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Abstract—Machine and deep learning methods for medical
and healthcare applications have shown significant progress
and performance improvement in recent years. These methods
require vast amounts of training data which are available in
the medical sector, albeit decentralized. Medical institutions
generate vast amounts of data for which sharing and centralizing
remains a challenge as the result of data and privacy regulations.
Federated Learning (FL) is well-suited to tackle these challenges.
However, FL comes with a new set of open problems related
to communication overhead, efficient parameter aggregation,
client selection strategies and more. In this work, we address
the step prior to the initiation of a federated network for
model training, client recruitment. By intelligently recruiting
clients, communication overhead and overall cost of training can
be reduced without sacrificing predictive performance. Client
recruitment aims at pre-excluding potential clients from par-
taking in the federation based on a set of criteria indicative
of their eventual contributions to the federation. In this work,
we propose a client recruitment approach using only the output
distribution and sample size at the client site. We show how
a subset of clients can be recruited without sacrificing model
performance whilst significantly improving computation time. By
applying the recruitment approach to the training of federated
models for accurate patient Length of Stay prediction using
data from 189 intensive care units (clients), we show how the
models trained in federations made up from only recruited
clients significantly outperform federated models trained with
the standard procedure in terms of predictive power and training
time.

Index Terms—Federated Learning, Client Recruitment, Length
of Stay

I. INTRODUCTION

Recent machine learning (ML) and deep learning (DL)
techniques have proven to be of significant value for health-
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care applications [2], [3], [25]. An abundance of medical
data is continuously generated, especially in Intensive Care
Units (ICU) where patients are monitored uninterrupted and
vitals are charted continuously. DL techniques are particularly
good at extracting underlying complex relations in such large
datasets, thus the vast amount of available data bodes well
for these data hungry models. One of the main limitations in
relation to medical data of any sort relates to data availability.
As a result of regulatory restrictions both in Europe through
the General Data Protection Regulation (GDPR) [7] and more
recently the European Union Artificial Intelligence Act, and
the United States with the Health Insurance Portability and
Accountability Act (HIPAA) [4] imposing similar restrictions,
data sharing poses a significant challenge in the medical sector
both for primary and secondary use [6]. In both cases, sharing
and centrally accumulating privacy-sensitive data is bounded
by a legal framework, necessary to protect the privacy of the
individuals behind the data. This, however, poses a challenge
for research and applications that require large amounts of
medical data.

In recent years, the value of federated learning (FL) has
been illustrated for medical applications, especially in the
field of computer vision for medical image segmentation and
classification [13], [21], [27]. Here, the FL approach allows to
learn complex models over decentralized data without direct
access to the data. FL, however, comes with a new set of
challenges. In the real world, decentralized data is often
not independent and identically distributed (non-IID) which
harms the training procedure and model performance [33]. The
reduced performance can mainly be attributed to the weight
divergence in local models as a result of the non-IID data [33].

Selection procedures of federated training algorithms may
sample those contributors whose data is most informative at
training time. This, however, requires all potential contributors
to form part of the federation and participate in at least one
round of training. In the work by Yichen Ruan et al. [24], the
theoretical foundations are provided for a client recruitment
process which precedes the initiation of the federation. This
aims at building the federation with those clients for which it
can, a priori, be said that their contributions to the federation
will be valuable. More specifically, clients for which the local



data does not form a good representation of the population are
considered less representative and therefore, of less value to
the federation. Intuitively, when aiming for accurate global
predictive performance, less representative clients result in
higher weight divergence in the local models at training time
[33], which harms the training procedure and predictive power
of the resulting global model.

Whilst in [24], a sound optimization framework is provided
for client recruitment, in this work, by building on [24], we
define a client recruitment approach and the construct of client-
level representativeness using only the local target distribution
and sample size. Subsequently, the practical relevance of this
approach is demonstrated through an application on the real-
world eICU dataset [8], [19], [20] for which only 54 out of
the 189 potential clients are recruited. With the recruited client
subset making up the federation, we are able to learn better
performing models, in terms of predictive power and training
time, to predict patient Length of Stay (LoS) in ICU compared
to the standard FL approach as proposed in [15].

