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Abstract: In this paper the prediction performance of two models that were particularly
developed for predicting the blood glucose signal in critically ill patients, and a third (rather
‘naive’) model were compared. The imposed real-life conditions were challenging as the
prediction processes started at time step 1 (comparable to the admission of a patient at the
intensive care unit) and the prediction horizon was set at 4 hours (although accurate prediction
of the blood glucose signal in the initial phase after admission is difficult due to lack of
patient-specific data). The results of one of the models was satisfactory in terms of forecasting
ability and showed its potential to be validated for use in a predictive control system in real-life.
Copyright c©2009 IFAC
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1. INTRODUCTION

Critically ill patients, typically admitted to the inten-
sive care unit (ICU), show hyperglycaemia and insulin
resistance associated with adverse outcomes. It has been
demonstrated that strict blood glucose control results in
an important reduction in mortality and morbidity with
adult and paediatric intensive care unit patients (Van den
Berghe et al. [2001], Van den Berghe et al. [2006], Vlas-
selaers et al. [2009]). Current therapy requires a manual
and rigorous administration of insulin (‘intensive insulin
therapy’) by following a set of guidelines aiming at blood
glucose levels between 80 and 110 mg/dl for adults, be-
tween 50 and 80 mg/dl for infants and between 70 and
100 mg/dl for children.

Although the clinical advantages of intensive insulin ther-
apy are abundantly present, its implementation in inten-
sive care units world-wide is not straightforward (NICE-
SUGAR Study Investigators [2009], Brunkhorst et al.
[2008], Devos et al. [2007]). Moreover, the workload for
the medical personnel increases compared to conventional
insulin therapies. Therefore, we want to design a semi-
automated predictive control system for normalizing the
blood glucose in the critically ill. Such a control system
can potentially reduce the workload and lead to the im-
plementation of tight glycemic control (and the related
reduction of mortality and morbidity) world-wide. The
control system that we are developing comprises a patient

model and a predictive controller. The used patient model
(‘model 1’, or more specifically the Intensive Care Unit -
Minimal Model, Van Herpe et al. [2007]) is typically used
for predicting the blood glucose signal in the critically ill
whereas the controller (more specifically a Model based
Predictive Controller) optimizes the insulin flow that is
administered to the patient (Haverbeke et al. [2008]). The
potential of a similar predictive control strategy (but with
a different model: ‘model 2’) has recently been shown in
clinical practice (Cordingley et al. [2009], Hovorka et al.
[2007]).

The prediction performances of the above mentioned two
models and a hypothetical ‘naive’ model (‘model 3’) are
compared in this paper using a real-life clinical ICU data
set where the blood glucose was hourly measured. The
ICU data set, the structure of the different models, and
the design of the study are described in Section 2. Finally,
the results are discussed in Section 3.

2. MATERIALS AND METHODS

In this section the clinical ICU data set is described and
the model structures under study are briefly introduced.
Next, the used blood glucose prediction procedure is
explained in detail.
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2.1 ICU Data set

The data consist of 15 adult patients who were treated
with the intensive insulin therapy (80-110 mg/dl as target
blood glucose range). During the first two days of their stay
in the ICU, whole-blood glucose in undiluted arterial blood
was measured every hour using the ABL700 Radiometer
Medical (Denmark) glucose analyser. After these two in-
tensive sampling days, blood glucose was monitored with a
lower sampling frequency (following the general guidelines
from the Leuven tight glycemic control protocol). These
additional data, however, were not considered in this data
set, for the purpose of this study. Therefore, the length
of the data set of each patient was limited to the first 50
hours. Table 1 gives an overview of the study population
with some important clinical characteristics.

Table 1. Patient population.

Variable Value

Number of patients - no 15
Male sex - no (%) 9 (65.0)
Age - yr (std-dev) 70.0 (12.6)

BMI (1) - kg/m2 (std-dev) 25.6 (5.8)
Reason for intensive care - no (%)

Cardiac surgery 10 (66.7)
Complicated abdominal surgery or peritonitis 5 (33.3)

APACHE II score (2) (first 24 hr) (std-dev) 18 (4)
Mean blood glucose - mg/dl (std-dev) 101 (23)

Minimal blood glucose - mg/dl 37
Maximal blood glucose - mg/dl 214

Mean duration of stay in ICU - hr (std-dev) 47 (4)
Minimal duration of stay in ICU - hr 36
Maximal duration of stay in ICU - hr 50

(1) The body mass index (BMI) is the weight in kilograms divided
by the square of the height in meters.
(2) The APACHE II score (Acute Physiology and Chronic Health
Evaluation) is a score that determines the severity of illness. Each
day this score is calculated based on parameters, such as body
temperature, arterial pH, breathing frequency, etc.

