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ABSTRACT

Motivation: Existing (bi)clustering methods for microarray data

analysis often do not answer the specific questions of interest to a

biologist. Such specific questions could be derived from other

information sources, including expert prior knowledge. More

specifically, given a set of seed genes which are believed to have

a common function, we would like to recruit genes with similar

expression profiles as the seed genes in a significant subset of

experimental conditions.

Results: We introduce QDB, a novel Bayesian query-driven

biclustering framework in which the prior distributions allow

introducing knowledge from a set of seed genes (query) to guide

the pattern search. In two well-known yeast compendia, we grow

highly functionally enriched biclusters from small sets of seed genes

using a resolution sweep approach. In addition, relevant conditions

are identified and modularity of the biclusters is demonstrated,

including the discovery of overlapping modules. Finally, our method

deals with missing values naturally, performs well on artificial data

from a recent biclustering benchmark study and has a number of

conceptual advantages when compared to existing approaches for

focused module search.

Availability: Software is available on the Supplementary Material.
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1 INTRODUCTION

The availability of large microarray compendia has brought

along many challenges for biological data mining. Several

supervised and unsupervised methods have been developed for

the analysis of such datasets. In particular, probabilistic models

have become a popular choice for modeling high-throughput

genomic data because they allow natural handling of high noise

levels (Friedman, 2004). The contribution in the current article

is mainly based on three observations:

� Existing (bi)clustering methods for microarray data

analysis often do not answer the specific questions of

interest to a biologist. This lack of sharpness has prevented
them from surpassing a rather vague exploratory role.
Often, biologists have at hand a specific gene or set of

genes (seed genes) which they know or expect to be related
to some common biological pathway or function. Based on
available high-throughput data, they may want to recruit

additional genes that are involved in that function.
In particular, this problem formulation entails various
questions or queries, such as ‘which genes involved in a

specific protein complex are coexpressed?’ or ‘given a set of
known disease genes, how to select new candidate genes
that may be linked to the same disease?’

� Current microarray compendia consist of measurements in

multiple biological conditions and it may not be clear
which conditions are truly most relevant to the biological
question at hand. Therefore, simultaneous identification
of the appropriate subset of experimental conditions

(features), often referred to as biclustering [see Madeira
and Oliveira (2004) for a survey], has become a profitable
extension to classical cluster analysis. In other words, the

fact that some genes are only tightly coexpressed in a
subset of experimental conditions (for these experimental
conditions, their regulatory program significantly overlaps)

should be taken into account. Classical clustering cannot
always recover such sets of genes if the patterns are
obscured by a large set of irrelevant conditions (Prelic

et al., 2006). Moreover, the discovery of relationships
between the genes and the conditions may provide
important information for unveiling genetic pathways

(Van den Bulcke et al., 2006).

� Genes are often involved in several pathways and func-
tions, giving rise to the notion of overlapping transcrip-
tional modules. Both small but highly homogeneous

modules (high ‘resolution’) and larger but more hetero-
geneous modules (low ‘resolution’) can be interesting.

The above observations inspired us to develop a Bayesian

probabilistic framework for query-driven module discovery in
microarray data. Bayesian models have shown promise in
providing answers to specific questions or queries, by trans-

forming the knowledge of biologists into prior probability
distributions in the model [e.g. Bernard and Hartemink (2005)*To whom correspondence should be addressed.
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and Gevaert et al. (2006)]. In particular, we focus on the
question: ‘which genes are (functionally) related to the seed
genes and which features (conditions) are relevant for this

biological function?’ We refer to such a set of genes and its
relevant conditions with the terms ‘bicluster’ or ‘module’. A

resolution sweep approach was designed to resolve the resolu-
tion issue and identify overlapping modules that correspond to
multiple pathways the query gene may be involved in (multiple

regulation).
Only few existing algorithms, such as the (Iterative) Signature

Algorithm (Bergmann et al., 2003), Gene Expression Mining

Server (Wu and Kasif, 2005) and Gene Recommender (Owen
et al., 2003) allow similar directed searches. In the remainder

of the article, we demonstrate the conceptual advantages
and efficacy of our flexible QDB (Query-Driven Biclustering)
modeling framework over these existing approaches. We pro-

pose a conditional maximization approach for model estimation
(Gelman et al., 2004) and explain how intuitive choices for the

prior distributions lead to a resolution sweep approach. The
method is evaluated on a series of artificial data sets. Search
strategy and performance are compared with those of the

