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Abstract— In this paper we propose a Model based Predictive
Controller (MPC) to be used for glycemia control in critically ill
patients. A model, that is particularly developed for describing
the glucose and the insulin dynamics of these patients, is
estimated for each individual patient and re-estimated as new
measurements are obtained. Both a quantitative and a qualita-
tive analysis are performed with respect to a real-life dataset
from 19 critically ill patients. In the first analysis the robustness
of the MPC is tested assuming a once per hour or a once per
four hours insulin adaptation frequency is imposed. The second
analysis is characterized by a comparison between the MPC
insulin infusion sequence and the insulin flows (determined by
the nurse) that were effectively administered to the patient. The
contribution of this paper is the development of an MPC for
glycemia control in the Intensive Care Unit (ICU). The penalty
index, which is a specific concept for quantitative analysis of
glycemia control in the ICU, is also proposed. The results of
the developed MPC are satisfactory both in terms of control
behavior (reference tracking and the suppression of unknown
disturbance factors) and clinical acceptability.

Keywords: Control applications, Predictive control,

Physical models, Parameter estimation, Kalman filters.

I. INTRODUCTION

Hyperglycemia (i.e., an increased glucose concentration

in the blood) and insulin resistance (i.e., the resistance of the

glucose utilizing tissues to insulin) are common in critically

ill patients (even if they have not had diabetes before)

and are associated with adverse outcomes. Tight glycemic

control (between 80 and 110 mg/dl = target range) by

applying intensive insulin therapy in patients admitted to the

medical and the surgical intensive care unit (ICU) results in

a spectacular reduction in mortality and morbidity [15], [18].

Currently, ICU patients are treated through a manual

and rigorous administration of insulin [17]. In the available

literature several physical models that describe the glucose

dynamics and the insulin kinetics of healthy and diabetic

subjects are used for glycemia control simulations in

‘mathematical’ diabetic (type I) patients (e.g., Hovorka et

al. [8], Parker et al. [11], [12], among others). Analogously,
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Fig. 1. Presentation of the (semi-)automated control system. The glycemia
signal and other (initially known and/or dynamical) input variables (i.e.,
the disturbance factors) are denoted as inputs to the control system. At
each time step (e.g., every hour), this system determines the insulin rate
to be intravenously administered in order to normalize glycemia. After
confirmation of a nurse, this advised insulin flow is delivered to the patient
by means of a pump (actuator). This figure is taken from [19].

we want to design a semi-automatated control system

for glycemia control in the ICU. This (future) system

is illustrated in Figure 1. It may reduce the workload

for medical staff and may also introduce the glycemia

normalization concept in hospitals that are currently not

making use of the manual intensive insulin protocol [17],

world-wide leading to a potential further reduction of

mortality and morbidity [19].

In this paper we present a model based predictive

controller (MPC) that can be used to normalize glycemia in

critically ill patients. Since patients who are admitted to the

ICU significantly differ from diabetic patients with regards

to clinical behavior [19] a model specifically developed for

describing the glucose and the insulin dynamics of ICU

patients is estimated and re-estimated as new measurements

are obtained. An evaluation strategy typical of glycemia

control in the ICU is presented. The paper is structured

as follows. The ICU dataset, the model, the design of the

MPC, and the evaluation strategy are described in Section

2 followed by a discussion about the simulation results and

the comparison between MPC and the nurse-driven control

behavior in Section 3.
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II. MATERIALS AND METHODS

In this section the clinical ICU dataset that is used for the

design and evaluation of the control system is described.

Next, the considered model structure is introduced, followed

by a description of the control strategy under study and the

evaluation procedure.

