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Abstract: In this paper we present a nonlinear model predictive control (NMPC) strategy that
can be used to tackle nonlinear control problems with changing model parameters, unknown
disturbance factors and specifications on the rates of change of the inputs. The closed-loop
performance of the proposed NMPC strategy is demonstrated by applying it to the problem
of blood glucose normalization in critically ill patients. A nonlinear patient model, that is
particularly developed for describing the glucose and the insulin dynamics of these patients,
is used for online state and disturbance estimation and control under a realistic disturbance
realization. The results are satisfactory both in terms of control behavior (set point tracking
and the suppression of unknown disturbance factors) and clinical acceptability.
Keywords: control applications, model predictive control, output feedback control, physical
models, parameter and state estimation.

1. INTRODUCTION

Hyperglycemia (i.e., an increased glucose concentration
in the blood) and insulin resistance (i.e., the resistance
of the glucose utilizing tissues to insulin) are common in
critically ill patients (even if they have not had diabetes
before) and are associated with adverse outcomes. Tight
glycemic control (between 80 and 110 mg/dl = target
range) by applying intensive insulin therapy in patients
admitted to the medical and the surgical intensive care
unit (ICU) results in a spectacular reduction in mortality
and morbidity (Van den Berghe et al. (2006, 2001)).

Currently, ICU patients are treated through a manual and
rigorous administration of insulin (Van den Berghe et al.
(2003)). We want to design a semi-automated control sys-
tem for glycemia control in the ICU in order to reduce the
workload for the medical staff. Moreover, this computer-
aided control system may introduce the glycemia normal-
ization concept in hospitals that are currently not making
use of the manual intensive insulin protocol (Van den
Berghe et al. (2003)), world-wide leading to a potential
further reduction of mortality and morbidity (Van Herpe
et al. (2006)).

Model predictive control (MPC) has emerged as a powerful
and widely used control technique (particularly in the pro-

cess industry) over the last two decades (Qin and Badgwell
(1996)). MPC controllers are designed on the basis of a
dynamical model of the system that has to be controlled
and apply mathematical optimization techniques in order
to obtain the optimal inputs to be applied to the system.
Recently there has been growing interest in predictive
control of nonlinear systems (Qin and Badgwell (2000))
and the properties of a variety of NMPC schemes have
been investigated theoretically, see for example (Allgöwer
et al. (1999); Nicolao et al. (2000)) for a review.

For the estimation of the current system state, unknown
disturbances and parameters we propose a moving horizon
estimator (MHE) (Diehl et al. (2006); Muske and Rawlings
(1995); Rao et al. (2003)). Moving horizon estimation can
be regarded as the dual of MPC: also in MHE a dynamical
model of the system is employed and optimization over a
finite window of data is performed (albeit a window in
the past whereas MPC employs a future window). The
numerical methods for the MHE scheme presented in this
paper are based on the direct multiple shooting method
for parameter estimation (Bock and Plitt (1984)).

In previous work (Van Herpe et al. (2007b)) a model pre-
dictive control strategy was presented for glycemia control
in the ICU and a qualitative and quantitative assessment
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was given for the proposed control strategy demonstrating
its potential. In the work presented in this paper we have
improved the numerical efficiency of the MPC implemen-
tation using a multiple shooting method (Bock (1981)) as
opposed to the single shooting method previously used.
Next, a moving horizon estimator for state and parame-
ter estimation is presented capable of handling unknown
disturbances, also using a multiple shooting method. Fi-
nally, target calculation is proposed to provide integral
control. Thus, the focus of this paper is on the closed-
loop control behavior using the nonlinear ICU Minimal
Model (Van Herpe et al. (2007a)). The presented scheme
is generally applicable to nonlinear systems described by
first-principles models and with changing model parame-
ters, unknown disturbance factors, and, specifications on
the rates of change of the inputs.

This paper is structured as follows. In Section 2 the control
system is presented and its components - model predictive
control, moving horizon estimation and target calculation
- are described in detail. Then, in section 3 the proposed
control strategy is applied to the normalization of blood
glucose in the ICU and the closed-loop performance prop-
erties are discussed. Finally, in section 4 conclusions are
given and future work is outlined.