2.2 Intensive Care Unit - Minimal Model (ICU-MM):
‘Model 1’

The first model structure originates from the known
minimal model developed by Bergman and colleagues
(Bergman et al. [1981]). In Van Herpe et al. [2007], the
original minimal model was extended to the ICU-MM
aiming to predict the blood glucose in critically ill patients.
The ICU-MM was already validated on a real-life clinical
ICU data set in which the subcutaneous glucose concen-
trations were near-continuously (i.e., every three minutes)
measured. Such monitoring devices, however, are not yet
prepared to measure glycemia sufficiently accurate and
reliable in this type of patients. Therefore, the presented
model structure and the proposed estimation technique are
validated here on a new (more realistic) real-life clinical
ICU data set in which glycemia was hourly measured (see
above). A successful validation of the patient model on
this data set is the last step before the full control sys-
tem (i.e., patient model and predictive controller) can be
tested under real-life circumstances (hourly blood glucose
measurements).

The structure of the ICU-MM (with 4 state variables) is
presented as follows:

dG(t)

dt
= (P1 − X(t))G(t) − P1Gb +

FG

VG

, (1a)

dX(t)

dt
= P2X(t) + P3(I1(t) − Ib), (1b)

dI1(t)

dt
= α max(0, I2) − n(I1(t) − Ib) +

FI

VI

, (1c)

dI2(t)

dt
= β γ (G(t) − h) − nI2(t), (1d)

where G and I1 denote the glucose and the insulin concen-
tration in the blood plasma. The second insulin variable,
I2, approaches the fraction of insulin concentration de-
rived from the endogenous insulin secretion. The variable
X describes the effect of insulin on net glucose disap-
pearance and is proportional to insulin in the so-called
“remote” compartment. The symbols Gb and Ib represent
the basal value of plasma glucose and plasma insulin,
respectively. The model consists of two input variables:
the intravenously administered (exogenous) insulin flow
(FI) and the parenteral carbohydrate calories flow (FG).
The glucose distribution space and the insulin distribution
volume are denoted as VG and VI , respectively.

The ICU-MM comprises seven coefficients that are (re-)
estimated at each time instant: P1 (glucose effectiveness
when insulin remains at the basal level), P2 (fractional rate
of net remote insulin disappearance), P3 (fractional rate of
insulin dependent increase), h (glucose threshold level),
n (time constant for insulin disappearance), α (scaling
factor for the second insulin variable), and finally γ (degree
by which glycemia exceeds the glucose threshold level).
In order to keep the correct units, an additional model
coefficient, β = 1 min, was added.

The set of coefficients characteristic of the obese and
low glucose tolerance patient group that is described in
(Bergman et al. [1981]) is used for the initial estimation
process. This patient group is mostly comparable to ICU
patients with regards to insulin resistance. The units of all
used variables and parameters and their initial coefficient
values are represented in Table 2.

2.3 ICU Simulation model: ‘Model 2’

Recently a different model of glucoregulation for the
critically ill, particularly aimed for simulation purposes,
was presented (Hovorka et al. [2008]). This model structure
includes five submodels: a submodel of endogenous insulin
secretion, a submodel of insulin kinetics, a submodel of
enteral glucose absorption, a submodel of insulin action
and a submodel of glucose kinetics. Since the size of the
model is much larger and its complexity level much higher
(19 model parameters to be estimated) than the previously
described ICU-MM, and since space in the paper is limited,
we prefer to refer to the original article in which the
model is explained in detail. Important to note is that
the model contains 9 state variables: the blood glucose
(G), the plasma insulin concentration (I), the absorption
of enteral glucose (A1 and A2), three actions of insulin on
glucose kinetics (x1, x2, and x3), and finally the glucose
kinetics themselves (Q1 and Q2).
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Table 2. Variables, patient features, and coef-
ficient values applicable in the ICU-MM.