Iterative Signature Algorithm andGene Recommender. Finally,
we discuss results obtained on a concatenation of two well-

known yeast microarray gene expression data sets (Gasch et al.,
2000; Spellman et al., 1998).

2 METHODS

2.1 Artificial data

The artificial data were taken from the Supplementary Material of

a recent biclustering benchmark study (Prelic et al., 2006). In a first

scenario (S1), the data consist of 10 binary modules (expression value 1)

embedded in a zero background (expression value 0). This simple

setup is complicated by adding Gaussian noise with SD up to 0.25 (A)

or allowing module overlap (B). In (A), the modules have 10 genes and

5 conditions, while the modules in (B) each contain 10þ k genes and

10þ k conditions, where k (ranging from 0 to 8) is the number of genes

and conditions in common between overlapping modules. A second

scenario (S2) describes a similar case (same module sizes), only this

time the data is not binary but continuous. The background values

are samples from a Gaussian distribution, the bicluster values in each

column are equal (B) or equal up to some Gaussian noise (A).

For details, we refer to Prelic et al. (2006). No preprocessing (such as

discretization) was performed. We did not apply the output filtering

procedure described in Prelic et al. (2006) to remove heavily over-

lapping biclusters or limit the number of modules in the output.

In all experiments, the seed consisted of genes correctly belonging

to I of 10 artificial modules. We repeated the biclustering process

10 times, each time with randomly selected seed genes from a

different module. The resulting biclusters were then scored with

module recovery and bicluster relevance scores as described in Prelic

et al. (2006) and in Supplementary Material File 1. The module recovery

score indicates how well the gene content of the ‘ideal’ modules is on

average reflected in the (best matching bicluster in the) bicluster results.

The bicluster relevance score is related to the relevance of the set of

modules in the output. Both scores are maximal and equal to one

if both module sets are equal.

2.2 Seeds for combined Gasch and Spellman data set

Seeds were taken from the Supplementary Material of one of our recent

publications on module discovery in yeast (Lemmens et al., 2006).

They correspond to very small gene sets that are selected based on

similarity in motif, expression and ChIP-chip data.

2.3 Yeast data

We downloaded the yeast data from the Supplementary Material

of Gasch et al. (2000) and Spellman et al. (1998). As in Lemmens et al.

(2006), we normalized the log ratios of both data sets per gene

(subtracting the mean of each profile and dividing by the SD).

No further preprocessing, such as discretization, was carried out.

2.4 Functional enrichment

The hypergeometric distribution was used to determine which Gene

Ontology Biological Process categories (Ashburner et al., 2000) were

statistically overrepresented in the selected biclusters resulting from

the resolution sweep approach (Sokal and Rohlf, 1995). All known

GO-BP labels from Ensembl (Hubbard et al., 2007) were propagated

towards the root of the hierarchy. A Benjamini–Hochberg method was

used to correct for multiple testing (Storey and Tibshirani, 2003).

3 MODEL AND ALGORITHM

Our general goal is the identification of clusters of genes with

similar expression profiles (coordinated changes) in a signifi-

cant subset of measured experimental conditions [i.e. constant

column biclusters in the terminology of Madeira and Oliveira

(2004)]. By exploiting knowledge contained in a given set of

seed genes, we limit the search space through the assumption

that the biclusters of interest are those that represent patterns

similar to the seed gene pattern (note that this eliminates the

need for a masking approach). Because a gene might belong

to more than one pathway, we implement a resolution sweep

approach to explore a continuum ranging from small but

highly homogeneous modules to larger but more heterogeneous

modules. Modules at different ‘resolutions’ might emphasize

different aspects of the cellular network. A statistical criterion

is used for automatic identification the resolutions of interest.
In the remainder of this section, we first introduce the general

modeling framework and briefly discuss a strategy for model

estimation. Subsequently, we introduce the query via prior

distributions and conclude that a resolution sweep approach is

appropriate for the query-driven biclustering problem if the

most interesting resolutions are a priori unknown.