2. CLOSED-LOOP NONLINEAR CONTROL SYSTEM

2.1 Global set-up

The complete closed loop control system is depicted in
Figure 1. Its components will be described in detail in
this section. Throughout this paper it is assumed that the
system model is given by a system of nonlinear index-one
ordinary differential equations of the form

ẋ(t) = f(x(t), u(t), w(t), d, p), (1)

where x are the differential states, u the inputs, w the sys-
tem noise accounting for modeling errors, d the unknown
disturbances and p the set of free parameters. We will also
allow bounds on the variables

xmin ≤ x(t) ≤ xmax,

umin ≤ u(t) ≤ umax,

wmin ≤ w(t) ≤ wmax,

dmin ≤ d ≤ dmax,

pmin ≤ p ≤ pmax.

The measurement data are generated as

yk = h(x(tk)) + vk, (2)

where vk represents measurement noise (sensor noise) and
the subscript k indicates the fact that measurements are
obtained at discrete time instants.

Thus, the disturbances that enter the closed loop system
can be summarized as

(1) process noise w, which is usually assumed to be
zero-mean random noise but in the MHE-setting can
also be regarded purely deterministic as bounded
optimization variables with the only assumption that
zero is contained in the feasible set,

(2) unknown model disturbance d which is assumed to
be slowly varying. In the presented application the

unknown disturbance represents the effect of medica-
tion, to which we assigned a typical realization and
which we assumed to have direct influence on the
glycemic level,

(3) sensor noise v which we will assume to be normally
distributed with mean zero and known covariance
matrix,

(4) unknown initial states, disturbance and parameters.
We will assume that expected values for the states,
disturbance and parameters (x̄0, d̄0 and p̄0 resp.)
are given as well as the corresponding covariance P0.
After a transient, the effect of the initial conditions
usually diminishes and the estimates converge to the
true values provided that the measurements contain
sufficient information.

Fig. 1. Illustration of the closed loop control scheme.

2.2 Moving horizon estimation

The idea of moving horizon estimation is to estimate
the state using a moving and fixed-size window of data.
When a new measurement becomes available, the oldest
measurement is discarded and the new measurement is
added. The philosophy is to penalize deviations between
measurement data and predicted outputs. In addition - for
theoretical reasons - a regularization term on the initial
state estimate is added to the objective function. Two
important characteristics distinguish MHE from other es-
timation strategies, such as the extended Kalman filter
(EKF). First of all, prior information in the form of con-
straints on the states, disturbances and parameters can
be included. Second, since MHE is optimization based
it is able to handle explicitly nonlinear system dynamics
through the use of approximative nonlinear optimization
algorithms. In (Haseltine and Rawlings (2005)) MHE was
shown to possess superior estimation properties compared
to EKF.

The estimation problem to be solved at time t0 is:
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min
x(·),w(·),d,p

∥

∥

∥

∥

∥

∥

x(t0 − N) − x̄
d − d̄
p − p̄

∥

∥

∥

∥

∥

∥

2

P−1

+

∫ t0

t0−T

‖w(t)‖2
Q

−1
e

dt

+

t0
∑

k=t0−T

‖yk − h(x(tk))‖2
R

−1
e

(3a)

s.t.

ẋ(t) = f(x(t), u(t), w(t), d, p), (3b)

xmin ≤ x(t) ≤ xmax, (3c)

wmin ≤ w(t) ≤ wmax, t ∈ [t0 − T, t0] (3d)

dmin ≤ d ≤ dmax, (3e)

pmin ≤ p ≤ pmax. (3f)

The weighting matrices Qe and Re are the covariance
matrices for the process noise and measurement noise
respectively. The matrix P and vectors x̄, d̄ and p̄ express
a-priori information and are determined from one problem
to the next by a discrete time EKF update.