The remainder of this work is structured as follows. Section
II outlines the related work. In Section III the basics of FL
are discussed. In Section IV the client recruitment approach is
discussed along with the experimental setup and corresponding
description of the data. Section V outlines the results and
provides a discussion of the main findings. In Section VI
concluding remarks are presented followed by a discussion
of the current limitations and directions for future work.

The repository containing the code and instructions
for reproducing the results is available on GitHub here:
github.com/vscheltjens/eicu-cl-recr.

II. RELATED WORK

Federated learning was originally proposed by McMahan et
al. in 2017 [15] in conjunction with the FedAvg algorithm and
has since been proven to be a valuable learning framework that
can yield accurate models without direct access to the local
data.

A significant amount of research efforts have been dedicated
to the client selection problem. Client selection in FL deals
with client scheduling for each round of training, i.e., for each
training round a subset of clients is selected that will contribute
in the next training iteration. The standard approach is to
randomly select this subset. However, as argued in multiple
studies [17], [29], [30], a better approach is to impose criteria
based upon which client selection can be performed. These
criteria often relate to how informative updates from certain
clients are, or the local computational resources [31], [32].
This, however, does not allow for noninformative clients to
be pre-excluded from the federation, which is where client
recruitment comes in. Client recruitment aims to discard
potential clients from the set of available clients for the
federation, prior to initiation of the latter. One of the ways
to do so is by considering limited statistics on the local
dataset that do not contain privacy sensitive information. By
pre-excluding potential clients, the foremost benefit is that
the overall cost of training a model in the federated setting

is reduced [24] without sacrificing predictive performance.
In addition, optimally, the least informative clients are pre-
excluded which results in increased predictive performance
for the resulting global model.

Although FL originates in the large-scale distributed edge
computing setting, it has been extensively studied in healthcare
[13], [16], [18], [21]. Specifically the work discussed in [16]
closely relates to the work proposed here. In [16] the authors
extensively assess different parameter settings for federated
training on medical ICU data to identify suitable parameters
for In Hospital Mortality (IHM) binary classification. In this
study, we tackle a different problem, i.e., ICU LoS prediction,
using the same eICU dataset. The authors from [16] show that
a larger number of local training epochs improves performance
whilst reducing the training cost at once as a result of the
reduced server-client communication. In this work we extend
upon these previous works by proposing a client recruitment
scheme using limited statistics on the local data, applied to
the critical care setting.

III. FEDERATED LEARNING BASICS

Federated Learning (FL) [15] is a technique that allows
for a central model to be trained over distributed data that
originate and are stored locally. This approach was originally
proposed within the setting of large-scale distributed learning
on mobile devices and has been widely used and researched
in the medical sector given the privacy enhancing aspect as
well as the regulatory restrictions on data sharing within the
sector. Each local data source, e.g., a mobile phone or a server
hosted at a hospital, is referred to as a client. The group of
clients that contribute to training a central model, including
the central server is referred to as the federation. The central
server orchestrates the learning process over the different
clients following the predefined FL algorithm. In that sense,
the central server is holistically responsible for (i) initiating
the model; (ii) providing a copy of the model to all of the
clients; (iii) aggregating over the received model parameters
and (iv) send back the updated model to the clients. Each
client locally trains the model for a predetermined number
of epochs after which only the model parameters are sent
back to the central server. In the standard FedAvg algorithm
[15] considered in this work, local model parameters are
averaged into the global model update. In addition, for each
communication round, either all or a subset of the clients in
the federation are randomly selected for training. We consider
this the standard FL setting which comes with most out of the
box implementations.

In this work, the clients correspond to 189 hospitals where
the main challenge relates to some extent to the concept
of client shift in conjunction with the understanding that in
the real world, data from different hospitals is likely to be
non-IID distributed. In Fig. 2, 4 of the in total 189 local
target distributions are shown, illustrating how even when
only looking at the target, the data hosted at each of the
clients can vastly differ from one client to the next. More
specifically, clients host data that originates from different



hospitals in different geographic regions, each with potentially
different demographic characteristics, etc.. Depending on local
sample size and training parameters, models may overfit to
the local data and bias the global model when aggregating
model parameters. These are common problems to FL train-
ing algorithms and have been tackled by introducing more
involved aggregation algorithms such as Weighted FedAvg or
smart client selection [17], [29], [30].