A. ICU Dataset

In our setting, the Glucoday system (A. Menarini Diag-

nostics, Florence, Italy), a portable instrument provided with

a micro-pump and a biosensor, coupled to a microdialysis

system, was used to measure the glucose concentration. After

informed consent from the next of kin, we implanted a

microfibre in 19 ventilated adult patients who were admitted

to the surgical ICU of the University Hospital K.U. Leuven

(Belgium) for a variety of reasons (see Table I). After

implantation of the fibre in the peri-umbilical subcutaneous

tissue, we recorded near-continuous subcutaneous glucose

levels during 48 hours. Every 3 minutes the mean value of

the last 3 minutes was exported. During the first 24 hours,

arterial blood glucose was measured concomitantly every

hour using the ABL machine (Radiometer, Copenhagen,

Denmark); during the next 24 hours, arterial blood glucose

was measured every 4 hours. A 2-point retrospective calibra-

tion was executed at 12 and 20 hours. The administered flows

of carbohydrate calories and insulin were also stored. There

must be stressed that this near-continuous glucose sensor

device was only used for this study. In current ICU practice,

the used protocol [17] requires blood glucose levels to be

measured every four hours (or more frequently, especially in

the initial phase or after complications). However, the use of

near-continuous glucose sensor devices will undoubtedly be

standard in the future [3]. In this paper the observed near-

continuous glucose test data are only used for estimating

the model (see II-B) and for comparing the proposed MPC

insulin infusion scheme with the control behavior of the

nurse (see II-C.2).

B. ICU Minimal Model (ICU-MM)

The presented model structure originates from the known

minimal model that is developed by Bergman et al. [1]. In

[20] the original minimal model was extended to the ICU

minimal model (ICU-MM) by taking into consideration some

features typical of ICU patients. The new model was also

validated on a real-life clinical ICU dataset. The ICU-MM

is presented as follows:

dG(t)

dt
= (P1 − X(t))G(t) − P1Gb +

FG

VG

, (1a)

dX(t)

dt
= P2X(t) + P3(I1(t) − Ib), (1b)

dI1(t)

dt
= α max(0, I2) − n(I1(t) − Ib) +

FI

VI

, (1c)

dI2(t)

dt
= β γ (G(t) − h) − nI2(t), (1d)

TABLE I

PATIENT POPULATION.

Variable Value

Male sex - no (%) 13 (68.4)
Age - yr (std − dev) 61.7 (13.8)

Body-mass index - kg/m2 (std − dev) 26.9 (4.7)
Reason for intensive care - no (%)

Cardiac surgery 8 (42.1)
Noncardiac indication 11 (57.9)

Neurologic disease, cerebral
trauma, or brain surgery

3 (15.8)

Abdominal surgery or peritonitis 3 (15.8)
Vascular surgery 2 (10.5)
Thoracic surgery, respiratory insuf-
ficiency, or both

2 (10.5)

Other 1 (5.3)

APACHE II score (1) (first 24 hr) (std − dev) 17.5 (5.6)
Mean glycemia - mg/dl (std − dev) 111 (26)

Minimal glycemia - mg/dl 50
Maximal glycemia - mg/dl 223

(1) The APACHE II score (Acute Physiology and Chronic Health
Evaluation) is a score that determines the severity of illness.

where G and I1 are the glucose and the insulin concentra-

tion in the blood plasma. The second insulin variable, I2, is a

purely mathematical manipulation such that I2 does not have

any direct clinical interpretation. The variable X(t) describes

the effect of insulin on net glucose disappearance and is

proportional to insulin in the remote compartment. Gb and

Ib are the basal value of plasma glucose and plasma insulin,

respectively. The model consists of two input variables: the

intravenously administered (exogenous) insulin flow (FI ) and

the parenteral carbohydrate calories flow (FG). The glucose

distribution space and the insulin distribution volume are

denoted as VG and VI , respectively.

The coefficient P1 represents the glucose effectiveness

(i.e., the fractional clearance of glucose) when insulin re-

mains at the basal level; P2 and P3 are the fractional rates

of net remote insulin disappearance and insulin dependent

increase, respectively. The endogenous insulin is represented

as the insulin flow that is released in proportion (by γ) to the

degree by which glycemia exceeds a glucose threshold level

h. The time constant for insulin disappearance is denoted as

n. In case glycemia does not surpass the glucose threshold

level h, the first part of 1c (that represents the endogenous

insulin production) equals 0. In order to keep the correct

units, an additional model coefficient, β = 1 min, was added.