3.1 General modeling framework

The core of the probabilistic framework resembles that of

Sheng et al. (2003), the main ingredients being column-wise

probability distributions and hidden labels (g) for the genes and

(c) for the conditions to indicate bicluster membership. Assume

each column j of the (n�m) expression data matrix X

represents an experimental condition and each row i represents

a gene. Expression values xij for which both the corresponding

gene and condition are assigned to the bicluster (gi¼ 1

and cj¼ 1) are then modeled by the bicluster distribution

(superscript ‘bcl’) of the corresponding condition. All other

expression values are modeled by the background distribution

(superscript ‘bgd’) of their corresponding condition. The use of

condition-wise background distributions allows compensating

for between-array differences in expression level variance.
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Of course, we do not know in advance which genes,

conditions and expression values xij belong to the bicluster;

the model therefore depends on hidden gene (g) and con-

dition labels (c). Figure 1 shows a conceptual scheme of the

framework.
For the column-wise (condition-wise) statistical probability

distributions, we use Gaussian distributions with parameters

yj¼ (�j, �j) and conjugate Normal – Inverse �2 priors. The

(full conditional) label probabilities are given by Bernoulli

distributions with Beta priors.

3.1.1 Prior distributions One of the strengths of the Bayesian
probabilistic framework is the possibility of using well-chosen

prior distributions on the model parameters. We utilize con-

jugate Normal–Inverse �2 priors on the column-wise Gaussian

probability distributions (Gelman et al., 2004):

pð�j,�jÞ ¼ pð�jj�jÞ pð�jÞ / N� Inv �2:

If xij indicates the expression level of gene i in experimental

condition j, the corresponding distributions for bicluster and

background can then be written as
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The parameterization of the above formulas is justified by

the interpretation of the corresponding full conditional

distributions in Section 3.1.2 (where parameters � and � are

equivalent to a number of prior observations). In addition to

the prior distributions on the model parameters, Beta priors

B (�g1, �g0) and B(�c1, �c0) on the parameters of the Bernoulli

label distributions can be used to specify a prior believe that a

gene or condition belongs to the bicluster (bicluster size).
We postpone the discussion of parameter choices for the

priors to Section 3.3.

3.1.2 Full conditional distributions As illustrated in
Supplementary Material File 1, the full conditional distribu-

tions for the gene labels are Bernoulli distributions:

pð gijg 6¼i
; c; h;); XÞ / BernðaiÞ

with
�i

1� �i
¼

Y
j2bcl

pbclðXijÞ

pbgd;1ðXijÞ

 !
�g1 þ jjg6¼ijj1

�g 0 þ n� 1� jjg6¼Ijj1

 !
:

In this expression, �g1 and �g0 are parameters of the Beta prior

distribution B(�g1, �g0) on the probability that a gene belongs to

the bicluster, n is the total number of genes, u the set of model

parameters (�, �), t the total set of hyperparameters (�, �, s, ’,

�g0, �g1, �c0, �c1) and ||g6¼i||1 the one norm of the current (binary)

gene label vector, except for label i. In other words, the second

factor depends on the number of genes currently in the bicluster

as well as prior knowledge on the bicluster size. The first factor

corresponds to the likelihood ratio of bicluster versus back-

ground model.

A similar model holds for the full conditional distribution of

the condition labels c (see Supplementary Material File 1).

Given the choice of the Normal – Inv �2 priors, the full

conditional distributions for the model parameters are given by
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The prior parameters � and � can be interpreted as ‘pseudo-

counts’ or the number of ‘prior observations’ for the estimates

of the mean and variance, respectively. The resulting estimates

for means (variances) are weighted means of the observed

sample mean ��bcl
j (variance) and the prior mean ’bclj (variance).

