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ABSTRACT samples. To make this method applicable on machines with
A new formulation of weighted multiple kernel based canah@orrelation standard CPU and memory, low rank approximation tech-
analysis (WMKCCA) is proposed in this paper. Computatideslies are  niques based on Incomplete Cholesky Decomposition (ICD)
also con_5|dered in the proposed method to make it feasiblarga de_ita and Singular value Decomposition (SVD) are introduced in
sets. This method uses incomplete Cholesky decompositi) @nd sin- . . .
gular value decomposition (SVD) to approximate the origizigenvalue  this paper. Moreover, for the weighted extension of MKCCA,
problem for low rank. For the weighted extension, an incretaeeigen- a incremental algorithm is proposed to avoid recomputing
;{a'ue d?Cﬁgp;zitiﬁ]grigo‘gsiz);ipx&f(%gzo \Aﬁl“éOi?o"ﬂ’g’sﬁgé Daeif:‘:;t‘ch eigenvalue decomposition each time weights of MKCCA
Ign;fnmg?ramework to gxtréct common information aior?@ftlgéneous are updated. To ou-r knowledge, the Welg,hted version of
data sets is purposed and experimental results on two U@Isis are Kernel CCA and the incremental EVD algorithm for Kernel
reported. CCA have not been reported before.
The paper is organized as follows: Section 2 derives the
1. INTRODUCTION mathematical formulation of WMKCCA. Section 3 discusses
the computational issue of the low rank approximation of
The goal of canonical correlation analysis (taking two data the MKCCA problem proposed in [4] and a novel incremen-
sets for example) is to identify canonical variables thatimi  tal algorithm for WMKCCA. Section 4 presents a frame-
mize or maximize the linear correlations between the trans-work of plugging WMKCCA into common machine learn-
formed variables [1]. Traditionally, canonical corretati ~ ing applications with a novelty of learning with common in-
analysis (CCA) is mainly employed on two data sets in ob- formation among heterogeneous data sets. In Section 5 we
servation space. Extension of CCA to multiple sets leads toreport the experimental results of visualization and dfiass
different criteria of selecting the canonical variablehjah cation of 2 UCI pattern recognition data sets using WMKCCA.
are summarized as 5 different models: sum of correlation The computational savings of the incremental algorithm is
model, sum of squared correlation model, maximum vari- also discussed. In Section 6 a conclusion is made.
ance model, minimal variance model and generalized vari-
ance model [2]. Kernel CCA is a generalization of CCA
using the kernel trick to find canonical variables of data set 2. FORMULATION OF WMKCCA
in kernel space [3] and its extension to multiple sets was
given in [4]. Kernel CCA on multiple sets (MKCCA) was 5 1 |inear CCA on multiple sets
proposed as an independence measure to find uncorrelated
variables in kernel space created by RBF kernels [4]. The problem of CCA consists in finding linear relations be-

In this paper, we will show that MKCCA can also be re- tween two sets of variables [1]. For the problem of two vari-
ded ' thod to extract i tion th hable51:1 andz,with zero means, the objective is to identify
garaed as a method to extract common information througnyectorsy; andw, such that the correlation between the pro-

maximization of.the pairwise _correlations among multipl_e jected variablesy” z; andw? z, is maximized:
data sets. A weighted extension of MKCCA can be easily

derived with a natural link to the weighted objective func- wlCry wowo

tion of MKCCA. The weighted MKCCA method can also wriws” \/chw . wQ\/chw oo @
be extended to out-of-sample points, which becomes im- P 2

portant for model selection. Another important issue for where C,,,, = E[x127], Copa, = E[22L], Coyay =

MKCCA is that the problem scales up exponentially with E[x127).
the number of incorporated data sets and the number ofExtending this objective function to multiple sets of vari-



ableszq, ..., z,, one obtains the form as
max p= O["El,...,l'm} , (2)
w1...Wm H?;m \/wTC‘L.L.’LIwL
whereOlz4,...,z,] is the objective function of correla-

tions among multiple sets as the optimization criterion. To

keep the problem analogous as the two-set one, we use th ngl 0

sum of correlation criterion and rewrite (2) as

T
Zu,u Wy C"L'uwvw’u

winguSosm” T T Corzyr @
which leads to the generalized eigenvalue problem:
0 eor Coyay, w1 Czizq --- 0 w1
: Cl=elo 4)
Crppzy - 0 W 0 ... Copamd Lwm

wherep is the correlation coefficient.