2.3 Target calculation

The goal of target calculation is to find a steady state of the
closed loop system and a corresponding input that yields
the output at the set point. This is an inverse problem
that can be formulated as an optimization problem. Due
to constraints or nonlinearities it might occur that no
steady-state targets can be found corresponding to the set
point. In that case we require the output target to be the
closest output to the set point for which a steady state
exists. If there are multiple steady states satisfying the
output set point, the one that is closest to the previous
input target is selected. At each time instant a new target
must be calculated to account for changing parameters and
integrated disturbances.

We formulate the target calculation as the following opti-
mization problem (see Tenny (2002)):

min
xt(t0),ut(t0),η

1

2
ηT Q̄η + q̄T η

+
1

2
(ut(t0) − ut(t−1))

T R̄(ut(t0) − ut(t−1))

(4a)

subject to

xt(t0) = f(xt(t0), u
t(t0), d̂, p̂), (4b)

h(xt(t0)) − η ≤ yset ≤ h(xt(t0)) + η, (4c)

umin ≤ ut(t0) ≤ umax, (4d)

xmin ≤ xt(t0) ≤ xmax, (4e)

η ≥ 0. (4f)

Here ut(t−1) is the input target calculated in the previous
time step. This is an exact penalty method (Fletcher
(1987); Rao and Rawlings (1999)) which relaxes the prob-
lem in a l1/l22 sense if the set point is infeasible by in-
troducing the slack variable η. In general, q̄ is chosen to
be relatively large and strictly positive and both Q̄ and
R̄ are positive definite. By shifting the state and input
targets, the target calculation accounts for modeling error
and adjusts the model to remove offset from the closed-
loop system.

2.4 Model predictive control

Given the current state, disturbance and parameter esti-

mates x̂(t0), d̂, p̂ of the system at time t0, NMPC predicts
the future dynamic behavior of the system over a horizon
T and determines the future inputs such that an open-
loop performance objective function is optimized. Due
to disturbances and/or model-plant mismatch the true
system behavior is different from the predicted behavior.
Therefore, in order to incorporate feedback, only the first
of this optimal input sequence is applied to the system.
When a new measurement and new estimates are obtained
the horizon is shifted and the previous steps are repeated.

The open-loop optimization problem we address is:

min
x(·),u(·)

∫ t0+T

t0

‖x̃(t)‖2
Q + ‖ũ(t)‖2

R dt (5a)

subject to x(t0) = x̂(t0), (5b)

ẋ(t) = f(x(t), u(t), d̂, p̂), (5c)

c(x(t), u(t), d̂, p̂) ≥ 0, t ∈ [t0, t0 + T ]. (5d)

Here x̃(t) = x(t) − xt and ũ(t) = u(t) − ut with xt and
ut the target state and input determined by the preceding
target calculation. This approach of penalizing deviations
from target states and inputs provides integral (offset free)
control. In order to guarantee theoretical stability of the
MPC controller, one should add to the above formulation
either a terminal constraint, or a terminal cost, or both.
We implemented a terminal constraint but it was found
that in order to achieve guaranteed theoretical stability
the control performance was deteriorated. Other stability
measures are currently being investigated. For the stability
theory of NMPC we refer to (Magni and Scattolini (2004)).

Move blocking A rule of thumb in control theory (and
practice) states that the output should be sampled fast
enough to capture all the important system dynamics.
Often, however, the inputs are allowed to change only
at a lower rate. In such cases integration time intervals
for the state-space model are taken as short as necessary
while the inputs are blocked during several time intervals.
A strategy for move blocking of the inputs was added to
the MPC formulation. For the glycemia control problem,
integration time intervals of 5 min and a future horizon of
Nmpc = 240 min are used, while the insulin flow input is
allowed to change only every 60 min. This specification is
imposed by the medical staff for clinical validation reasons.