For brevity, we omitted the formulas for the background model

parameters, which are similar. Details on the derivations can be

found in Supplementary Material File 1.

Fig. 1. Conceptual scheme of the Bayesian framework for biclustering.

On the left, column-wise (condition-wise) Gaussian distributions

for the bicluster and background data are represented. Mean and

variance parameters are represented by circles and hyperparameters by

rectangles. In an iterative procedure, these models are re-estimated

while gene and condition labels are assumed fixed (full conditionals for

model parameters). On the right, we illustrate how a binary gene label is

re-estimated while the models and the other labels are assumed fixed

(full conditionals for labels).
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3.1.3 Joint posterior distribution Given the data and a
particular choice for the prior distributions, the joint posterior

distribution p(u, g, c | X, )) indicates the statistically most

interesting simultaneous assignments for the labels and the

model parameters. Unfortunately, it is not possible to use this

joint posterior distribution directly because we are unable to

describe it analytically. We next discuss a strategy to detect its

local maxima using information on the corresponding full

conditional probability distributions only.

3.2 Algorithm

Conditional Maximization or CM (Gelman et al., 2004)

consists of alternatively maximizing a set of full conditional

distributions. These maximization steps are repeated until the

procedure converges to a local mode of the corresponding joint

probability distribution. Figure 1 illustrates the alternating

procedure; the full conditionals and joint posterior distribu-

tions were introduced in Sections 3.1.2 and 3.1.3, respectively.

In the query-driven context under study, convergence to local

modes in the posterior landscape will often be sufficient because

the query is introduced through strong priors on the model

parameters (see Section 3.3). Strong priors act as a powerful

zoom lens to magnify interesting regions in the likelihood

landscape. Therefore, they tend to give rise to rather simple

posterior distributions, even when the corresponding likelihood

landscape is complex and contains many modes. Furthermore,

the knowledge represented by the seed genes can be used for

clever initialization (Supplementary Material File 1).

3.3 Introducing the query

The discussion in Section 3.1 applies to all possible instantia-

tions of models in the general framework. Before tying up any

prior parameters based on the knowledge of the seed genes, it is

useful to stress the flexibility of the presented framework. The

remainder of this article describes a particular instantiation of

the model, using specific choices for the priors, which we

deemed intuitive. One should keep in mind that alternative

ways to introduce the prior knowledge exist.

3.3.1 Different kinds of priors Strictly speaking, four groups
of parameters specify the priors:

(1) The parameters for the priors on the means and variances

of the bicluster models.

(2) The parameters for the priors on the means and variances

of the background models.

(3) Two parameters for the Beta prior B(�g1, �g0) on the prior

probability that a gene belongs to the bicluster.

(4) Two parameters for the Beta prior B(�c1, �c0) on the prior

probability that a condition belongs to the bicluster.

Although these parameters have a clear-cut statistical

interpretation, it is not desirable to choose all of them

manually. Therefore, we decided to fix most of them by default:

� Assume that the prior probability of a gene belonging to

the bicluster is unknown. The corresponding Beta prior

can then be fixed to B(1,1) (non-informative, uniform
distribution), eliminating (3).

� For the Beta prior B(�c1, �c0) on the condition labels, �c1
equals twice the total number of conditions in all

experiments while �c0 was fixed and equal to one in all
experiments (all artificial and real data sets). This setting

forces (at least) those conditions into the background for

which the bicluster genes do not have a significantly better
likelihood under the bicluster distribution. The exact

setting of this prior does not have much influence as long

as �c04�c1 (data not shown).

� To sufficiently restrict the freedom of the bicluster
(preventing it from drifting too far away from the seed

profile), we force the mean of the bicluster to be equal to

the mean of the seed genes (’bclj ¼ ��seed
j and �bcl¼1) in the

selected conditions, tying up additional parameters in (1).

