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Extended Abstract 

1  Introduction 
Clustering is an important problem with many applications, and a number of different 
algorithms and methods have emerged over the years. The goal of clustering is to group data 
points into homogeneous groups, where the homogeneity is usually measured by distances or 
similarities among data points. Recently, may applications face the requirement of clustering 
by data fusion. This is because that information contained in single data source is limited by 
its specific observation, therefore, combining multiple observations might facilitate the 
comprehensive understanding of the problem. For instance, in order to investigate memory 
persistence (long term or short term memory) of bacteria, a bacterium is observed at 
different experimental conditions and evolutional times [11]. Then the multiple observations 
are categorized by clustering algorithms. In scientometrics, a strategy has been proposed to 
combine text mining data and bibliometrics data (hybrid clustering) to explore the structure 
mapping of journal sets [8]. In bioinformatics, high throughput techniques produce 
numerous genomic data. The challenge to endow clustering algorithm with the ability to 
retrieve correlated or complementary information about the underlying functional partitions 
of genes and proteins has attracted many interests [2,14]. Unfortunately, though the machine 
learning community has already focused on data fusion for classification [7] and novelty 
detection [5], the extension to unsupervised learning such as clustering, is still an unresolved 
and ongoing problem. 

In this paper, we present a unified framework to obtain partitions from heterogeneous 
sources. When clustering by data fusion, the determination about the "relevance" or 
"usefulness" of the source is a vital issue to statistically guarantee a lower bound of the 
performance. In other words, if the clustering algorithm is able to detect the most "relevant" 
data source, we can expect that the fusion approach works at least as good as the best 
individual data. In order to achieve the above objective, two different strategies are applied 
in the framework. The effectiveness of the clustering performance is evaluated on several 
experiments and applications.              

 
2 A framework of  c lustering by data fusion  
Currently, clustering algorithms for data fusion can be concluded into two main categories. 
The first approach is clustering ensemble, also known as clustering aggregation or consensus 
clustering, that combines multiple partitions into a consolidate partition by consensus 
function. Different ensemble algorithms have the same conceptual framework as shown in 
Figure 1, they mainly vary on the choice of consensus functions. Clustering ensemble is 
originally applied on single source where various partitions are generated by different 



representations, dimensionality reduction techniques and clustering algorithms. The strategy 
of clustering ensemble can be extended to data fusion, where the main difference is that 
partitions now are varied by sources. An underlying assumption is: If the information 
contained in multiple sources is highly correlated, their partitions should also still contain 
"common agreement" thus a consolidated partition can also be obtained. 

An alternative approach of clustering by data fusion is achieved by fusing similarity 
matrices. If the similarity matrices are positive semi-definite, the data integration problem 
can be formulated as a kernel fusion problem. The main difference of kernel fusion approach 
is that the integration is carried in kernel space before clustering algorithm is applied (early 
integration) while clustering ensemble aggregates partitions after clustering (late 
integration). Kernel method elegantly resolves the heterogeneities of data sources by 
representing them as same-size kernel matrices. Moreover, if we assume that the importance 
of each data source is equivalent, we can combine the kernels in an average manner, thus the 
issue of data integration is transparent to the clustering algorithm. The averagely combined 
kernel is a new data source thus the partition can be obtained by standard clustering 
algorithms in kernel space. Furthermore, we can also apply a more machine-intelligent 
approach by coupling the optimization problem of kernel learning with the objective 
function of pattern analysis. In that case, the weights assigned on each data source can be 
adjusted adaptively during the clustering procedure [4]. In this paper, we propose a novel 
adaptive kernel K-means clustering (AKKC) algorithm to obtain partitions and optimal 
weights simultaneously.  

In conclusion, we survey 13 different algorithms from two main approaches and crossly 
compare them in the unified framework. We implement 6 clustering ensemble algorithms: 
HGPA [9], CSPA [9], MCLA [9], QMI (Quadratic Mutual Information) [10], EACAL 
(Evidence accumulation clustering - average linkage) [6] and AdacVote (Adaptive 
cumulative voting) [3]. We also implement 7 kernel fusion algorithms: AKKC [8,13], K-
means clustering on averagely combined kernels, hierarchical clustering on averagely 
combined kernels (4 linkage methods) and spectral clustering on averagely combined 
kernels.  

 
3 Experiments  and Applications 
In this section, we present a number of experiments to show the effectiveness of clustering 
framework. 

  
3 .1  Synthe t i c  da ta  

The first experiment is carried on 3 synthetic data sources with intuitive patterns. We assume 

Figure 1.  The conceptual framework of clustering from multiple sources 



that 400 samples (equally divided into 2 labels as blue & red points in Figure 2) are 
represented in 3 different data sources. In the first source (denoted as normal data), the 2 
clusters form two normal distributions with some degree of overlapping. In the second 
source (denoted as ring data), the 2 clusters show ring distributions. In the third one (denoted 
as random data), the labels are randomly assigned which represents a very irrelevant data. 
We combine them for clustering, first in linear space (combine 3 data sources in their 
original dimensions) and then extend them in nonlinear space (create 1 linear kernel and 2 
RBF kernels for each data source then combine 9 kernels in total). The performance is 
evaluated by comparing the clustering partitions with the labels of the samples.     

 

 
 
 
 
 

 

 
3 .2  Dig i t  recogn i t ion  data  

In the second experiment, we adopt two UCI digit recognition data sources for clustering 
analysis. The first source is pen based recognition data, which is created by trainers input on 
a tablet with 500 by 500 pixels resolution. The second source is optical recognition data, 
which is scanned by NIST OCR system. The labels of 10 digit classes from the original data 
are used for evaluation. Both data sources have been used separately as benchmark data for 
classification and clustering analysis. In this paper we randomly select 1500 samples (150 
for each digit class) from each source and combine them for clustering. The experiment is 
randomly permuted and repeated 50 times.      
 