Variables Units Variables Units

G mg/dl I2 µU/ml
X 1/min FI µU/min
I1 µU/ml FG mg/min

Patient fea-
tures

Units Value

BM kg Body mass (body weight)
VG dl BM*1.6 (Hovorka et al. [2004])
VI ml BM*120 (Hovorka et al. [2004])
Gb mg/dl Basal glycemia
Ib µU/ml Basal insulin

Coefficients Units Value (1)

P1 1/min -1.31 10−2 (1)

P2 1/min -1.35 10−2 (1)

P3 ml/(min2µU) 2.90 10−6 (1)

h mg/dl 136 (1)

n 1/min 0.13 (1)

α 1/min 3.11
β min 1

γ
µU

ml
dl
mg

min2 5.36 10−3 (1)

(1) As initial value for the model estimation process, the mean
model coefficient values for the obese - low glucose tolerance
patient group (described in Bergman et al. [1981]), are used.

Similar to the ICU-MM, only the administered insulin flow
and the carbohydrate content of parenteral and enteral
nutrition are input variables of the model.

2.4 Hypothetical ‘naive’ model: ‘Model 3’

The ‘naive’ prediction model keeps the blood glucose con-
stant for the specified prediction period (i.e., 4 hours for
this work). This prediction method can be considered as
a worst-case prediction scenario that should be outper-
formed by the models 1 and 2 that are especially designed
for glycemia prediction in the critically ill.

2.5 Study design

Normalization of glycemia requires a rigorous adminis-
tration of insulin by means of a very time demanding
empirical “protocol” (Van den Berghe et al. [2003]) in
which expertise from the nursing staff is a prerequisite.
This set of guidelines requires blood glucose levels to be
measured every four hours or even hourly in the initial
phase or after complications. In this study the prediction
horizon was set at 4 hours as the predictive control system
should be able to give an appropriate insulin flow advice
to the nurse for this period. However, we acknowledge that
in real-life the blood glucose is measured more frequently
during the first hours of a stay in the ICU (due to the
instability of the patients). Still, we opted to challenge
all three models under ‘difficult’ conditions. Accordingly,
model predictions were also started at time step 1. In other
words, glucose predictions in the first prediction period
were only based on initially assigned model coefficients
(originated from the available literature). Next, the models
were (re-)estimated using the past patient-specific data for
the coming prediction horizons.

Estimations and re-estimations of model 1 and 2 were done
by minimizing the squared normalized errors between the

simulated and observed glycemia trajectories (by using

non-linear least squares, Matlabr-function ‘fminsearch’).
The errors were normalized to make the severity of error
independent of the actual blood glucose value. The used
normalization function was based on the International
Organisation for Standardization - criterion (ISO [2003])
which is a standard criterion used for assessing glucose
sensors. This criterion can be summarized as follows:

• for reference sensor values ≤75 mg/dl the value re-
sulting from the test sensor is required to fall within
±15 mg/dl limits,

• for reference sensor values >75 mg/dl the target
variability is defined as ±20%.

Next, the used normalization function is formulated as
follows:

ut,p = f(Gt,p − Ĝt,p) =
1

15
[Gt,p − Ĝt,p] if Gt,p ≤ 75mg/dl,

(2a)

ut,p = f(Gt,p − Ĝt,p) = 5[
Gt,p − Ĝt,p

Gt,p

] if Gt,p > 75mg/dl,

(2b)

where Gt,p is the actual and Ĝt,p the predicted glycemia
value of patient p at time t. The normalized glycemia
error is called ut,p. An error violating the ISO-criterion
translates to an absolute normalized error ≥ 1 (Van Herpe
et al. [2008]). Further, the mean squared normalized error
is denoted as:

MSnEp =

N∑ (ut,p)
2

N
, (3)

where N represents the number of evaluation points (i.e.,
the size of each patient-specific data set).

Models 1 and 2 were re-estimated every 4 hours (P = 4
hours). The number of recent data that were considered
in each re-estimation process is called the Back-In-Time
(BIT) number and may influence the performance of the
model. The starting parameters in each optimization pro-
cess were the coefficient values described in the available
literature (for model 1: Bergman et al. [1981]; for model 2:
Hovorka et al. [2008]). The initial state variables for model

1 were defined as: Ĝ(0) = G(0), X̂(0) = 0, Î1(0) = Ib, and

Î2(0) = 0. Next, the initial state variables for model 2 were

set as follows: Ĝ(0) = G(0) and Â1(0) = Â2(0) = 0. For
the remaining state variables steady-state conditions were

assumed: dI(0)
dt

= dx1(0)
dt

= dx2(0)
dt

= dx3(0)
dt

= dQ1(0)
dt

=
dQ2(0)

dt
= 0 (Hovorka et al. [2008]).