Whilst FL allows to learn a central model from distributed
medical data in a privacy enhancing manner, not all data at
each of the hospitals are equally valuable. More specifically,
smaller local sample sizes are less likely to represent the global
distribution which will typically result in a larger empirical
training loss, as discussed in [24]. In addition, as a result of
different local demographics, even larger local datasets could
also diverge in distribution from the population, which will
again reduce predictive performance. Existing client selection
and aggregation algorithms provide partial solutions to these
issues. These methods, however, require for all clients to form
part of the federation and for each client to have participated
at least once in a training round. If not, the algorithms
do not obtain the required information to guide the further
aggregation and selection procedure.

This work builds on the client recruitment work introduced
in [24] and the field of FL in healthcare to develop a method
for client recruitment by looking only at the local distribution
of the target variable and the local sample size. With this,
the recruitment process aims to recruit clients for which the
local data better represents the population before initiating the
federation. This would intuitively lead to better performing
models globally and reduced training time.

IV. METHODS

To assess the performance and utility of federated models
that are trained with a subset of clients recruited following the
approach that will be described in IV-C, a single prediction
task is defined for both the central, and federated models.
The task is for each model to predict the patient LoS in ICU,
similar to what has been studied in [1], [22], [23], [28] where
LoS is defined as the remaining time in ICU for a given patient.
Formally, the task is to yield predictions ŷ which approximate
y, the true LoS.

A. Data
For the evaluation of the proposed approach on real-world,

multi-center data, the eICU dataset [8], [19], [20] is used,
covering over 200,000 eICU admissions to 208 US hospitals.
The total admission count covers over 139,000 unique patients
registered at one of the US hospitals between 2014 and 2015.

The dataset is made publicly available for research purposes
and is particularly interesting for FL as it allows for the
data to be mapped to the originating institution. The data is
preprocessed in concordance with the preprocessing pipeline
proposed in [23]. In summary, the first 24 hours of data
post ICU admission, for adult patients are extracted and used
to predict LoS. Both temporal and static information are

extracted, cleaned, re-sampled, imputed and one-hot encoded.
The temporal data is fused with the static patient data which
will serve as the input to the models. For patients with multiple
recorded stays over the designated time period, only one of
the stays is considered to avoid information leakage when
obtaining train, test and validation splits. We refer to the work
by Rocheteau et al. [23] for an extensive description of the
preprocessing pipeline.

The resulting cohort is comprised of data pertaining to
89,127 patient stays over 189 hospitals, covering a total of 35
features of which 17 are temporal and 18 static. The summary
statistics for the resulting data cohort are included in Table I
and a detailed overview is provided in Appendix A.

TABLE I
OVERVIEW OF THE EXTRACTED AND PREPROCESSED DATA COHORT

Number of patient stays 89,127
Train 62,375
Validation 13,376
Test 13,376

Mean LoS 3.69
Median LoS 2.27
Number of features 35

Temporal 17
Demographic (static) 18

Number of hospitals (clients) 189

B. Model architecture

For both the centralized and federated training tasks in this
work, the Gated Recurrent Unit (GRU) [5], and Long Short-
Term Memory (LSTM) [10] networks are used. Both GRU
and LSTM belong to the class of Recurrent Neural Networks
(RNN) which are widely used when dealing with sequential
data. The GRU architecture is comprised of two sole gates.
The reset and update gates, respectively denoted as rt and zt

in (1), resulting in reduced computational complexity. This,
in turn, is a desirable characteristic for FL applications where
local computational resources and communication overhead
pose real challenges [12].

In (1), the governing equations for the GRU cell are shown.
These outline the computations that occur for every discrete
time step t in the input sequence.

rt = �(Wr · [ht�1, xt])

zt = �(Wz · [ht�1, xt])

h̃t = tanh(W · [rt ⇤ ht�1, xt])

ht = (1 � zt) ⇤ ht�1 + zt ⇤ h̃t

(1)

Similarly, in (2), the governing equations for the LSTM cell
are shown. LSTM is comprised of three gates rather than the
two gates present in GRU which are denoted as ft, it and ot,
representing the forget gate, input gate and output gate.



ft = �(Wf · [ht�1, xt] + bf )

it = �(Wi · [ht�1, xt] + bi)

C̃t = tanh(WC · [ht�1, xt] + bC)

ot = �(Wo · [ht�1, xt] + bo)

Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ht = ot ⇤ tanh(Ct)

(2)

In both (1) and (2) � represents a sigmoid neural network
layer whereas tanh represents a tanh neural network layer
with the exception of the last step for LSTM where ht is
calculated. Here, tanh corresponds to the tanh activation
function such that the values are transformed to fall in [�1, 1].
A visual representation of the GRU and LSTM cells is shown
in Fig. 3.