� For the priors on the means and variances of the
background models, we use ’bgd ¼ ��j and sbgdj ¼ ��j with
a number of pseudocounts �bgd and �bgd equal to the total

number of genes in the data set. The exact number of
pseudocounts has little influence for reasons explained on

the Supplementary Material.

When the other prior distributions are fixed as described above,

the remaining bicluster variance priors (one for each condition)

provide sufficient flexibility to accommodate various query-
driven biclustering strategies. As explained in Section 3.1.1,

these priors are (scaled) inverse �2 distributions with two kinds

of parameters: (sbclj )2 indicates the prior variance while �bcl

refers to the number of prior observations (seed strength). For a

bicluster containing 10 genes at a certain point in the

procedure, 90 prior observations would mean that the resulting
variance of the bicluster is determined for 90% by the prior

variance and for 10% by the variance of the 10 genes currently

in the bicluster.

3.3.2 Non-informative variance priors In most artificial data

scenarios, results are only weakly dependent on the choice of
the prior parameters �bcl and sbclj . In general, priors with low

information content (weak priors) perform well here, since the

patterns are very strong in most cases and this strength is
(almost) equal for all modules. Therefore, it is in principle

possible to use a non-informative prior for the variance (small

number of prior observations �bcl with large variance (sbclj )2, for
instance equal to background variance) and still detect most of

the modules (data not shown).

3.3.3 Resolution sweep In real data sets, we expect the
choice of the number of prior observations to be more crucial.

Indeed, these data are typically dominated by a small number
of very strong biclusters. Therefore, stronger priors are needed

to extract interesting but statistically less significant patterns

around the seed. For example, simulations with non-
informative or seed-based variance priors on the combined

(Gasch et al., 2000; Spellman et al., 1998) yeast expression data

showed that the algorithm converged to a part of the large
dominant ribosome biogenesis module in many cases. Indeed,

the statistical significance of very strong correlation between

small numbers of genes in a large number of experimental
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conditions can be exceeded by weaker correlation between
larger numbers of genes over a smaller subset of the conditions.
It may happen that the profiles of the seed genes match better

with the expression pattern of a dominant bicluster than with
the background pattern over a sufficiently large number of
conditions, causing the algorithm to get stuck in the corre-

sponding mode of the posterior distribution. In such cases, it
seems preferable to be able to explicitly zoom in on more
appropriate modules by using informative variance priors as a

control handle. In general, a decrease in prior variance will give
rise to smaller modules.
Since the most interesting setting for the prior variance is

unknown (and non-informative variance priors do not work
well in practice), it seems necessary to explicitly test a whole
range of informative settings for the prior on the variance. We

propose a resolution sweep approach in which the prior
variance is slowly (and linearly) increased while the algorithm
is running. In fact, this means that the starting point at each

prior setting is equal to the posterior mode that was found with
a slightly smaller value of the variance prior, a sensible
initialization. In other words, we start close to the seed

(Supplementary Material File 1) and stay in a mode of interest
at any time. Because the algorithm remains near convergence,
only a few iterations are needed for each prior variance setting.

Varying prior variance corresponds to traveling through the
modular structure of the data in the neighborhood of the seed
(see Supplementary Material File 1 for examples and an

intuitive comment on the notion of resolution). In both the real
and artificial data sets, linear increases of the prior parameter
result in discrete steps for the observed module sizes,

illustrating crisp transitions between modules at different
resolutions. In Section 5.2.1, we report on an example that
evolves from very specific cell cycle-related functions over less

specific ones to ribosome biogenesis-related functions (when
the prior variance is large). The corresponding figures (and
many more examples on the Supplementary Material) reveal

some well-known modularity properties of genetic regulatory
networks (Ihmels et al., 2002).
All artificial and real data simulations shown here were

obtained using the resolution sweep approach. In artificial data,
we linearly increased the variance prior parameter (sbclj )2 for
each condition from 0 to the corresponding background

variance over 100 iterations. In the yeast data sets, we used
the same strategy but over 2000 iterations. The variance priors
were chosen to be very informative by setting the number

of pseudocounts �bcl equal to the total number of genes.
To automatically detect the resolutions of interest, we identified
the local maxima in the Akaike Information Criterion (AIC)

(Akaike, 1974) for model selection on the resolution sweep path
(see Supplementary Material File 1 for a rationale on this
criterion for automatic module detection). Since the pattern

search is centered on the mean seed gene pattern, it is not
surprising that the seed itself corresponds to one of those local
optima in many cases. Therefore, we consider the seed to be a

trivial module and exclude it from the output. As explained in
the Systems and Methods section, no additional postprocessing
was carried out.