The overall methodology for optimizing the re-estimation
process is explained below:

(1) For both model structure 1 and model structure 2:
(a) For BIT = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20,

and 25 hours:
(i) Re-estimate the model based on every last

section (i.e., BIT) of the (moving) data set
with starting set of coefficients the values
obtained from the available literature. Con-
sider the full past data when the passed data

9



set size (in the initial phase) is smaller than
BIT.

(ii) Predict the glycemic course for the next pe-
riod P (which is the validation set of the
re-estimated model in this case). Recall that
the only measured state variable is the blood
glucose (G), meaning that the glucose signal
in the first prediction horizon is mainly pre-
dicted with the literature coefficient values
as no estimation data are available then.

(iii) Compute the root mean squared normalized
error (RMSnEp) for all validation sets per
patient p by computing the square root of
MSnEp.

(b) Compare the RMSnEs generated for the differ-
ent BITs. The BIT that belongs to the smallest
RMSnEs (and preferably with a small distribu-
tion of RMSnEs) is called ‘optimal’ and is ideally
used in the re-estimation process.

(2) Compare the distributions of smallest RMSnEs for
model structure 1 and 2, and additionally for the
‘naive’ model structure 3.

We want to stress that no model estimations were per-
formed for model 3 as the glycemia predictions were based
on keeping the previous blood glucose constant for the
next prediction horizon (4 hours). Finally, the Wilcoxon
signed rank test was used to test significant differences
(significance level 5%).

3. RESULTS AND DISCUSSION

In this section the prediction performance of the three
models under study are compared and discussed.

3.1 Results

Figures 1 and 2 give an overview of the computed RMSnEs
as a function of BIT for model 1 and model 2, respectively.
The optimal BIT was found to be 7 hours for model
1 as the set of RMSnEs was the smallest in that case.
The average RMSnE (std-dev) that was obtained when
applying this ‘optimal’ re-estimation strategy was 0.78
(0.26). In case of model 2, the optimal BIT was found to
be 10 hours (small RMSnE values, smallest distribution of
RMSnEs) resulting in an average RMSnE (std-dev) equal
to 1.1 (0.27). Finally, the average RMSnE (std-dev) for
model 3 was 0.92 (0.34).

Figure 3 presents the best prediction performance results
of model 1 (BIT = 7 hours) and model 2 (BIT = 10
hours) versus the ‘naive’ model 3. A statistical difference
was found between the sets of RMSnEs corresponding to
model 1 and model 2 (p < 0.05) and between the sets of
RMSnEs corresponding to model 1 and model 3 (p < 0.05).
No statistical difference was found between the sets of
RMSnEs corresponding to model 2 and model 3 (p ≥ 0.05).

Figure 4 represents the real-life glucose evolution (solid
line) of patient no. 11, hourly measured with the ABL700
Radiometer Medical glucose analyser and linearly inter-
polated. The glucose prediction behaviour of model 1 is
represented by the dashed line whereas the predicted glu-
cose signal of model 2 is denoted by the dashed-dotted line.
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Fig. 1. Set of distributions of the RMSnEs (generated for
each patient) as a function of BIT with re-estimations
every four hours (P = 4 hours) for model 1. The
dashed line connects the averages of the RMSnEs.
Re-estimations based on the last 7 hours data set
(BIT = 7) result in the smallest prediction errors.
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Fig. 2. Set of distributions of the RMSnEs (generated for
each patient) as a function of BIT with re-estimations
every four hours (P = 4 hours) for model 2. The
dashed line connects the averages of the RMSnEs.
Re-estimations based on the last 10 hours data set
(BIT = 10) result in the smallest prediction errors.
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Fig. 3. Comparison between the distributions correspond-
ing to the best prediction performances of model 1
(left) and model 2 (middle) versus the ‘naive’ model
3 (right). The dashed line connects the averages of the
RMSnEs.
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Further, the glucose signal that was kept constant during
each prediction period (model 3) is illustrated with the
dotted line. Finally, it is easily observed that models 1 and
2 were (re-)estimated every 4 hours (P = 4 hours) and, at
those time-instants, that the predicted glucose signal was
reset towards the measured (known) blood glucose value.
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Fig. 4. The blood glucose signal of patient no. 11, mea-
sured with the ABL700 Radiometer Medical glucose
analyser, is presented by the solid line. Glucose pre-
dictions are illustrated with a dashed line for model
1, a dashed-dotted line for model 2, and a dotted
line for model 3. It is important to note that glucose
predictions in the first prediction horizon (till time
t = 240 min) were only based on model coefficient
values from the available literature (no estimation
data available in the beginning). The RMSnE for this
patient equals 0.63 for model 1 (BIT = 7 hours).