For both architectures, xt represents the input at time step
t, which corresponds to one hour in this work. In addition,
ht, ht�1 denote the hidden states at time t, t � 1 respectively
and ⇤ represents the Hadamard product.

The hidden state ht, i.e., the output of the cell, is provided
as the input of a nonlinear Fully Connected Network (FCN),
which yields a single output value representing the predicted
LoS. The nonlinearity stems from the ReLU activation func-
tion leveraged in the FCN as shown in (3).

ŷt = ReLU (Wytht + byt) , (3)

with ŷt the predicted value for LoS at time t. Employing
ReLU(x) = max(0, x) forces the outcome to be strictly
positive. It is impossible for a patient to have a negative LoS,
therefore we restrict the model to only yield predictions in the
positive domain.

C. Client Recruitment
Consistent with the work discussed in [24], we consider

client recruitment to be a mechanism which is to be invoked
prior to establishing a federation for training. To this extent,
consider the set S of c potential clients with each a local
dataset Dc = {(xi, yi)}i where xi denotes the input data and
yi the target.

To facilitate client recruitment, we let each potential client
in S report a tuple (Pco, nc) to the central server where Pco

denotes the local distribution of the target and nc the local
sample size. From here, the global sample size ng and output
distribution Pgo can be calculated as shown in (4).

ng =
X

c

nc, Pgo =
X

c

Pco (4)

Using the tuple reported by the potential client, the local
representativeness of the client data ⌫c in relation to the global
dataset is calculated as a function of the output distribution
divergence and the local sample size:

⌫c = �dv

����
Pgo

ng
� Pco

nc

����
| {z }

�

+�san
�0.5
c , (5)

where �dv and �sa denote weight parameters that influence
the importance of the divergence of the output distribution and
local sample size respectively. Furthermore, P̃c�Pc converges
to N (µ, �

2) with µ = 0 at the rate of O(n�0.5
c ), with P̃c the

empirical local distribution [11], [26]. From this follows that
as nc grows larger, P̃c better approximates Pc [24]. Which is
a desired characteristic for client recruitment. By inclusion of
the term n

�0.5
c in (5), clients with larger local sample sizes

are favored over those with smaller sample sizes.
The local distribution divergence in terms of the target

denoted as � in (5) is calculated as the difference between
the normalized class counts locally and globally. In this
work, the target corresponds to the patient LoS in fractional
days. To facilitate the computation of the distribution diver-
gence, ten bins are constructed with each bin corresponding
to the frequency of target values (LoS in fractional days)
within the range for a given bin. The bins are defined as:
[(0, 1), [1, 2), [2, 3), ..., [7, 8), [8, 14), [14, +1)]. This formula-
tion converts the target from continuous to discrete classes for
which the class counts are used to compute � in (5).

To select clients for recruitment, the per client representa-
tiveness values from (5) are sorted and stored in the vector ⌫.
Consider:

⌫g =
X

c

⌫c, (6)

where ⌫g represents the global representativeness, used to
define the recruitment threshold ◆ = �th⌫g with �th a
configurable hyperparameter. Next, by summing over ⌫, the
value ⌫c at which the threshold ◆ is crossed, is identified.
All the corresponding clients for values up until that point
in ⌫ are recruited for the federation. This yields a subset of
clients which are the most representative in terms of the target
distribution divergence and local sample size.

Fig. 1. The distribution of the target (LoS) in the global training data with a
cutoff at 25 days on the x-axis. The y-axis represents the number of patients
(frequency) with their corresponding LoS in days as indicated on the x-axis.