Note that we do not only report the module with the
maximal AIC score for each seed. Indeed, modules that are

statistically most relevant are not always most interesting.

In the yeast data set, e.g. dominant ribosome biclusters

containing many genes often have the highest score.

Nevertheless, it is worth noting that in the artificial data

scenarios under study the best scoring module almost always

corresponded to the ‘correct’ module.

4 IMPLEMENTATION

All algorithms were implemented in the R language and

environment for statistical computing (R Development Core

Team, 2006). An implementation of the Gene Recommender

algorithm, the GO Biological Process functional annotations

and the multiple testing correction of the P-values were

obtained using packages from the Bioconductor repository

(Gentleman et al., 2004).

5 RESULTS AND DISCUSSION

5.1 Artificial expression data

In order to make a fair comparison and avoid any bias in

creating our own data sets, we systematically evaluated our

QDB algorithm on two artificial data scenarios (S1 and S2)

from a recent biclustering benchmark paper (Prelic et al., 2006),

containing noiseless overlapping modules (A) and noisy non-

overlapping modules (B). More details on the setup and the

definition of the performance measures can be found in the

Systems and Methods section. To make the benchmark more

informative, we included results of the Iterative Signature

Algorithm (ISA) and Gene Recommender (GR) using the same

seeds. A short description of the ISA and GR algorithms can be

found in Supplementary Material File 1. Before discussing

numerical results, we highlight some fundamental conceptual

differences between QDB and the ISA and GR algorithms.

5.1.1 Conceptual differences QDB–ISA The parameter var-
iation approach suggested by the authors of the Iterative

Signature Algorithm (Ihmels et al., 2004) is similar in spirit to

the resolution sweep approach presented here. However, our

approach is different in some important ways:

� ISA is a clever algorithm rather than a solid probabilistic

modeling framework. Modules are defined as fixed points

of this algorithm without referring to an underlying

mathematical model or explicit cost function. This makes

it difficult to extend ISA to include other data sources,

where the algorithm may not be directly applicable. The

QDB framework is flexible in allowing the specification of

other distribution types or search strategies.

� The probabilistic interpretation of QDB allows automatic

selection of interesting modules on the resolution sweep

path, via local optima in the AIC score. In contrast, ISA

does not have a natural notion of statistical scores for the

reported modules.

� The search strategy of ISA is based on significant average

overexpression or underexpression of the bicluster genes in

the bicluster conditions whereas the QDB search strategy is
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based on significant differences in expression between the

bicluster and the background.

� In contrast to ISA, QDB deals with missing values

naturally (Supplementary Material File 1).

� ISA is query-based in the initialization only. Strictly

speaking, there is no guarantee that the module does not

drift away from this query point, due to the presence of

more dominant modules nearby. Some experiments on real

data indeed revealed modules that did not contain any of

the query genes at any resolution (as specified by threshold

parameter tG) of interest. In contrast, by explicitly

controlling the statistics (e.g. mean and variance) of the

bicluster to a degree specified by the prior strength, it is

straightforward to prevent QDB from reporting biclusters

that are too remote from the query.