Finally, the coefficient α amplifies the mathematical second

insulin variable I2.

Due to the large inter and intra patient variability that

exists in the ICU (e.g., patient specific initial and dynamical

known input variables, reaction on medical treatment, time-

varying insulin resistance, etc.), an individual and adaptive

model strategy is selected [19] leading to the following

modeling procedure.

First of all, the ICU-MM is used as a general template,

which is estimated for each individual patient (based on the

data belonging to the first 24 hours of each patient’s dataset

and leading to the ‘initial’ model for that patient) such that

the model parameters P1, P2, P3, n, α, and γ are patient-
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specific. This is done by minimizing the (squared) errors

between the simulated and observed glycemia trajectories

(by using non-linear least squares). The simulated glycemia

is obtained directly from the integration of the ICU-MM over

the corresponding time span. In this way, an optimization

problem is formulated in such a way that the optimal model

parameters are found to be those that give the best possible

simulation for the patient during the first 24 hours [20].

Secondly, the model is re-estimated at constant time

instants. These re-estimations take place every hour or

every four hours depending on the simulation setting (see

II-C). In the re-estimation procedure the same non-linear

estimation technique is applied. The re-estimation is based

on a new estimation set that consists of two dataset parts.

The first part is the first 24 hours data that were used to

estimate the initial model. The second part starts after these

24 hours and ends at the current time instant. As initial

values in these estimation processes the set of coefficients

characteristic of the obese and low glucose tolerance patient

group that is described in [1] is used. This patient group is

mostly comparable to ICU patients with regards to insulin

resistance. The units of all used variables and parameters

and their initial coefficient values are represented in Table II.

TABLE II

VARIABLES, PATIENT FEATURES, AND COEFFICIENT VALUES

APPLICABLE IN THE ICU MINIMAL MODEL.

Variables Units Variables Units

G mg/dl I2 µU/ml
X 1/min FI µU/min
I1 µU/ml FG mg/min

Patient
features

Units Value

BM kg Body mass (weight)
VG dl BM*1.6 [8]
VI ml BM*120 [8]
Gb mg/dl Basal glycemia
Ib µU/ml Basal insulin

Coefficients Units Value (1)

P1 1/min -1.31 10−2 (1)

P2 1/min -1.35 10−2 (1)

P3 ml/(min2µU) 2.90 10−6 (1)

h mg/dl 136 (1)

n 1/min 0.13 (1)

α 1/min 3.11
β min 1

γ
µU
ml

dl
mg

min2 5.36 10−3 (1)

(1) As initial value for the model estimation process, the mean
model coefficient values for the obese - low glucose tolerance
patient group (described in [1]), are used.

C. Model based Predictive Controller (MPC)

The use of Model based Predictive Control to normalize

glycemia in the ICU gives the advantage to consider the

effect of current and future control moves (i.e., the insulin

rates) on the future outputs (i.e, glycemia). It consists of

solving a fixed-size optimal control problem at each time

instant after which only the first control move (i.e., the

insulin rate for the next time instant) of the optimal input

sequence is applied to the system (i.e., the patient). In this

setting, only the delivered carbohydrate calories flow is a

known disturbance input of the system. We assume this rate

is known for the particular control horizon (i.e., 4 hours),

which is a clinically feasible condition. As a result, this

knowledge can be incorporated into the optimization problem

leading to pro-active behavior.

The MPC methodology explicitly takes imposed con-

straints into account, which classical control algorithms [2],

[6], [7] typically cannot. For medical reasons the maximum

insulin infusion rate (i.e., the control input) is 50 U/hr. In ad-

dition, the administered insulin flow is obviously constrained

to be positive.

