comparison

the information contained in text and citation data is
preserved. So, we reduce text and citation data to the
100-dimensional space and construct 2 new data sets
(text-LST100 and citation-LSI100). All 4 data sets are
then combined for hybrid clustering. We notice that in
literature, the empirical optimal number of partitions
for clustering ensemble is around 20, however, in order
to keep the problem concise and clear, in this paper we
use 4 datasets to address the problem.

By dimensionality reduction, the performance of ci-
tation data is significantly improved (RI score increases
from 0.7383 to 0.8332, NMI score increases from 0.4844
to 0.6013). There is also considerable improvement on
text data but it is not significant. The important dis-
covery is, when combining these 4 datasets for cluster-
ing, the performances obtained by clustering ensemble
are significantly improved. For example, EAC-AL al-
gorithm obtains RI score of 0.8746 and NMI score of
0.6969, which is much better than the results obtained
by combining 2 datasets (RI 0.7923, NMI 0.4811). This
situation is probably because among the 4 datasets com-
bined, 3 of them have good quality (text, text-LSI100
and citation-LSI100), so that clustering ensemble algo-
rithms are able to find “agreement” among individual
partitions and obtain stable consensus partitions. On

across various numbers of clusters

the comparison, kernel fusion methods do not affect
much by the 2 new datasets and their results are almost
same with previous experiments. The weights learned
by proposed algorithm on 4 data sets are: 0 on text,
0.5080 on text-LSI100, 0 on citation, 0.4920 on citation-
LSI100.

The internal validation results are also consistent
with external ones. Clustering ensemble methods get
significantly improved on citation data compared to
previous experiment. For example, when using EAC-AL
algorithm, LMSYV score increases from 0.0276 to 0.0501
and MOD score increases from 0.5016 to 0.5854.

7.3 Comparison of Performance across Various
Number of Clusters We also benchmark the optimal
number of clusters by different validations. Figure
3 presents the evolution of 4 different indices with
the number of clusters. We first consider the indices
obtained by single data clustering. Figure 3.a plots
the modularity index applied on citation data and it
clearly shows that the index becomes stable when the
cluster number is larger than 6. The TMSV index
plotted in Figure 3.b also suggests an optimal cluster
number between 6 to 8. The LMSV index plotted
in Figure 3.c cannot give any clue about the optimal
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Figure 4: Network structure of hybrid journal clusters
represented by the three most important journals. The
size of the vertices represents the number of documents
belonging to the cluster, the strength of the edge
represents the number of citations between clusters.

cluster number because it grows monotonically from
2 to 10. We also benchmark the partitions of hybrid
clustering obtained by AKKC algorithm over various
cluster numbers. In modularity index, it also suggests
the optimal number as 6 to 8. Especially, the index
value obtained by hybrid clustering is always higher
than single data clustering, which means the quality
of clustering obtained by hybrid clustering is better.
The TMSV index and LMSV index obtained by AKKC
based on hybrid clustering also indicate that the optimal
clustering number should be around 6. Though the
optimal cluster number suggest by data does not exactly
match with the number of ESI fields, it is still acceptable
because the ESI labels as given in Table 1 contains
“multidisciplinary”, which may be quite similar to some
other journal sets at data level. Also, “Molecular
Biology and Genetics” has strong relation with “Plant
and Animal Science” and can also be merged as one
category.

When using the standard ESI labels to evaluate the
NMI score of clustering labels across cluster numbers as
plotted in Figure 3.d, the accuracy of hybrid clustering
partition is always better than citation data only, and
quite close to the performance of text data. This
is consistent to our previous comparison of external
validations obtained on 7-class clustering.

7.4 Mapping of Journal Sets We visualize the
hybrid clustering results of journal sets obtained by
AKKC in Pajek [3]. The visualization of structure
mapping of 1869 journals (7 journal sets) is shown in
Figure 4. Without hybrid clustering, text data and
citation data may generate different networks while in
our approach they are completely combined to obtain
a consolidate partition. Table 2 provides a list of the
6 most important journals within each cluster. The
importance of journals is determined by measuring
the journal cross-citations within each cluster. By
comparing the ESI fields in Table 1 with the content of
journal clusters in Table 2, most of the clusters can be
matched to the corresponding ESI fields. Furthermore,
we manually interpret and assign the most appropriate
ESI field after each cluster number as shown in Table 2.
Then by interpreting the network structure of journal
clusters, we can easily have a bird view about the
importance and relationships of journal sets.