2.2. Kernel CCA on multiple sets

Kernel CCA is a nonlinear extension of CCA using ker-
nel methods. The data is first mapped into a high dimen-
sional Hilbert space induced by a kernel and then linear
CCAis applied. In this way, linear correlation discovened i
the Hilbert space corresponds to nonlinear correlation con
cealed in the observation space. Kef,... 2% }& | de-
note N observations of data set, . . ., x,,, respectively and
¢1(-?1, ..., ®m(-) as the feature maps from input spaces to
the high dimensional Hilbert spaces for the different data
sets. The centered kernel matrices of thedata sets be-
comes

&1 = [¢1(2)T — figys- b1 (@™M)T — fig, ]

B = [bm (@) = g5 Sm @) = g, ®)
the projection vectorsus, ..., w,, lie in the span of the
mapped data

P = ®iwi,.. (6)

oy Pm = ®pwm.

The resulted problem of kernel CCA can be deduced as the

analogue of linear CCA problem on the projected data sets
Py, ..., P, in Hilbert space:

T
Zu,’u Wy, C‘pu @, Wo

m T
i=1 \/wi Co, 0, wi

@)

max
wi,l1<u<v<m

)

which leads to the generalized eigenvalue problem:

| [l

where(Q; denotes the centered kernel matrix of i-th data

set where Mercer’s condition is applied witfin= &7 ¢
RNXN :

0 w1 0

[

Wm

v 21, 2101 ... w1

®)

Qle e 0 0 e QQO

Wm

Qijy = o) p(x5) = K (i, ;) ©)
The problemin (8) is ill-conditioned and the non-zero solu-
tions of generalized eigenvalue problem are +1. Hence
it needs to be regularized to obtain meaningful estimatfon o

canonical correlation in Hilbert space [4, 5, 6]. This paper
employed the regularization method proposed in [5] which
Iresults in the following regularized general eigenvalwsopr
em:

0 ...00n w1 (Q1 +HI)2... 0 w1
: N : . : :
Wi 0 QO+ /{I)2 Win,
(10)

wherek is a small positive regularization constant.

2.3. Weighted MKCCA

Starting from the objective function in (7t), the weighted ex
tension of Multiple Kernel CCA can be formulated by em-
ploying additional weights,, ., on pairwise correlations:

Zu,v 5“7Ungc‘1’u@u Wy

max —
m T ]
i=1 \/wi Cp;0,wi

w;,1<u<v<m

an

)

where¢, , is the scalar weight of correlation betweep
ande,. If we denote the generalized eigenvalue problem
in (10) as the form of2a = AQr«, the weights of Kernel
CCA can be decomposed as an additional positive definite
gatrixw multiplying at the left and right side of the matrix

WOWa = AQr o (12)

where

Gl o 0
0 (oI 0
W= . . . »
0 0 Cm 1
0 0109 Q10
QQQl 0 Q2Qm
Q = . . ’
Q1 Q1 0 |
Q1 + &I)2 0 0 7
0 (Q2 + wI)? 0
QR = . . 3
0 0 (Qm + K1)2]
m
d =k,
k=1
gu,v = wCuCU,

1

El§i<j§m CLCJ

¥

Through this formulation, the weights of pairwise corre-
lation £ in objective function (11) are decomposed as the
weights¢ on data sets. The sum ¢fis constrained to keep
the mean as 1y is a normalization parameter to make the
sum of¢ equal to 1. This normalization constafbnly af-
fects the solution of eigenvalue but does not affect thereige
vector solution.



3. COMPUTATIONAL ISSUE

3.1. Standard Eigenvalue Problem for WMKCCA

Similar to the transformation presented in [4], the general
ized eigenvalue problem in (12) can be written in following
form:

WOW + Qrla = (A + 1)Qra (13)

The problem of finding maximal generalized eigenvalue in
(12) is equivalent to finding the minimal generalized eigen-
value in (13) because if the generalized eigenvalues in (12)

are {A1,—A1,...,2p, A, 0,...,0}, then correspondingly
the generalized eigenvaluesin (13) &te- A\, 1—Aq, ..., 14+
Ap, 1=, 1,...,1}. Sincefdy is regularized and can be de-

composed aQ@r = C7C, definings = Ca,K,, = WOW +
Qr the problem can be transformed as the following:

Kra = )\ﬁQRa

Kra = AcTca

cTr.CcTig = N5 14

SinceQ)r is a positive definite matrix in a diagonal form,
we have
Q1 +kI... 0

cT=c=0)*= (15)

6 . Qm —|— wl
Replacing (14) with (15), the problem is written in the form
of standard eigenvalue problem:
1 <o ClC'nLIT&(Ql)T’N(Qm)
[ : : } B =\p,(16)
ClC'mIT&(Qm)T&(Ql) ce. 1

wherer, (Q;) = Q;(Q; + 1)~ = (4 + k1) 7'Q;

If eigenvalues\! and eigenvectorg are solved from
(16), the eigenvalues and eigenvectors of problem (1®) is
andC~!3. More formally, the eigenvectors; of problem
(10) are equal to

i = (Q +kI)7'B; (17)

3.2. Incomplete Cholesky Decomposition

According to incomplete Cholesky decompaosition, full rank
(V) centered kernel matri®; can be factorized aQ; =
GZ—G;TF, whereG; is in low rank M; (M; < N). Apply sin-
gular value decomposition a; to obtain N x M, matrix

U, with orthogonal columns anil; x M; diagonal matrix
A; such that:

Qi =~ G,GT = U N VI (U N V)T = UAZUT. (18)

DenotingF; as the orthogonal complement Gf such
that(U; E;) is a full rank N x N matrix, one obtains:

Q ~ UAZUT == (U,E) {/}) 8} (Ui En)" (19)
For regularized matrices in (10), one obtains:
re () ~ (U Ey) {’3 8] BT = U R,UT 20)

whereR; is the diagonal matrix obtained from the diagonal
A]

AZ +r

Replacing (16) with (20), decomposing (16) as

to its elements.

matrix A; by transformationk?

UR.UTB =\p, 1)
where
Up... 0
U=|: -
0 .. Un
I o 1l IR UL U R
By = : : (22)
C¢mIRmULUIRy ... I

SinceRy, is deduced from a similar matrix transformation,
the eigenvalues in are equivalent, moreover, the eigenvec-
tors of the low rank approximation is related to the full rank
problem by the following transformation:

UR,UTB = \p
R,UTB = XUTB
Ryy = Ny (23)

Hence, once we obtained the eigenveetpm low rank
approximation problem (23) it can be restored to full rank
problem in (16) througt®; = U,~;. Furthermore, the gen-
eralized eigenvectax; of the original problem can be cal-
culated as formula (17), hence we have:

;i = (Q + &) Uy (24)

We have several parameters involved in MKCCA computa-
tion: x the regularization parameterthe precision param-
eter for incomplete Cholesky decompositierthe cut value

of eigenvalues determining the sizelgfand); in singular
value decomposition d®;.

3.3. Incremental EVD solution for WMKCCA

Starting from the weighted problem expressed in (12), the
update of weights in WMKCCA can be expressed as an ad-
ditional update matri¥’ multiplied at the left and right sides

of the WMKCCA formulation:

VYWOWVa = AQra (25)
where
v1 0 ... 0
v=|" (26)
: .0
0... 0 v

vy, ..., 0, are the update ratios of weights corresponding

t0¢1,...,Cn-
Fo Ilowing the analog steps from (13) to (16), the standard
eigenvalue problem with updated weights is in the form of:

I e 010m (1 IRIUT U R

V19mC1¢m IRMULUI R, ... I



For simplicity we denote the matrix of eigenvalue prob- (e (o2 ()
lem before weight updating iR, the one after updating is e

Ruew, We definell = R, — Ri. For the weights updated : : C

problem, we need to SolVR,..,y = A*y. Obviously, we
could approximate the solution of the new problem on the
basis of the previous solution &~y = \*y without redo-

ing the eigenvalue decomposition from the scratch. From
the previous solution we have:

YARYE =Ry (28)

The updated problem is equal to addifigpn both side of
equation:

Yehivi +E=Ry+E
Yk (Ak + VEEVk)Vg = Rnew

'}’ICCZW'Y]Z1 = Rnew (29) | Machine Learning
Since in (27?1 weight updating only affect the off-diagonal ® 1®)
elements of the matrix. Moreover, due to the constraints of alomase ot
weights matrix in (12) where the mean value(gfis 1, the e

update parametersis also constrained within a certairesco
Usually, for small updates these values are close to 1. Therjg. 1. A framework for learning using WMKCCA with

matrix £ is in the form of: heterogeneous data sources
0 FEi2...Eim

E= (30)

projection [7]. The model for WMKCCA is selected by
evaluating the machine learning performance on the vali-
Eij = (viv; — )GGIRUTUSR, (31) dation set so that the parameters of kernel function and the
weights assigned on correlations are optimized.