The cost function that needs to be minimized in the

optimization problem is described as follows:

min
x,u

Jk(x,u) =

P∑

i=1

(x1,k+i − xref
1,k+i)

T Q(x1,k+i − xref
1,k+i) (2)

+

M−1∑

i=0

uT
k+iRuk+i,

where x and u denote vector sequences containing all states

respectively inputs within the horizon. Every state vector xk

represents the four states of the ICU-MM: G, X , I1, and I2.

The input vector uk represents the variables FG and FI . The

design parameters of the MPC are the weighting matrices Q

and R, the control horizon M , and the prediction horizon

P . The cost function comprises a trade-off between inputs

and deviations from the desired glycemia level. The discrete

time model used in the MPC is obtained implicitly via

integration of its continuous time counterpart over piecewise

constant inputs with a sampling time of Ts = 1 min.

For reasons of computational complexity time steps of 10

minutes are considered in the optimization problem. The

integrating method is a standard Matlabr ODE (Ordinary

Differential Equation) solver.

Numerically the optimization problem is solved in an

SQP fashion (Sequential Quadratic Program) by means of

local linearizations of the ICU-MM [10]. The gradients

and the Hessians are computed by applying the forward

Euler discretisation method. However, in the simulations

the nonlinear format of the ICU-MM (as presented in II-B)

is used. The initial value for insulin in each optimization

problem is defined as the rate that is administered in the

last time instant before the new optimization. A safety

procedure is introduced to restrict hypoglycemic events by

halving this initial value if a threshold glycemia value of 85

mg/dl is reached.

The assessment of the developed control system consists

of a quantitative and a qualitative analysis:

1) Assessment 1: Quantitative analysis: In this part the

performance of the MPC is evaluated by considering two sets

of simulations. In each set of simulations the prediction and
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the control horizon are both equal to 4 hours whereas the

insulin flow adaptation frequency depends on the considered

set of simulations.

The first set of simulations is characterized by an adap-

tation frequency of once per hour. This is further called the

‘one-hour-period’ simulations meaning that the most optimal

insulin flow for the next 4 hours (i.e., the control horizon)

is determined every hour, but that only the first insulin rate

(that corresponds to the flow of the next hour) is effectively

imposed to the ICU-MM. A new optimization problem is

defined at the next time instant (i.e., one hour later) leading

to an updated insulin infusion scheme for the following 4

hours. Again, only the first insulin flow is delivered to the

ICU-MM.

In the second set of simulations the insulin infusion

rate can only be adapted every 4 hours leading to solving

the optimization problem only every 4 hours. This set

of simulations is further defined as ‘four-hours-period’

simulations. The ICU-MM used in the simulations is

updated every hour to incorporate the changing physical

conditions of the patient.

The patient specific series of model coefficients that were

gathered in the estimation process (see II-B) are considered

in the simulations. The MPC simulations start after the

first 24 hours (which were used to estimate the initial set

of coefficients) and go on until the end of each patient’s

dataset (with a maximum simulation run of 24 hours). Some

additional and non-modeled disturbance factors are added in

this set of simulations in order to test the robustness of the

developed MPC:

1) Measurement error: The in-vitro error, which is as-

sociated with glucose sampling, varies around 4%

depending on the measurement device [13]. However,

this percentage is lifted to 15% (gaussian noise) as a

worst-case scenario for the in-vivo measurement error

[21].

2) Medication: The administration of medication FM

(e.g., glucocorticoids) can disturb blood glucose

levels. Although this disturbance factor is not included

in the ICU-MM, it is also introduced as an additional

disturbance factor in the simulations. After a first

simulation period of 6 hours a (fictitious) continuous

drug flow (leading to a glycemia increase of 2

mg/dl/min) is administered to the patient for 5 hours,

followed by a continuous drug flow (that results in a

glycemia increase of 1 mg/dl/min) for another 5 hours.