8 Discussion

An open question of combining heterogeneous data
sources for clustering analysis is to determine the “rel-
evant” or “useful” data source w.r.t. to the problem.
Furthermore, if an algorithm is capable of finding “rel-
evant” or “useful” data sources, maybe we can expect a



lower bound about the performance of data fusion ap-
proach which should be not worse than the best individ-
ual data source. In supervised learning, the “relevance”
or “usefulness” can be determined by validations. How-
ever, for unsupervised learning such as clustering, it is
difficult to split the data for training and validation and
the whole data set should be isolated from the label in-
formation, so extending model prediction techniques of
clustering analysis to multiple data sources, is a difficult
and ongoing problem.

In this paper, we extend the concept of clustering
ensemble to multiple data sources. However, we should
be aware of multiple caveats when applying them. If the
number of data sources is insufficient, in order to ob-
tain variants of partitions for ensemble method to find
consolidate partition, we can also apply multiple dis-
tance measures, different subsets of features or various
dimensionality reduction techniques on each individual
data source to generate more partitions. In clustering
ensemble methods, it is also possible to use different
clustering algorithms to generate partitions for combi-
nation. However, it would be hard to explain the com-
binatorial affect of algorithm heterogeneities with data
heterogeneities, so we suggest to apply same clustering
algorithms here.

For kernel based data fusion approach, there is no
suggested minimum number of data sources (or parti-
tions) to be combined. As the matter of fact, it works
quite well with 2 data sets in our problem. However,
the assumption of kernel K-means based clustering is
that the data is normally distributed in kernel space.
The advantage of kernel methods is that by kernel map-
ping, non-Guassian data can be transformed into Guas-
sian data in kernel space. So, the performance of kernel
based clustering is also determined by the choice of ker-
nel function and kernel parameters. Therefore, in kernel
based data fusion, we should also consider the combi-
natorial affect of kernel function (parameters) and data
heterogeneities. In this paper, since the focus is com-
bining heterogeneous data rather than tuning optimal
kernel parameter, we only use linear kernel function to
construct the kernels. In other words, all our results are
obtained by combining data in linear space. The issue
of combining heterogeneous data in nonlinear space is a
very interesting problem and it will be the main topic
of our future research.

In this paper we compare the scores based on in-
ternal validations (mean Silhouette value, modularity)
across different cluster numbers in order to find the opti-
mal cluster number. Moreover, we present a benchmark
of cluster number on two datasets and they show consis-
tent trends about the optimal cluster number. However,
finding the optimal cluster number in hybrid clustering

is a difficult problem because the trend of validation in-
dices may behave differently across data sources, thus
when fusing a large number of data sources, the inter-
pretation of optimal number might be hard. In that
case, one might need to find the “agreement” among
multiple indices.

9 Conclusion

The main contribution of this paper can be concluded
as following.

First, we provided a framework of hybrid cluster-
ing methods to combine text mining and bibliometrics
data for journal sets analysis. This framework can be
generalized to other heterogeneous data sets for clus-
tering analysis as well. In this framework, we reviewed
and extended the methodologies of clustering ensemble
to hybrid clustering problems. We also proposed kernel
fusion methods for hybrid clustering in a unified view.

Second, to address the main obstacle in hybrid clus-
tering, we highlighted the problem of how to automat-
ically determine the “relevance” or “usefulness” among
data sources. We proposed a novel AKKC algorithm to
learn optimal weights of data sources together with the
clustering procedure. This algorithm extends the opti-
mal kernel learning approach from supervised learning
context to unsupervised learning context, in particular,
with an application of heterogeneous data fusion.

We applied hybrid clustering to combine text min-
ing and bibliometrics for journal sets clustering. Ac-
cording to our experiments, the performances obtained
by hybrid clustering are better than that by single data
only.

Based on the consistent partition obtained by hy-
brid clustering, we visualized a network of journal sets
containing fields mapping and citation links.
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