3 .3  Journa l  s e t s  c lus ter ing  us ing  t ex t  min ing  and  b i b l iometr i c s  da ta  

The third experiment arises from a real application in scientometrics analysis. We adopt a 
data set containing (articles, letters, notes and reviews) from year 2002 till 2006. The data 
set is obtained from the Web of Science (WoS) by Thomson Scientific. From this data set, 
1869 journals are selected and the titles, abstracts and keywords of their papers are indexed 
by a text mining program. Thus we obtain a journal-by-term data source (text mining 
source). In the text mining source, the journals are expressed in the vector space model 
containing 669,860 terms and the weights of terms are calculated by TF-IDF weighting 
scheme. We also apply citation analysis as the supplementary of text mining analysis. For 
the same 1869 journals, we aggregate all paper-level citations into journal-by-journal 
citations. The direction of citations is ignored and a symmetric citation data is obtained. 
Therefore, the present study combines cross-citation analysis with text mining for clustering. 
To evaluate the performance, we reference the Essential Science Indicators (ESI) 
classification created by Thomson Scientific as the ground-truth labels of journal assignment 
(7 labels).  
  
3 .4  Di sease  genes  c lus ter ing  by  genomic  data  fus ion  

The fourth experiment comes from bioinformatics research. We investigate a real biological 
problem of clustering human disease-causing genes. The ground truth labels of genes come 
from domain knowledge, which is also adopted as a benchmark data previously in gene 
prioritization system [1,12]. It consists of 537 human genes (620 occurrences) categorized in 
29 diseases. Most of these diseases are complex, resulting from the interplay of both 
environmental and numerous distinct genetic factors. It is thus often difficult to identify 
disease clusters with a single data set. We adopt ten heterogeneous genomic sources 
(expressed in 26 kernels - several kernels can be derived from one data source) as 
representatives of various available genomic data sets. Due to the length restriction of the 
abstract, introduction about the data sources and the kernel functions are omitted.  
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Figure 2.   Three data sources in synthetic data 



To investigate the clustering performance, we enumerate all the pairwise combinations of the 
29 diseases (resulting in 406 binary clustering tasks). All 406 tasks are repeated 20 times 
(resulting in 8,120 runs of clustering per kernel). In each repetition, the average performance 
of all 406 tasks is used as the performance indicator of this run. Then the mean value of 20 
repetitions is reported as final result.  

4.  Conclusion and discussions   

In Figure 3 we present the performances evaluated by two external validations (rand index 
and normalized mutual information). Our motivation in this paper is not to find the best 
algorithm in all experiments. We are interested in evaluating different approaches in a 
unified framework and to get insight about the challenges for the new emerged problem of 
clustering from multiple sources.  

The main discovery is that data fusion indeed improves the performance. The improvement 
is quite significant on synthetic data, digit recognition data and disease gene data. Moreover, 
if we rank the performances of different algorithms and crossly compare them in four 
experiments, we come up with some nice candidate algorithms, for instance, our proposed 
AKKC algorithm, Ward linkage and spectral clustering based on averagely combined kernel. 
It seems that kernel fusion method generally works better than ensemble method for 
heterogeneous data fusion. This is probably because clustering ensemble method is quite 
sensitive to the number and quality of input partitions. If the number of data sources is small 
and the disagreement of the partitions is large, clustering ensemble method usually works 
worse than kernel fusion method. To avoid this disadvantage, we can first generate more 
partitions on single source, then combine all partitions in the fusion framework. In this way, 
clustering ensemble algorithms are able to find “agreement” among sufficient partitions and 
obtain stable consensus partitions. We can also go beyond the simple "partition generation" 
strategy and apply different data mining models to retrieve information from the same data 
source. For instance, in disease gene clustering we vary the biological text mining model and 
obtain 15 different textual gene profiles by changing the domain vocabularies and weighting 
schemes. In our early study, we found that with the same corpus collection, the choice of text 
mining configuration is a significant factor determining the quality of textual gene profiles 
in biological validations [12]. In clustering problem we find the same phenomenon (the 
orange bars in Figure 3 are performance obtained by different textual profiles). The merit 
here is, by combining these textual profiles together with biological data, the clustering 
performance by data fusion is strongly improved (much better than the best individual one, 
lddb-idf).   

Clustering by data fusion is a new topic and there are still many remaining challenges. In our 
paper we mainly combine data sources in linear space. Nonlinear space integration is a very 
interesting problem (as the result of nonlinear fusion on synthetic data) but it involves a new 
issue of how to identify the optimal kernel mapping. Another problem is internal validation 
(for example, the mean silhouette value) often behaves differently on data sources. Since 
internal validation is often used as an indicator to find the optimal cluster number, how to 
extend clustering model prediction and comparison techniques to multiple sources is hence 
an ongoing issue. 
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(a) synthetic data fusion 

(b) digit recognition data fusion 

(c) journal sets clustering 

(d) disease genes clustering 

Figure 3. Performance of all experiments evaluated by Rand Index & Normalized Mutual Information.  
The brown bars and orange bars are performances obtained by clustering on single data (K-means). The blue 
bars are data fusion performances. In disease genes clustering, the data fusion results are obtained by 
combining 11 biological data sources (brown bars) and 15 text mining data sources (orange bars).   