MPC is a practical method for the real-time application of

optimal control theory that introduces the notion of feedback

by using incoming measurements (i.e., the simulated glucose

course in which 15% gaussian noise is added). In the MPC

framework it is assumed that full state information is

available. In our case only noisy measurements of glycemia

are available and states need to be estimated. A nonlinear

state estimator - in casu an extended Kalman filter - is

employed for this purpose [9]. The tuning of the state

estimator is based on the auto-covariance of the addidative

measurement noise. As discussed, to make the case more

realistic an unknown input disturbance d̂k is added to the

ICU-MM. This disturbance could represent plant-model

mismatch or could originate from administered medication.

To account for these disturbances the extended Kalman

filter equations are augmented. In the MPC it is assumed

that the disturbances are constant over the future window:

d̂k+i = d̂k, i = 0 . . .M − 1. This approach proved to be

effective for dealing with slowly varying input disturbances

as encountered in this manuscript.

2) Assessment 2: Qualitative analysis: In this second

assessment the performance of the MPC is compared with the

nurse performance assuming the ICU-MM (that is estimated

for each patient individually and re-estimated every hour to

capture the patient’s changing conditions) fully represents the

particular patient (i.e., without any to the model unknown

disturbance factors).

Since we do not know the exact glycemia evolution if a

certain insulin infusion rate, other than the rate determined

by the nurse, would have been administered to the patient,

this analysis is purely qualitative. The near-continuous

glucose values, that were measured by the Glucoday system,

are submitted to the MPC and the optimization problem

is defined every hour by using the one-hour model re-

estimation sets. The adaptation frequency of the insulin rate

is also once per hour and the prediction horizon equals 4

hours. The flow of carbohydrate calories that was effectively

administered to the patient serves as (known) disturbance

input variable of the system.

D. New evaluation procedure designed for the ICU quanti-

tative analysis: Penalty index (PI)

In literature some assessment strategies for closed-loop

glucose control in (virtual) type 1 diabetic patients have

already been proposed [4], [5]. However, glycemia control in

the ICU and in diabetic patients differ significantly. Typical

of the glycemia normalization process in the ICU is the

higher frequency of (arterial) glucose measurements (e.g., at

1-4 hour intervals [17] whereas only up to 4 measurements

per day are supported for the treatment of type 1 diabetes).

As a consequence, possible hypoglycemic events can be

better controlled than with diabetic patients who are treated

with insulin, leading to a lower hypoglycemic alarm level (40

mg/dl) in the ICU than with diabetic patients [14]. The direct

relation between hyperglycemia and a higher mortality and

morbidity rate is another feature typical of the ICU [15], [18].

As a result, it is stringently required to avoid hyperglycemic

events. Therefore, the hyperglycemic alarm level is set to

200 mg/dl. Since (carbohydrate) calories are continuously

administered to patients admitted to the ICU (i.e., the so-

called ‘parenteral’ feeding process, present in particularly

the first phase of their stay at the ICU) there is no need to

distinct a grading system for outside-meal and postprandial
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conditions as may be useful in the assessment of glycemia

control in diabetic patients [5].

Table III gives an overview of the glycemic threshold

values that are characteristic of the ICU. Each glycemic range

is associated with a penalty. The glycemic target range in the

ICU is defined as 80-110 mg/dl (with a penalty value equal

to 0). Hypoglycemic and hyperglycemic events are amplified

in relation to the magnitude of their deviation from the target

range. The penalty index (PI) of the designed controller is

calculated, for each patient, as follows:

PI =

∑t

i=1
PIi

t
, (3)

where PIi denotes the penalty index that corresponds to the

glycemic range to which the simulated or clinically measured

glycemia value at time instant i belongs (see Table III).