3. APPLICATION TO BLOOD GLUCOSE CONTROL
IN THE CRITICALLY ILL

3.1 ICU Minimal Model (ICU-MM)

The presented model structure originates from the known
minimal model that is developed by (Bergman et al.
(1981)). In (Van Herpe et al. (2007a)) the original minimal
model was extended to the ICU minimal model (ICU-MM)
by taking into consideration some features typical of ICU
patients. The new model was also validated on a real-life
clinical ICU data set. The ICU-MM is presented as follows:
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dG(t)

dt
= (P1 − X(t))G(t) − P1Gb +

FG

VG

+ FM , (6a)

dX(t)

dt
= P2X(t) + P3(I1(t) − Ib), (6b)

dI1(t)

dt
= α max(0, I2) − n(I1(t) − Ib) +

FI

VI

, (6c)

dI2(t)

dt
= β γ (G(t) − h) − nI2(t), (6d)

where G and I1 are the glucose and the insulin concentra-
tion in the blood plasma. The second insulin variable, I2,
is a purely mathematical manipulation such that I2 does
not have any direct clinical interpretation. The variable X
describes the effect of insulin on net glucose disappearance
and is proportional to insulin in the remote compartment.
Gb and Ib are the basal value of plasma glucose and
plasma insulin, respectively. The model consists of two
input variables: the intravenously administered (exoge-
nous) insulin flow (FI) and the parenteral carbohydrate
calories flow (FG). The glucose distribution space and the
insulin distribution volume are denoted as VG and VI ,
respectively. There is an unknown disturbance input that
we ascribe to administered medication (FM ) and which
directly influences the glucose concentration. This to the
MPC unknown input could also account for other unknown
disturbance factors.

The coefficient P1 represents the glucose effectiveness
(i.e., the fractional clearance of glucose) when insulin
remains at the basal level; P2 and P3 are the fractional
rates of net remote insulin disappearance and insulin
dependent increase, respectively. The endogenous insulin
is represented as the insulin flow that is released in
proportion (by γ) to the degree by which glycemia exceeds
a glucose threshold level h. The time constant for insulin
disappearance is denoted as n. In case glycemia does not
surpass the glucose threshold level h, the first part of 6c
(that represents the endogenous insulin production) equals
0. In order to keep the correct units, an additional model
coefficient, β = 1 min, was added. Finally, the coefficient
α amplifies the mathematical second insulin variable I2.

The units of all used variables and parameters and their
values are represented in Table 1. These values are taken
from an estimation process applied to a real-life data set of
19 critically ill patients (Van Herpe et al. (2007a)). The pa-
rameter and state values after the first 24 hour estimation
for an arbitrary patient were chosen. Proceeding in this
way the control system could be assessed using a realistic
parameter realization.

Smoothing discontinuities The nonlinear model (6) con-
tains a discontinuity in the form of a max term. In order
to avoid problems with differentiability the max term
was smoothed using exponential smoothing max(0, I2) ∼
s ln(1 + exp( I2

s
)) with weighting s = 0.1.

3.2 Results and discussion

Closed-loop control performance In Figure 2 the simu-
lated glucose course with added measurement noise and
the administered known and unknown input flows are
illustrated. Starting from a high initial blood glucose
concentration, the closed-loop control system is able to

Table 1. Units and initial values of the state
variables, units of the input variables and units
and values of the parameters applicable in the
ICU minimal model. These values are taken
from an estimation process applied to a real-
life data set of 19 critically ill patients (see

Van Herpe et al. (2007a)).