3.2 Discussion

First of all, it is important to note that a normalization
function (based on the ISO-criterion) was used in the cost
function (minimization of MSnE) and in the evaluation
process (computation of RMSnE). This clinically defined
ISO-criterion is a standard norm for the binary assessment
of the accuracy of glucose sensors. However, the accuracy
requirements of a test sensor device, which is assessed by
considering its signal toward the concomitantly measured
reference (or gold standard) sensor values, are in fact com-
parable to the prediction performance requirements of a
model. Indeed, both sensor and model are crucial elements
in (future) predictive control systems in terms of determin-
ing the optimal insulin flow to be administered to the pa-
tient. Therefore, we recommend to use this normalization
function in a cost function (for estimating glucose models)
or as assessment procedure (for evaluating glucose mod-
els) rather than traditional methods. These traditional
methods (e.g., mean squared error, mean percentage error)
typically lack clinical interpretation and/or underestimate
hypoglycemic errors (Van Herpe et al. [2008]).

Secondly, it can be observed that the set of RMSnEs of
model 1 was significantly smaller than the set of RMSnEs
corresponding to model 2 and 3. Therefore, it can be
concluded that model structure 1 outperformed models
2 and 3 for this ICU data set (15 patients). Statisti-
cally no difference was found between model 2 and the

‘naive’ model 3. This indicates that the glucose prediction
performance using the ‘naive’ model 3 is similar to the
prediction performance obtained with model 2 (which was
particularly designed for simulating virtual ICU patients).
This unexpected result may be caused by the limited size
of the data set but possibly also by the high complexity
level of the model that may have led to overfitting.

Thirdly, the majority (80%) of the RMSnEs of model 1
were smaller than 1 indicating that this model suited the
predefined ISO accuracy requirements (see above). It is
important to stress that the model predictions started
already at time step 1 (i.e., comparable to a real-life situa-
tion where the blood glucose of a new patient entering the
ICU should be controlled from the beginning). This also
means that no data were available to train the model for
the first prediction horizon. Moreover, compared to a sim-
ilar study concerning the model prediction performance
of model 1 (Van Herpe et al. [2007]), no semi-continuous
glucose sensor was available here (only time-discrete mea-
surements were used as no reliable semi-continuous sensor
could be validated for use in the ICU so far). In spite
of these challenging (but realistic) conditions, model 1
was able to predict the blood glucose signal sufficiently
accurate for the majority of the patients.

Finally, in most ICUs nowadays, the nurses measure the
blood glucose more frequently (e.g., every hour) in the
initial phase of the patient’s stay at the ICU since the
glucoregulatory system of most patients behaves unstable
then. Therefore, it is probably utopian to expect that a
semi-automated blood glucose control system (that gives
advice to the nurse concerning the insulin dose) would
require glycemia values measured only every 4 hours in
this initial phase. Indeed, as present practice already
allows, glycemia will be hourly or two-hourly measured in
this phase. Moreover, it would also be utopian to expect
that model predictions in this early phase (with only
few patient-specific estimation data) are always accurate.
Accordingly, the model prediction performance of models
1 and 2 would have significantly increased if the prediction
processes would have started after this initial phase. Let
us give an example. Under the assumption that the first
10 hours of data would not have been taken into account
in the evaluation process, the average RMSnE (std-dev)
for model 1 (BIT = 7) and 2 (BIT = 10) would have been
reduced to 0.66 (0.28) and 0.95 (0.25), respectively. This
confirms the previous reasoning that the model predictions
are more accurate when more estimation data (to train the
model) are available.

4. CONCLUSIONS AND FUTURE WORKS

In this paper we compared the model prediction perfor-
mance of three model structures. The first two models
were particularly aimed for describing the glucoregulatory
system of critically ill patients whereas the third model
was a rather ‘naive’ model. The prediction horizon was set
at 4 hours and the model prediction processes started at
the beginning of each patient’s data set. The first model
significantly outperformed the other two model structures
and returned RMSnEs that were smaller than 1 for the
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majority of the patients (with an optimal BIT equal to
7 hours). In spite of the imposed challenging conditions
the prediction results showed the potential of using model
structure 1 in a semi-automated blood glucose control
system. Future work is conducted to the clinical validation
of the full control system, i.e., the patient model 1 and the
predictive controller (that has already been presented in
Haverbeke et al. [2008]), in a group of critically ill patients
under real-life circumstances (hourly blood glucose mea-
surements).
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