The total simulation time or clinical validation time (for the

considered patient) is represented by t. It must be stressed

that PI can only be calculated per patient and not per patient

group unless the simulation or clinical validation time for

all patients is constant. Usually, the glycemia behavior is

unstable particularly during the first days after admission

to the ICU and gradually evolves to a more stable glucose

course the longer a patient stays at the ICU. As a result, the

calculated PI of a patient who stays at the ICU for a longer

time (with a typically larger amount of normoglycemic

values, consequently) is artificially lowered in comparison

with a patient who stays for only a short time (characterized

by the unstable glycemia behavior during these first days

at the ICU). Therefore, PI should always be considered per

patient and as a function of the length of stay at the ICU.

An appropriate comparison between PIs also requires an

equal glycemia sampling frequency (once per minute in these

simulations) for each patient.

TABLE III

THRESHOLD VALUES AND PENALTY VALUES FOR THE EVALUATION OF

GLYCEMIA CONTROL IN THE ICU.

Range
No

Glycemic range
(mg/dl)

Clinical description Penalty Reference

(1) 40 > G Hypoglycemic alarm 3 [14]
(2) 60 > G ≥ 40 Hypoglycemia 2 [14]
(3) 80 > G ≥ 60 Slight hypoglycemia 1 [14]
(4) 110 ≥ G ≥ 80 Normoglycemia 0 [15], [18]
(5) 150 ≥ G > 110 Slight hyperglycemia 1 [16]
(6) 200 ≥ G > 150 Hyperglycemia 2 [16]
(7) G > 200 Hyperglycemic alarm 3 [18]

III. RESULTS AND DISCUSSION

In this section the performance of the MPC is firstly

discussed for both the ‘one-hour-period’ and the ‘four-hours-

period’ simulations. In the next phase the performance of

the MPC is compared with the control behavior from a

qualitative point of view.

A. Assessment 1: Quantitative analysis

Figure 2 visualizes every patient specific PI as a function

of the simulation time. Although some large disturbance

factors, which are unknown to the MPC, are included in the

simulations the simulated glycemia values (to which a worst-

case measurement error is included) are mostly situated

between the normoglycemic borders (80-110 mg/dl) and the

glycemic ranges close to them. Indeed, all the computed

PIs (for both the ‘one-hour-period’ and the ‘four-hours-

period’ simulations) are between 0 and 1 indicating that

only a limited amount of time the normoglycemic borders

are passed. In Table IV the relative number of times per

glycemic range are presented. The relative time that is spent

in the normoglycemic range (i.e., range no. 4) reaches 60%

(when all patients are considered) in spite of the imposed

disturbance factors and the short simulation period, which

was restricted to 24 hours due to the characteristics of the

available dataset.
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Fig. 2. The patient specific PI as a function of the simulation time (which
is related to the length of stay at the ICU) for the one-hour-period and
the four-hours-period simulations, that are represented by stars and circles,
respectively. Each patient is denoted as a couple that consists of a star and
a circle that lie on the same vertical line (corresponding to that patient’s
length of stay).

TABLE IV

RELATIVE NUMBER OF TIMES PER GLYCEMIC RANGE FOR THE

‘ONE-HOUR-PERIOD’ AND THE ‘FOUR-HOURS-PERIOD’ SIMULATIONS

WHEN ALL PATIENTS ARE CONSIDERED.

Range
No

Glycemic range
(mg/dl)

One-hour-period
(%)

Four-hours-period
(%)

(1) 40 > G 0.1 0.2
(2) 60 > G ≥ 40 0.7 2.2
(3) 80 > G ≥ 60 9.7 15.9
(4) 110 ≥ G ≥ 80 58.6 55.8
(5) 150 ≥ G > 110 26.6 23.2
(6) 200 ≥ G > 150 4.2 2.6
(7) G > 200 0.1 0.1

For the majority of the patients, the MPC with a once-

per-hour insulin adaptation frequency outperforms the MPC

in which the insulin infusion rate can be modified only

once every four hours. This is also envisioned in Figure 2.

