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Abstract: In this paper we apply system identification in order to build a model
suitable for prediction of the glycemia levels of critically ill patients in the Intensive
Care Unit. These patients typically show increased glycemia levels, and it has been
shown that glycemia control by means of insulin therapy reduces morbidity and
mortality. Based on a real-life dataset from 41 critically ill patients, an ARX model
is estimated which captures the insulin effect on glycemia under different settings.
The results are satisfactory both in terms of forecasting ability and in the clinical
interpretation of the estimated coefficients.Copyright ©2006 IFAC
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1. INTRODUCTION

In this paper we develop a model for predicting
the glycemia levels of critically ill patients ad-
mitted to the Intensive Care Unit (ICU) based
on clinical observations. A predictive system for
glycemia levels can later be used in the develop-
ment of a semi-automated control system for such
purpose, as it has been shown that normalization
of glycemia (between 80 and 110 mg/dl = nor-
moglycemia) through a rigorous administration of
insulin results in an important reduction in mor-
tality and morbidity. As an example, the number
of deaths in patients who required intensive care
for more than five days was reduced from 20,2% to
10,6% by normalizing glycemia in a clinical study
of 1548 patients (Van den Berghe et al., 2001).
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ntly, the administration of insulin in inten-
re patients is controlled by medical staff in a
ime demanding empirical protocol (Van den
e et al., 2003), which requires important
tise from nurses and doctors. The protocol
es blood glucose levels to be measured every
ours (or more frequently, especially in the
phase or after complications). The flow of

ntinuous insulin infusion is then adjusted by
a certain schedule. The effectiveness of this
col (i.e., obtaining and maintaining normo-
ia) is hindered by the following complicat-

ctors:
ric intake (number of calories, class (pro-
n of carbohydrates, proteins and fat) and
interruption of caloric intake) has a profound



impact on insulin requirements.
- Switch from intravenous glucose infusion to total
parenteral feeding (also given intravenously) and
finally to enteral feeding can profoundly change
the dynamics of the process inputs (e.g., admin-
istration of insulin) and output (i.e., glycemia).
- Administration of drugs (e.g., glucocorticoids)
can disturb blood glucose levels.
- Finally it is also known that the constitution
or profile of the patient (e.g., Body Mass Index
(BMI) 1 , medical history) can influence the reac-
tion to insulin administration.

The glycemia normalization problem can also be
encountered in diabetic patients. In literature
some physical compartmental models (Bailey
and Haddad, 2005) that predict glycemia of type
1 diabetic patients have already been described
(Lehmann and Deutsch, 1996; Parker et al., 1999;
Parker et al., 2000; Hovorka et al., 2004). In
clinical practice, however, those different physi-
cal compartmental models are not used due to
possibly unacceptable model uncertainty rates
(Lehmann and Deutsch, 1998; Parker et al., 2001).
Moreover, an ICU population cannot be compared
to a diabetic type 1 population. The existence of
critical illness causes some important metabolic
changes (e.g., increased insulin resistance) that
can significantly influence glycemia.

In order to develop a control system that helps
to normalize glycemia by automatically infusing
insulin (taking into account future disturbances
as much as possible) a predictive model needs to
be generated. The aim of this paper is to design
a first model for this purpose. As far as we know
we are the first research group that makes use
of real clinical ICU input-output data for the
development of a black-box ICU patient model
(Van Herpe et al., 2005). The paper is structured
as follows: the data are described in Section 2
followed by the modeling methodology in Section
3 and, finally, the modeling results and the clinical
interpretation are presented in Section 4.

2. DATA DESCRIPTION

In this section the data that are used in the mod-
eling process are presented. The specific patient
features are emphasized and the variables that
can influence glycemia (and the different sample
frequencies) are described.

2.1 Patient Data

The dataset origins from 41 patients who were
admitted to the ICU-division of the University
Hospital K.U. Leuven (Belgium) in 2000. All of

1 The body-mass index is the weight in kilograms divided
by the square of the height in meters.
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had a specific clinical history and particular
ion during his/her stay at ICU. Due to the
nt nature of the patients, the length of stay

varied. Consequently, the dataset consists
e series of different lengths. Table 1 gives
erview of the study population with some
tant clinical characteristics.