Em,l EmA,2 cee 0
where

which only have non-zero values at off-diagonal positions
and most of the elements are close to 0. Hen{e’:?%

is also a sparse matrix with most of the off diagonal ele- 5. RESULTS ON EXPERIMENTAL DATA SETS
ments are close to 0. So, the matflixin (29) is a nearly
diagonal matrix thus can be solved more efficiently by iter-
ative eigenvalue decomposition algorithms. Hence, inktea
of doing EVD each time with updated weights, we stored we adopted two pattern recognition data sets, Pen-Based
the previous EVD solution and computed the EVD solution Recognition of Handwritten Digits and Optical Recogni-

5.1. Data sets and kernel functions

of T incrementally. tion of Handwritten Digits, from the UCI machine learning
data archives. For abbreviation, we denote them as Pen-
4. WMKCCA FOR MACHINE LEARNING Data and OptData respectively. Both data sets have 10 la-

bels corresponding to digits from 0 to 9. PenData has 16
WMKCCA can extract common information among multi- input attributes measured from 0 to 100 and OptData has
ple heterogeneous data sets. Given a group of objects, usué4 attributes measured from 0 to 16. We extracted 3750
ally multiple observations were obtained by different meth samples (375 samples for each digit) from the training part
ods and conditions, however, the inter-relationships ammon of both data sets, 80% of them used for training and 20%
these objects follow a intrinsic pattern. By WMKCCA, the used for validation. We adopted their original test data as
relationships are investigated in a Hilbert space and pestte  test set(3498 for PenData, 1797 for OptData). We applied
of these relationships from multiple observations are com- the RBF kernel to both data sets and the kernel width was
pared. When more than two observations are presented, theelected as the mean of covariance (for Penbata 97,
advantage of weighted extension of kernel CCA is the flex- for OptDatac = 13). Moreover, we transformed the class
ibility to bias the model towards several important observa information of data into another kernel matrix of labels.
tions without ignoring the information of the others. These Firstly, the vector of class labels is coded into&nx 10
relationships and patterns are useful for machine learningmatrix L where the-th column represents the labeliof 1
applications. Hence an integrative framework for WMKCCA digit. For example, for digit "6” th&-th column is assigned
based machine learning is presented in Figure 1. The frameto 1 and other columns are 0. Then, the label matrix is trans-
work integrates WMKCCA with supervised machine learn- formed into a kernel matrix by the linear kerdek L”. So,
ing where the validation data and test data are projected ont in our training step we produced three 36@&DO00 kernel
the embedding of the training data through out-of-sample matrices,Kyer, Kopt, Kiabei-



5.2. Visualization of canonical projections 5.3. WMKCCA based Classification on canonical spaces

Similar to the kernel CCA visualization method presented We applied a centroid classification approach on the pro-
in [8] on single data sets, we visualized PenData and Opt-jected data in canonical spaces which treats each set of dig-
Data simultaneously in lower dimensional space. In Figure its as a cluster and calculates the centroid as a function of
2 we presented a series of figures visualizing all 3000 train-the mean across all dimensions in canonical space. When
ing points in the space spanned by the 1st and 2nd canoninéw points are presented for classification, the Euclidean
cal variate obtained by KCCA and WMKCCA. By adjust- distance from the new pointto each cluster centroid is ealcu
ing the weights, we are able to discover the difference andlated. We compared the distances of new data to all 10 clus-
transformative pattern of integrating two heterogenoua da ters centroids and label the data with the one has the short-
sets. The 1st row shows the projections of two set KCCA on est distance. The validation data and test data were firstly
Kpen, Kiaper and K1, Kjape, r€Spectively. The next three projected into the canonical spaces of training data by out-
rows show the projections produced by WMKCCA on three 0f-sample projection, then classified by centroid methed ac
sets with different weights. When we assign a large weight cording to their distance to the cluster centroids of tragni
on PenData (1.99) and small weight on OptData (0.01), thedata. The accuracy of classification was evaluated catculat
projection of PenData is quite similar to the result of KCCA, ing the percentage of correctly classified data of all labels
however, the projection of OptData is quite different. Simi
larly, large weight on OptData makes WMKCCA a similar We benchmarked the accuracy of validation sets with
result with KCCA on OptData but not for PenData. When different weights, using the incremental EVD method dis-
equal weights are assigned on all three sets, not only the corcussed in Section 2. The weights &f)c,., Kopt, Kiavet,
relations between observations and label but also the-corredenoted a8, Copt, Ciaber @re benchmarked by grid search
lation betweenk,,.,,, K, is maximized. from 0.1 to 2.9 with step 0.1 with the constraint tijat, +
Copt + Clabet = 3. We also compared the performance