The patient specific PIs obtained with the one-hour-period

simulations are smaller than those that are generated with
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the corresponding four-hours-period simulations for 60% of

the patients. In Figure 3 the simulated glucose course of

patient no. 11 that is generated with the one-hour-period and

four-hours-period simulations and the delivered known and

unknown input flows are illustrated.

Although the MPC is able to suppress the unknown

medication disturbance factor in both approaches, the insulin

flow is increased faster (at t = 420 min) when a once-

per-hour insulin adaptation frequency is applied so that

glycemia relatively fast re-enters the normoglycemic range in

spite of the existing unknown disturbance factor. This prove

of robustness is an important feature of the controller for

possible use in a real-life ICU setting. It indicates its skill

to take into consideration unknown disturbance factors that

are abundantly present in the ICU by exploiting the extended

Kalman filter.

Due to the ability to frequently adapt the insulin infu-

sion rate with the one-hour-period MPC, glycemia values

evolving to the hypoglycemic range can be better avoided.

This is visualized in Figure 3 when the unknown medication

disturbance factor is halved (at t = 660 min) and dropped

(at t = 960 min). The simulated glycemia - in case of an

adaptation frequency of once per hour - stays only for a

limited amount of time in the slight hypoglycemic range.

The observed (simulated) glycemic values, the future known

disturbance factor (i.e., the administered carbohydrate calo-

ries) and the use of the extended Kalman filter (to estimate

unknown disturbances) provide the appropriate information

to the MPC for optimizing the insulin infusion sequence. The

performance differences between the one- and four-hour(s)-

period MPC are further mentioned in Table IV.

It is important to note that the (to the MPC unknown)

disturbance factor is introduced at t = 360 min whereas

the one-hour-period MPC and the four-hours-period MPC

are only able to change the insulin rate after observing the

disturbed glucose course (i.e., at t = 420 min and t = 480
min, respectively). If, however, the unknown disturbance

factor would have been introduced earlier (e..g., t = 240
min), then the one-hour-period MPC would have changed

the insulin flow again one hour later (t = 300 min), but the

four-hour-period MPC would still have to keep the current

insulin flow constant till t = 480 min since the insulin

flow adaptation frequency is limited to once per four hours.

This indicates that the controller performance difference

between the one- and four-hours-period MPC would increase

and explains the relatively small performance differences

between the two approaches in the simulation setting that

is presented in this manuscript (see Table IV).

In general, we can conclude that the performance of a

controller will increase if the insulin infusion adaptation

frequency is higher. Possible disturbed glucose courses can

be captured more quickly so that, by properly modifying

the insulin infusion rate, the reference glycemic value can

be tracked. Still, it must be stressed that the PIs, that are

obtained with the one-hour-period MPC simulations, from

7 patients are unexpectedly higher than the corresponding

PIs obtained with the four-hours-prediction MPC. Five of

those patients belong to the cardiac surgery group. The latter

patient group is typically characterized with shorter time

periods at the ICU than patient groups with other pathologies.

Future research is needed for differentiating the controller

and/or the model parameters with respect to the reason for

admission to the ICU (or other clinical features).
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Fig. 3. The evolution of the simulated glycemia G (top panel) for the one-
hour-period (solid line) and the four-hours-period (dotted line) simulations
of patient no. 11. The flow of the carbohydrate calories FG (second panel)
is the known disturbance factor whereas the insulin rate FI (third panel)
is the insulin sequence that is proposed by the one-hour-period MPC (solid
line) and the four-hours-period MPC (dotted line). A fictitious medication
disturbance factor FM (that is unknown to the MPC) is visualized in the
bottom panel.

B. Assessment 2: Qualitative analysis

Figure 4 represents the real-life glucose course, measured

with the Glucoday system (A. Menarini Diagnostics), of

patient no. 4. These real glycemia values are delivered to

the MPC in order to introduce the notion of feedback.