Intuitively, when applied to the LoS setting, the central
server obtains a tuple (Pco, nc) from each of the potential
clients to compute ng and Pgo which is visually represented as
the global target distribution in Fig. 1. This information is then
used by the central server to compute for each of the potential
clients the local representativeness ⌫c as a weighted function
in terms of divergence from the global target distribution and



local sample size as shown in (5). A small subset of the
local target distributions is shown in Fig. 2. Visually it is
clear how some of the local target distributions diverge to
a greater extent from the global target distribution, shown in
1, compared to others. In addition, client recruitment requires
only a single calculation for each of the clients prior to forming
the federation and therefore does not consume any further
resources during the remainder of the training procedure.

Fig. 2: Subset of the, in total 189, local target distributions in
terms of Length of Stay in days and the corresponding patient
counts.

shown in Table II with with L the number of layers, N the
hidden dimension for each of the layers, ⌘ the learning rate, m

the batch size, wd the weight decay for the AdamW optimizer
and r the dropout.

TABLE II: Model hyperparameter settings used for both
central and federated training.

Model L N ⌘ m wd r
GRU 2 32 0.005 128 0.005 0.05
LSTM 2 32 0.005 128 0.005 0.05

For evaluation of the performance, all resulting models
are evaluated against the hold-out test set containing data
from all 189 hospitals. In addition to the MSLE, models
are evaluated using the Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and the Mean Squared
Error (MSE), shown in (8). As an indication of the time
complexity, the training time is reported, denoted as ⌧ , in
seconds.

MAE =
1

n

nX

i=1

|yi � ŷi|

MAPE =
1

n

nX

i=1

����
yi � ŷi

yi

����

MSE =
1

n

nX

i=1

(yi � ŷi)
2

(8)

1) Central training: Central training is performed consis-
tent with the traditional DL procedure in which all data is
assumed to be centrally available. The architecture presented
in IV-B is trained for a predetermined amount of 15 epochs
using the global train and validation sets, which consist of the

TABLE III: Settings specific to the federated models with ✏

the total number of clients in the federation, � the number of
clients randomly sampled from ✏ in each round of training and
(�dv , �sa, �th) the hyperparameters for client recruitment

Model ✏ � �dv �sa �th

Fed-AC 189 189 - - -
Fed-SC 189 19 - - -
Fed-ARC 54 54 0.5 0.5 0.1
Fed-SRC 54 5 0.5 0.5 0.1

accumulated data over all potential clients, i.e., the 189 orig-
inating hospitals. The resulting central model is subsequently
evaluated against the hold-out test set.

2) Federated training: The FL procedure with and without
client recruitment is simulated as a single process using the
FedML framework as proposed in [8]. In this work, for FL
without client recruitment, clients are either all considered
in each round of training or a subset is randomly sampled
consistent with the standard client selection implementation
described in FedAvg [14]. For FL with client recruitment,
the client recruitment process described in IV-C is invoked
prior to initiating the federation. Following the described
implementation, the recruitment of clients is influenced by
three user-defined hyperparameters �dv, �sa and �th which
respectively define the importance of the divergence in the
target distribution, the local sample size and percentage of the
global representativeness to be covered by the recruited clients.
In Fig. 3, a general overview of the federated training proce-
dure with client recruitment is shown with M representing the
central server that initially recruits clients for the federation
after which the federated training procedure is started for
training either the GRU or LSTM network.

Four different federated models are trained with their spe-
cific settings. The models differ in terms of the number
of clients that partake in the federation, denoted as ✏, the
percentage of clients in the federation that contribute to each
training round, denoted as �, and whether the federation is
comprised of recruited clients, or all clients. For each of the
federated models, each client trains for four epochs per round
of server-client communication for a total of 15 rounds. The
resulting model is subsequently evaluated against the hold-out
test set.

The specifications for the four different FL models trained
are; (i) Fed-AC: all clients make up the federation and partake
in each training round, (ii) Fed-SC: all clients make up the
federation, 10% of which are randomly sampled to partake in
each training round, (iii) Fed-ARC: recruited clients make up
the federation and partake in each training round and (iv) Fed-
SRC: recruited clients make up the federation, 10% of which
are randomly sampled to partake in each training round. The
settings specific to each of the models in the federated setting
are summarized in Table III.