Table 1. Patient population.

ble Value

sex - no (%) 27.0 (65.8)
- yr (std − dev) 59.8 (17.6)
-mass index - kg/m2 (std − dev) 27.0 (5.2)
on for intensive care - no (%)
ardiac surgery 11 (26.8)
oncardiac indication 30 (73.2)
Neurologic disease, cerebral
trauma, or brain surgery

4 (9.8)

Thoracic surgery, respiratory
insufficiency, or both

7 (17.1)

Abdominal surgery or peritoni-
tis

5 (12.2)

Vascular surgery 2 (4.9)
Multiple surgery or severe
burns

7 (17.1)

Transplantation 3 (7.3)
Other 2 (4.9)

CHE II score (first 24 hr) (std − dev) 11 (6)
ry of diabetes - no (%) 7 (17.1)
ype I - diabetes 2 (4.9)
ype II - diabetes 5 (12.2)
th of stay at ICU - hr (std − dev) 174 (154)
in. length of stay at ICU - hr 36
ax. length of stay at ICU - hr 686
glycemia - mg/dl (std − dev) 106 (30)

inimal glycemia - mg/dl 37
aximal glycemia - mg/dl 379

portant Variables

rterial glucose concentration (i.e., glycemia)
output variable of the system under study.
s measured at one to four-hour intervals
ding on the physical condition of the patient
in the initial phase a patient is typically
ble, which requires more frequent glycemia
rements). Due to those different time inter-

glycemia values are linearly interpolated to
our glycemia data.

n is a protein that decreases glycemia. Be-
of the critical illness of patients who are
ted to ICU, the insulin resistance increases,
results in the need for exogenous insulin

s administered by an insulin pump. In the
et at hand this insulin flow was adapted by
al staff with a maximum frequency of once
our.

are many other (known, unknown, or im-
rable) input variables that influence gly-
. Table 2 gives an overview of the known
variables. They consist of initially known

when a patient enters ICU) and dynamical



variables. The latter’s flow was adapted with a
maximum frequency of once each hour.

Table 2. Overview of the variables that
can influence glycemia.

Initial input vari-
ables

Dynamical input variables

BMI Total carbohydrate calories
APACHE II score Total fat calories
History of diabetes Body temperature
Pathology Administered drugs (e.g., glu-

cocorticoids, noradrenalin, dobu-
tamin, beta-blockers, etc.)

The glucose utilizing tissues can offer resistance
to insulin resulting in a glycemia increase (Wolfe
et al., 1979; Wolfe et al., 1987; Shangraw et
al., 1989). Some methods to estimate this in-
sulin resistance have already been described, e.g.,
(Bergman et al., 1985; Bergman et al., 1981).
However, the use of these methods (e.g., the oral
glucose tolerance test) is hardly feasible with ICU
patients due to their critical illness (additional
physical load should be avoided). The insulin re-
sistance can also fluctuate as a function of time.
As described in (Van den Berghe et al., 2001)
the insulin resistance with ICU patients is in-
ter and intra patient specific. Initial parameters
such as the BMI, the APACHE II-score 2 (whose
calculation is based on parameters such as the
body temperature, the mean blood pressure, the
breathing frequency, etc.), the reason for admis-
sion, and the history of diabetes on the one hand
or dynamical parameters (e.g., the administration
of certain drugs such as glucocorticoids) on the
other hand can both influence the insulin resis-
tance and glycemia, consequently. However, the
size and the accuracy of the dataset at hand is
insufficient to take all those parameters into ac-
count individually. Consequently, the insulin resis-
tance is approached by taking only the body tem-
perature into consideration. A body temperature
surpassing 37.5°C (e.g., caused by an additional
inflammation) may indicate critical illness, which
may result in a higher insulin resistance.

3. MODELING METHODOLOGY

The overall modeling methodology that is used is
presented in this section. Firstly, a specific model
structure is selected after which a method - that is
independent on the particular set of patients used
for estimating or testing - is described.

3.1 Model Structure

An ARX model structure (Ljung, 1999; Sjöberg
et al., 1995) is used in the modeling process to
predict glycemia from a set of clinical inputs,

2 The APACHE II score (Acute Physiology and Chronic
Health Evaluation) is calculated each day and determines
the severity of illness.
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1 =
na∑

i=1

aiyt−i+1 + b1u1,t + b2u1,tDF,t

+ b3u3,t + b4u4,t + b5u5,t + b6u6,t

+ b7u7,t + b8u8,t + b9u9,t + b10u10,t

+ b11u11,t + b12 + et, (1)

ai ∈ R, bj ∈ R, i = 1, . . . , na, j = 1, . . . , 12
e model coefficients to be estimated, yt is

lycemia level at time t, u1,t is the insulin
t t, DF,t is a dummy variable that takes
he body temperature is above 37.5°C and
otherwise, u3,t the total of carbohydrate
es, u4,t the total of fat calories, u5,t the body
rature, u6,t the glucocorticoids level, u7,t

drenalin level, u8,t the noradrenalin level,
e dobutamin level, u10,t the dopamin level,
11,t the level of the beta-blockers. Table 3
an overview of those used input variables
heir units. The residuals et are assumed to
ero mean and constant (and finite) standard

tion.

able 3. Overview of the input variables
hat were used in the modeling process.