However, we want to stress the infeasibility to quantitatively

compare the insulin infusion rates proposed by the MPC

with the flows that were delivered to the patient in real-

life. Indeed, the evolution of the real glycemia when an

insulin rate (determined by the MPC) other than the nurse-

driven insulin flow would have been administrated cannot

be known. Therefore, these second simulations are restricted

to a qualitative analysis. It must also be noted that the

nurses made use of the blood glucose values that were

measured with the ABL machine (for determining the insulin

flows) and not the Glucoday system since it was required

to retrospectively calibrate the near-continuous glucose data

(which were used for this paper) that were gathered from the

latter.

The first three hours the MPC proposes to infuse a larger

insulin rate than was administered in real-life. The increasing

rate that is presented during these first hours is explained by

the slight hyperglycemic event (top panel) and the fact that

this insulin rise seems to be not enough to bring glycemia

back to the reference signal (95 mg/dl). It can however
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be assumed that glycemia would have been evolved to the

reference signal if the initial higher insulin flow would have

been delivered to the patient instead of the nurse-driven

insulin flow.

The decrease in administered carbohydrate calories at time

t = 240 min is known by the MPC in advance such that

the proposed insulin flow is decreased as well. In reality,

however, the nurse did not take into account this decreased

calories flow. Because of the slight hyperglycemic event

in the initial phase and the decreased food rate (while

maintaining a constant insulin flow) glycemia evolved to the

normoglycemic range.

At time t = 480 min the nurse increased the insulin flow

leading to a slight hypoglycemic event two hours later. Since

the cut-off glycemia value (85 mg/dl) is reached the initial

insulin value is halved (in the MPC optimization problem)

leading to a significant reduction of the proposed insulin flow

that can be observed at time t = 540 min. Next, the nurse

decreased the insulin rate (at time t = 720 min) leading

to increased glycemia values. It is clearly illustrated that the

MPC proposes to gradually increase the insulin flow to cover

this glucose raising effect. The fluctuating glycemic values

visualized in the last phase and the designed safety procedure

cause the presented (fluctuating) insulin infusion sequence

that corresponds to these last hours.
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Fig. 4. The evolution of the real glycemia G (top panel), measured
with the Glucoday system (A. Menarini Diagnostics), of patient no. 4 after
administration of carbohydrate calories FG (middle panel) and insulin FI

(bottom panel, solid line). The insulin infusion flow that is proposed by the
MPC is presented in the bottom panel (dashed line) and can be qualitatively
explained.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we present an MPC to be used for glycemia

control in critically ill patients. A quantitative and a qualita-

tive analysis approach are considered with respect to a real-

life clinical ICU dataset. The computed patient specific PIs

are all between 0 and 1 for both the one- and four-hour(s)-

period simulations indicating that the simulated glycemic

values lie in the normoglycemic range for a large part.

The robustness of both MPC approaches is improved by

estimating states and unknown disturbance factors with an

extended Kalman filter. In general, the MPC performance

increases if the insulin infusion rate can be adapted every

hour instead of every four hours. However, for the current

simulation setting especially the cardiac surgery patients give

the opposite result so that differentiation of the controller

and/or the model parameters with respect to the reason for

admission to the ICU may be necessary.

From a qualitative point of view, the developed MPC

proposes clinically feasible insulin infusion sequences. When

comparing the MPC insulin schemes to the nurse-driven

insulin rates that were effectively administered to the pa-

tient, some hyperglycemic and hypoglycemic events (that are

present in the current nurse-driven dataset) could have been

avoided.

B. Future Works

Future work is conducted to the implementation of a

moving horizon estimator (MHE) for the estimation of pa-

rameters, states and unknown input disturbances. This would

allow to explicitly use the nonlinear dynamics of the model

and to include constraints on states and disturbances thus

leading to a further increase in performance of the closed-

loop control scheme. Further research is also required to

relate clinical features (e.g., the reason for admission to the

ICU) to the controller and/or model parameters. Finally, the

currently developed control system will soon be tested and

validated in a real-life ICU setting on new patients.
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