5.1.2 Conceptual differences QDB-GR Gene Recommender
(Owen et al., 2003) is designed to prioritize genes rather than to

detect transcriptional modules. The output of the core

algorithm is an ordered gene list. In order to convert this

output into a module format, an appropriate cutoff has to be

specified. The default threshold of the Gene Recommender

software corresponds to 50% recall, but on small seed sets (e.g.

two genes) this yields trivial results, mostly modules containing

one (seed) gene only. Therefore, we decided to show GR results

with optimal thresholds: for every seed we selected those

thresholds that correspond to optimal module recovery and

bicluster relevance scores, resulting in an upper bound on GR’s

performance. It is important to keep this in mind when

interpreting the numerical results in the next section.
Three more advantages of QDB over GR are worth

mentioning in a module discovery context:

� In contrast to QDB, GR is unable to deal with queries of

one gene only.

� The GR output does not contain as much information as

the QDB output on the structure of the modules over

different resolutions. Although a variation of the cutoff

parameter on the output list corresponds to some notion of

resolution, the condition content remains the same and no

genes are allowed to drop out upon increasing the

threshold. Therefore, the notion of overlapping modules

at different resolutions does not exist as such in the Gene

Recommender system.

� GR first selects appropriate conditions and then uses the

correlation of candidate genes in the selected conditions to

obtain a ranking of the genes with respect to the seed.

While QDB simultaneously selects genes and conditions,

this is not the case for GR.

5.1.3 Simulation results Figure 2 shows module recovery

scores for small seeds of one and two genes. Due to a lack of

space, we moved the corresponding bicluster relevance plots to

our Supplementary Material (Supplementary Material Fig. 1).
In general, query-based algorithms perform very well on

these data compared to various global biclustering methods

(Prelic et al., 2006). This illustrates that the use of a query can

facilitate the search, even though the setup uses small data sets

with modules of nearly equal strength and therefore does not

fully exploit the advantages of the query-based approaches. For

every scenario, scores are comparable with the best scores in

Prelic et al. (2006).
To make the comparison more informative, we included a

query-based clustering (in contrast to biclustering) variant of

our algorithm (QDC), by simply removing the condition

selection. As expected, the biclustering variant outperforms

the clustering variant, especially in noisy scenarios. This

demonstrates that removing irrelevant conditions can substan-

tially improve the results.

The performance of QDB and ISA is nearly equal in the

noise scenarios. In the overlap scenarios, QDB outperforms

ISA, the main reason being the multi-resolution aspect and the

automatic detection of the most relevant resolutions in QDB.

Moreover, QDB modules with the maximum AIC score were

‘correct’ modules in almost all scenarios, supporting the use of

the AIC scores as a measure of statistical relevance. ISA is

unable to report the most relevant modules in the overlap

scenarios because they do not correspond to the resolution

represented by the (default) gene and condition resolution

settings. Even when used in a parameter variation setting [as in

Fig. 2. Evolution of module recovery scores as a function of noise (indicated by the letter A) and overlap (letter B), in two artificial data scenarios

(S1 and S2), taken from Prelic et al. (2006). Results obtained with seeds of one gene are shown with gray solid lines, results with seeds of two genes in

black dotted lines. QDC refers to an additional clustering variant of our own query-driven Bayesian framework (see main text).
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Ihmels et al. (2004)], ISA does not have a natural notion of

statistical scores for the reported modules.
GR possibly performs well on overlap scenarios but is

outperformed by both ISA and QDB in noisy scenarios. Recall

that the plots show upper bounds on GR’s performance only.

5.2 Yeast expression data

Although artificial data are helpful to gain understanding in

properties of algorithms, they remain an approximation of

biological reality. Therefore, the performance of our approach

was further examined by applying the QDB resolution sweep

algorithm to a concatenation of two well-known yeast

expression compendia (Gasch et al., 2000; Spellman et al.,

1998). Seeds were taken from the Supplementary Material of a

recent paper on module discovery in yeast (Lemmens et al.,

2006). The query-driven biclustering algorithm can act as a

more sophisticated approach to the so-called seed extension

step in Lemmens et al. (2006).
The results of our analyses of over 100 sets of seed genes can

be found on our Supplementary Material In most cases, we

were able to find highly enriched biclusters associated with

functions similar to those described in Lemmens et al. (2006).