bles Symbol Units

in u1,t U/hr
in*Dummy fever u1,tDF,t U/hr
l carbohydrate calories u3,t kcal/hr
l fat calories u4,t kcal/hr
temperature u5,t °C

ocorticoids u6,t mg/hr

nalin u7,t γ (1)

drenalin u8,t γ (1)

tamin u9,t γ (1)

min u10,t γ (1)

-blockers u11,t mg/hr

he unit γ is used in a medical environment to
olize the amount of the considered catecholamine
(μgr) per kg body weight and per minute.

important to emphasize that the insulin
le is considered both as an independent
s a body temperature dependent input. The
is the case when fever is present in order to
re the effect of a higher insulin resistance
thus, a lower insulin effect on glycemia).
the body temperature of the patient is
or equal to 37.5°C (no fever, DF,t = 0) the
of insulin is captured by b1. In case of fever
= 1) the insulin activity is captured by the
contribution of (b1 + b2). This is illustrated
ble 4.

o the glycemia lowering effect of insulin, we
t to find b1 < 0 . Fever can be associated
a higher insulin resistance; therefore we ex-
b2 > 0, and (b1 + b2) < 0. Analogously,
odel coefficient values for administered calo-
re expected to be positive. Although the
ia reactions of drugs are patient specific,

tive value for catecholamines, beta-blockers,
lucocorticoids can be expected, too.



Table 4. Effect of insulin (to predict the
glycemia value at t+1 ) in case of fever

or no fever.

Effect of
insulin

Clinical expec-
tation

No fever b1 b1 < 0
u5,t ≤ 37.5°C
DF,t = 0

Fever b1 + b2 b2 > 0
u5,t > 37.5°C (b1 + b2) < 0
DF,t = 1

3.2 Order Selection

In order to select the order na in equation (1) we
use different estimation and test sets defined by
random permutations. In this way, and for a given
order na, we define a set of 30 patients for model
estimation and a remaining set of 11 patients for
testing. The performance (mean squared error,
MSE) is measured on the test set for a particular
data partition. Each time, the estimation/test
partitions are randomized 500 times. Finally, we
select the order na ∈ [1, 10] which gives the lowest
MSE averaged over the 500 random partitions.

3.3 Model Estimation and Input Selection

Each model is estimated in the following way.
Given the order na and the estimation data, a first
model Mall(na) of the form (1) is estimated by
applying Ordinary Least Squares (OLS) using all
regressors. Based on the t−statistics (Rice, 1995)
of the estimated coefficients from Mall(na), we
select only those inputs which are statistically
different from zero. This is an iterative process,
one variable is removed at a time, and the model
is re-estimated until all variables are found to
be statistically significant (at a 95% level). Call
this final model Msel(na). The model Msel(na)
is the one used for evaluation with the test set
when selecting the order na. Once the optimal
order n∗

a is selected, a new model Mall(n∗
a) with

optimal order n∗
a is estimated using all data from

all patients, and its reduced model Msel(n∗
a) is

the final model to be considered. The overall
methodology is summarized as follows:

(1) For order na = 1 to 10,
(a) Repeat k = 1 to 500,

(i) Define a set of 30 patients for esti-
mating (Xk) and 11 for testing (T k)
on each repetition k,

(ii) Estimate model Mall(na) with Xk,
(iii) Based on iterative t−tests of sig-

nificance at 95% level, find model
Msel(na) in which all variables are
significant,

(iv) Evaluate Msel(na) on the test data
T k to predict glycemia ŷT k ,

(v) Compute the mean squared error
MSEk(na) between ŷT k and yT k ,
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b) Compute the average mean squared error
MSE(na) = 1

500

∑500
k=1 MSEk(na),

ind optimal n∗
a that minimizes the average

ean squared error MSE(na),
stimate a model Mall(n∗

a) with optimal or-
er n∗

a using all data from all patients,
se the iterative t−tests until the final model
sel(n∗

a) is obtained.

ODELING RESULTS AND CLINICAL
ASSESSMENT

applying the modeling strategy described
the results are shown in this part. Further-
the final model is clinically assessed.

odeling Results

e 1 presents the average normalized mean
ed error (NMSE) as a function of the model
The optimal model order is n∗

a = 2. The av-
NMSE (over 500 randomizations) is 0.0557.
g selected n∗

a = 2, now we estimate a unique
l Mall(n∗

a) using all data from all patients,
sults of which are shown on Table 5. The
ponding final model Msel(n∗

a), for which all
les are statistically significant, is reported
ble 6.