NTT——. . Pa— of classification in canonical subspaces of different sizes
For each validation, the data was projected to the subspace
spanned by 10, 100 and 500 canonical vectors respectively.
The optimal weights and subspace were selected by the av-
erage of classification accuracies on two validation data se
Then the test data was fed into the WMKCCA model with
the selected weights and projected to the selected subspace
hence the accuracy on test data is obtained. We compared
the accuracy obtained on WMKCCA model with the results
from other methods mentioned in the literature in Table 1.
Results of KCCA, MKCCA and WMKCCA were obtained
by methods mentioned in this paper. Results of other meth-
ods were referenced from the literature. The best result of
WMKCCA on PenData (0.9794) and on OptData (0.9716)
was obtained whegy,e,, = 1.3, (opt = 1.3, (iaper = 0.4 and
the projection space set to 500 vectors. As it is shown, the
result of WMKCCA is better than the one of MKCCA with
equal weights. It is also better than the results of KCCA
that applied on observations and labels of individual data
set using all 3750 samples for training. It also seems that
the result of WMKCCA is comparable to the best results of
other methods reported by far. The result on OptData is only
slightly worse than the result produced by the hierarchical
combining of 45 SVMs [9].

5.4. Efficiency of Incremental EVD solution

We benchmarked the direct EVD algorithm and the incre-
Fig. 2. Visualization of PenData and OptData by KCCA mental EVD algorithm in WMKCCA experiments with dif-
and WMKCCA in the space spanned by first 2 canonical ferent matrix sizes and update scales. The benchmark did
vectors not consider previous ICD and SVD but only compare the



Update Scale 1.1 Update Scale 2 Update Scale 10
300 300

Table 1. Classification accuracy on Test Data ’ T

—+— Incr.

METHODS PenDatg OptData| Notes 250 250 250
WMKCCA 0.9794 | 0.9716 | See text

MKCCA 0.9766 | 0.9688 | Equal weightg g 20 200 200
KCCA 0.9783 |0.9711 | 3750 training g

Linear SVM 0.9494 | 0.9602 gm 150 150

RBF DDA SVM [10] | 0.9708 | 0.9722
SVM Ensemble [9] |N/A | 0.9783 |45 SvMs
MLP [10] 0.9703 |0.9517
kNN [10] 0.9771 |0.9649 |k=3
Bayes+PCA [11] |0.9763 | 0.9694

=
S
3

100 100

o
3

50 50

& o0& 0-@
matrix size matrix size matrix size

CPU time of solving the eigenvalue problem in (23) by di- Fig. 3. Comparison of CPU time between direct EVD
rect method with solving the transformed problem in (29) method and Incremental EVD method

by incremental method. For the incremental method, the

CPU cost of calculatindg”, matrix multiplication of calcu- labels among two heterogeneous OCR data sources. Fur-

lating 7', EVD of T" and matrix multiplication of calculating thermore, projections of data in canonical spaces obtained

canonical vectors are taken into account. We adjusted theby WMKCCA are fed into a simple clustering centroid clas-

\s/\?ale ?f t?ed plrgglegg)gyl'gggealsé%% the ds'zzgogf érilnlng selt. sification algorithms and it shows comparable classificatio
¢ selecte » 2P0, » oL an ata SampIe3 ccuracy with respect to the best reported results in the lit
from two data sets and fed them into the WMKCCA algo- erature

rithm (n = 0.9, k = 0.1, 7 = 0.9). After ICD and SVD, the

matrix R had size 160, 701, 1323, 1911 and 2483 respec-

tively. We also adjusted the scale of the weight update pa- 7. REFERENCES
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