State vari-
ables

Units Initial value

G mg/dl 207
I1 µU/ml 58.0
X 1/min 0.0005
I2 µU/ml 1.49

Input vari-
ables

Units

FI µU/min
FG mg/min
FM mg/dl/min

Parameters Units Value

VG dl 116.8
VI ml 8760
Gb mg/dl 95
Ib µU/ml 10.7
P1 1/min -1.71 10−2

P2 1/min -2.24 10−2

P3 ml/(min2µU) 2.5 10−3

h mg/dl 107.4
n 1/min 0.2623
α 1/min 0.35
β min 1

γ

µU

ml
dl
mg

min2 1.4001 10−4

Fig. 2. The top panel shows the evolution of the simulated
glycemia G with added sensor noise (solid line) and
the target range of 80−110 mg/dl (dashed lines). The
flow of the carbohydrate calories FG (second panel)
is the known disturbance factor whereas the insulin
rate FI (third panel) is the insulin sequence that is
proposed by MPC controller. A fictitious medication
disturbance factor FM (that is unknown to the MPC)
is visualized in the bottom panel.
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regulate to the normoglycemic range (80 − 110 mg/dl) in
a considerably short time span by administering a still
clinically acceptable insulin flow. The MPC controller was
precisely tuned to obtain both good control performance
and clinical acceptability. Furthermore, the control system
is able to suppress the unknown disturbance input. When
the rather large disturbance (i.e., medication) enters, the
glycemic level is raised into the modest hyperglycemic
range, after which the insulin flow is adjusted and the
glycemic level is steered to the normoglycemic range again.
Further on, a slight hypoglycemic event occurs when the
large disturbance suddenly drops. This result shows the
potential of the proposed control system to normalize the
blood glucose exploiting the nonlinear model dynamics
and taking into consideration unknown disturbance factors
that are omnipresent in the ICU.

Moving horizon estimation In Figure 3 the courses of the
four states and their estimates are depicted as well as the
unknown disturbance and its estimate. The measurements
are corrupted with zero-mean random noise with standard
deviation σ = 7.5 mg/dl. For the estimator a time horizon
of Nmhe = 5 min was employed. The true initial state of
the system was x0 = [207 58.0 0.0005 1.49] (see Table 1)
while the estimator was initialized with x̄0 = [180 20 0 0].
Despite this rather large initial error a fast convergence
to the true state values could be obtained leading to a
minimal impact of initial error on the closed loop perfor-
mance. Furthermore, also the unknown disturbance could
be perceived with reasonable accuracy from the output
measurements.

Fig. 3. The four top panels show the evolution of the
true states (solid lin) and its estimates (dashed line).
The bottom panel shows the true (solid line) and
estimated (dashed line) unknown disturbance input.

Target calculation Figure 4 shows the target input (in-
sulin flow) and the corresponding optimal input computed
by the MPC controller. The target input is influenced
by the estimated unknown disturbance input and (less
noticeable) by the changing carbohydrate calories flow.
The MPC computed input is expected to track the big
changes of the target but not the fast fluctuations, which
is reasonably well achieved as can be seen from the figure.
The effect of move blocking can be seen when a change

in the influencing parameters occurs, for example at time
instants t = 360 min and t = 665 min a sudden change
in the unknown disturbance occurs, which is detected
(estimated) shortly thereafter. Due to move blocking of
the input the controller is not able to instantly react to
these changes, leading for instance to a short hypoglycemic
event around time t = 750 min (see Figure 2).

Fig. 4. Evolution of the computed target input (dashed
line) and the optimal input proposed by the MPC
controller (solid line).

4. CONCLUSIONS AND FUTURE WORKS

In this paper we present a nonlinear MPC strategy that
can be used to tackle nonlinear control problems with
changing model parameters, unknown disturbance factors,
and, specifications on the rates of change of the inputs.
Using a moving horizon estimator, accurate estimates
of the true states that generated the output, can be
obtained from noisy output measurements. The MHE is
able to recover quickly from a wrong initial guess of the
state vector. A target calculation is proposed to remove
the effect of disturbances and changing parameters. The
ability of the closed-loop control system to regulate to
the normoglycemic range in a short time span and to
suppress disturbances is shown for a realistic disturbance
realization. The proposed control system is potentially
suitable to control glycemia in the ICU and will be soon
tested in real-life.

Future research can proceed along several avenues. First,
online joint parameter, state and unknown disturbance
estimation will be explored in detail and its predictive ca-
pacity will be analyzed. Second, the objective of the model
predictive controller can be reformulated to explicitly ac-
count for the different glycemic ranges. Finally, exponen-
tial smoothing of the discontinuity that is presently used,
might be avoided by using a recently proposed method for
detecting and handling implicit switches or discontinuities
(Kirches (2006)).
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