Additionally, we gain information through condition selection

and reveal relationships between functions. Moreover, the

suggested approach is robust against noise (data not shown).
Most cell cycle seeds ultimately evolve into ribosome

biogenesis-related modules, while most nutrient-deprived seeds

evolve over nitrogen compound metabolism into aerobic respira-

tion and more general energy-related functions. For galactose

metabolism seeds, we did not observe any function changes over
the tested resolution range. For more details, we refer to the

Supplementary Material.

5.2.1 A cell cycle bicluster example Figures 3 and 4 show an
example of overlapping modules that were detected using one

of the seeds. The seed consisted of two genes (IRC8 and CDC5)

and was obtained using the Spellman data set [together with
ChIP-chip and motif data, as discussed in Lemmens et al.

(2006)]. Figure 3 illustrates how the bicluster grows (in size)

when the (prior) variance is gradually increased (resolution
sweep). In particular, the number of selected conditions

decreases while the number of genes starts to increase.

The first selected module (A) contains genes which are involved

in DNA-dependent DNA replication. However, it does not
have a significant functional overrepresentation after correcting

for multiple testing. When we further increase the variance, the

algorithm picks up the signal from stronger mitotic cell cycle

(pcorr¼ 1.6E�3) and cell division (pcorr¼ 4.1E�7) modules.
Around iteration 1300, there is an abrupt transition to an

overlapping ribosomal module (pcorr51E�16). The latter

change (from module F to G in Fig. 3) includes a significant
drop in the number of selected conditions, together with an

increase in the number of selected genes. Notably, many cell

Fig. 3. Evolution of bicluster S9 [based on Spellman et al. (1998) seed

number 9] with increasing prior variance from left to right. Letters

indicate the selected modules at various resolutions. Modules

with the same gene content were grouped in one letter symbol.

Functionally enriched GO-BP categories for the selected modules range

from mitotic cell cycle (D: p¼ 1.46E�6, pcorr¼ 1.6E�3) over cell

division and cytokinesis (E–F: p¼ 1.99E�10, pcorr¼ 4.1E�7) to

ribosome biogenesis and assembly (G–H–I: pcorr51E�16) as the prior

variance increases.

Fig. 4. Profiles of bicluster F (cyan) and G (purple) of Figure 3,

illustrating the transition from a cell cycle bicluster into a ribosomal

bicluster. The profiles of the seed genes (S) are framed in yellow.

As expected, the seed genes can be traced back to the intersection (G2)

of the gene sets belonging to both biclusters. The bar on the bottom

indicates which conditions are from the Gasch (light gray) and

Spellman (dark gray) data sets. For clarity, all gene sets are stretched

to similar sizes (S: 2 genes, G1: 1 gene, G2: 24 genes, G3: 1550 genes;

G4: 4569 genes; C1: 100 conditions, C2: 90 conditions, C3: 21

conditions, C4: 39 conditions). Missing values in the expression array

are indicated in gray.
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cycle conditions (Spellman et al., 1998) are lost, in agreement
with the change in function.
The described transition is interesting because it reveals

overlapping bicluster patterns in the data. This is illustrated

more detail in Figure 4. The profiles of the seed genes are
displayed separately (S), but these genes can be traced back to
the intersection of the biclusters. It is important to note that

the profiles of the ribosome specific genes G3 do not line up with
the profiles of the cell cycle genes G1–G2 in the cell cycle-specific
condition set C1. Additionally, one can verify that gene-

condition combinations G4–C1, G4–C2 and G4–C3 in the
background do not correlate well with the profiles in the
biclusters. The remaining conditions (C4) do not belong to either

bicluster because the expression of the bicluster genes is not
sufficiently coherent or the (average) pattern of the seed genes
was too dissimilar from the expression values in G1–G2–G3.
Note that there is always a trade-off between following the seed

and allowing deviations from the seed pattern based on evidence
in the data. The more informative the priors are, the more our
method sticks to the (mean) seed profile.

5.3 Perspectives and future work

The proposed probabilistic framework is flexible and can be
extended to a data integration context, by using appropriate
statistical models for different data sources. This is a challenge

we are currently pursuing.
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