1 2 3 4 5 6 7 8 9 10
55

.06

65

.07

75

.08

85

.09

AR Order

1. The average NMSE as a function of
he model order. The use of model order

resulted in the smallest average NMSE
0.0557).

redictor of the glycemia value ŷt+1 can now
itten as

1 = â1yt + â2yt−1 + b̂1u1,t

+ b̂2u1,tDF,t + b̂3u3,t + b̂10u10,t, (2)

results in a NMSE of 0.0514 computed
ple for the model Msel(n∗

a). This is not
different from the average NMSE (0.0557)
as obtained for the same order using 500

m test partitions, which indicates that the
dology based on input selection using t-tests

e to produce a model which does not overfit
-sample data.



Table 5. Results for Model Mall(n∗
a)

with n∗
a = 2.

Variables Esti-
mation

Std-
Dev

t-stat

Output variables
Glycemia at t 1.4959 0.0094 159.2171
Glycemia at t-1 -0.5692 0.0094 -60.7940

Input variables at t
Insulin -0.2145 0.0276 -7.7782
Insulin*Dummy
fever

0.0783 0.0347 2.2541

Total carbohy-
drate calories

0.0257 0.0072 3.5634

Total fat calories -0.0070 0.0057 -1.2248 ∗
Body tempera-
ture

0.1971 0.0881 2.2365 ∗

Glucocorticoids -0.0019 0.0037 -0.5043 ∗
Adrenalin -1.3072 1.3534 -0.9659 ∗
Noradrenalin 0.8073 0.9440 0.8551 ∗
Dobutamin 0.0153 0.0421 0.3627 ∗
Dopamin 0.1754 0.0745 2.3545
Beta-blockers -0.0051 0.0149 -0.3418 ∗
Constant -6.8497 3.2746 -2.0917 ∗

∗ This variable was not statistically significant (at a
95% level) after applying the full iterative process.

Table 6. Final Model Msel(n∗
a) contain-

ing only statistically significant vari-
ables.

Variables Esti-
mation

Std-
Dev

t-stat

Glycemia at t 1.4960 0.0094 159.5903
Glycemia at t-1 -0.5690 0.0093 -60.9982
Insulin -0.2131 0.0267 -7.9857
Insulin*Dummy
fever

0.1044 0.0308 3.3859

Total carbohy-
drate calories

0.0336 0.0030 11.1282

Dopamin 0.2362 0.0697 3.3907

R2 = 0.9486, dw = 1.9775, NMSE = 0.0514

4.2 Clinical Assessment

In this part the model coefficients are clinically
interpreted and the clinical features are considered
with respect to the generated model errors.

4.2.1. Model coefficients. As clinically expected,
b̂1 < 0 and (b̂1 + b̂2) < 0. The increasing in-
sulin resistance in case of fever is captured by
b̂2 > 0. The latter causes a smaller glycemia
decrease when insulin is administered to a patient
with fever than without fever. The positive value
of b̂3 indicates the glycemia raising effect with
the intake of carbohydrate calories. Finally, the
positive value of b̂10 was also clinically expected,
due to the features of the catecholamine drugs.

4.2.2. Clinical features. As noted above the in-
sample NMSE for the model Msel(n∗

a) was 0.0514.
In order to relate the model errors with the clinical
features of each patient individually, the normal-
ized average mean squared error (NAMSEp) is
calculated per patient p as follows:
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0 5 10 15 20 25 30
Number of days at ICU

. The NAMSEp as a function of the individ-
al length of stay at ICU. Cardiac patients
indicated with o) typically stay for a shorter
ime period at ICU than the other patients
*) and cause larger NAMSEps than the other
atient groups.

NAMSEp =
∑Nt,p

t=3 (yn
t,p − ŷn

t,p)2

(Nt,p − 2)
, (3)

Nt,p equals the number of data points
atient, and yn

t,p and ŷn
t,p are the normalized

l and predicted glycemia, respectively. The
SEp-values versus the length of stay are
d for all patients in Figure 2. The different
e of patients influences the length of the stay
U.

easily seen that the model performs better
tients whose length of stay is more than five
There are six patients whose NAMSEp is
0.1. Four of those patients belong to the
c surgery group. The latter patient group is
lly characterized with shorter time periods
U than patient groups with other patholo-
uture research is needed for differentiating

odel with respect to the reason for admission
U (or other clinical features).

CONCLUSION

s paper we present an input-output model to
t glycemia of critically ill patients. Different
ical input variables and an approach to
sulin resistance (by considering the body
rature) are implemented, in order to give
odel a clinical interpretation. By using a
dology based on random partitions of the

between estimation and test sets, the opti-
odel order is found to be 2. The estimated
ients show clinical relevance with respect to
ehavior of glycemia in relation to insulin,
n resistance, intake of carbohydrate calories,
he model results in a better performance
tients who stayed for more than five days at
i.e., typically noncardiac patients). Further



research is required to relate the model perfor-
mance to other patient features. A model that is
more patient specific (taking into account those
features) could also be an interesting potential
to further increase the predictive model perfor-
mance.
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