Fig. 2. Subset of the, in total 189, local target distributions in terms of Length
of Stay in days and the corresponding patient counts. The distributions shown
correspond to, from left to right, the hospitals with the identifiers; 24, 74, 100
and 143.

D. Experimental settings
At training time, all training procedures use AdamW [14]

for optimization and the Mean Squared Logarithmic Error
(MSLE) as the loss function, calculated as:

MSLE =
1

n

nX

i=1

(log(yi + 1) � log(ŷi + 1))2, (7)

with yi the true target value and ŷi the predicted value. Fur-
thermore, the model hyperparameters are fixed over all training
iterations, both central and federated. The exact settings are
shown in Table II with with L the number of layers, N the
hidden dimension for each of the layers, ⌘ the learning rate, m

the batch size, wd the weight decay for the AdamW optimizer
and r the dropout.

TABLE II
MODEL HYPERPARAMETER SETTINGS USED FOR BOTH CENTRAL AND

FEDERATED TRAINING.

Model L N ⌘ m wd r
GRU 2 32 0.005 128 0.005 0.05
LSTM 2 32 0.005 128 0.005 0.05

For evaluation of the performance, all resulting models
are evaluated against the hold-out test set containing data

from all 189 hospitals. In addition to the MSLE, models
are evaluated using the Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and the Mean Squared
Error (MSE), shown in (8). As an indication of the time
complexity, the training time is reported, denoted as ⌧ , in
seconds.

MAE =
1

n

nX

i=1

|yi � ŷi|

MAPE =
1

n

nX

i=1

����
yi � ŷi

yi

����

MSE =
1

n

nX

i=1

(yi � ŷi)
2

(8)

1) Central training: Central training is performed consis-
tent with the traditional DL procedure in which all data is
assumed to be centrally available. The architecture presented
in IV-B is trained for a predetermined amount of 15 epochs
using the global train and validation sets, which consist of the
accumulated data over all potential clients, i.e., the 189 orig-
inating hospitals. The resulting central model is subsequently
evaluated against the hold-out test set.

2) Federated training: The FL procedure with and without
client recruitment is simulated as a single process using the
FedML framework as proposed in [9]. In this work, for FL
without client recruitment, clients are either all considered
in each round of training or a subset is randomly sampled
consistent with the standard client selection implementation
described in FedAvg [15]. For FL with client recruitment,
the client recruitment process described in IV-C is invoked
prior to initiating the federation. Following the described
implementation, the recruitment of clients is influenced by
three user-defined hyperparameters �dv, �sa and �th which
respectively define the importance of the divergence in the
target distribution, the local sample size and percentage of the
global representativeness to be covered by the recruited clients.
In Fig. 3, a general overview of the federated training proce-
dure with client recruitment is shown with M representing the
central server that initially recruits clients for the federation
after which the federated training procedure is started for
training either the GRU or LSTM network.

Four different federated strategies are implemented and
trained with either the GRU or LSTM model. The four
approaches differ in terms of the number of clients that partake
in the federation, denoted as ✏, the percentage of clients in the
federation that contribute to each training round, denoted as �,
and whether the federation is comprised of recruited clients, or
all clients. For each of the federated models, each client trains
for four epochs per round of server-client communication for
a total of 15 rounds. The resulting model is subsequently
evaluated against the hold-out test set.

The specifications for the four different FL strategies are;
(i) Fed-AC: all clients make up the federation and partake
in each training round, (ii) Fed-SC: all clients make up the



Models for both central and federated training

Central Server is in charge of
(i) recruiting the clients,

(ii) initializing the models,
(iii) orchestrate training,

(iv) aggregate local weight
updates into a global model

update using FedAvg,
(v) distribute a copy of the

fully trained model to all clients

pointwise operationNN layer

Fig. 3. General overview of the client recruitment and federated training procedure with M the central server and c1, ..., cn the potential clients. Each of the
clients is depicted with their corresponding target distributions for which the red cross indicates clients that are discarded to participate in the federation based
on the recruitment procedure. M is initially in charge of recruiting clients based on the representativeness of the locally hosted data and will subsequently
orchestrate the federated training procedure for either the GRU or LSTM models. The GRU and LSTM cells included are a visual representation of the
governing equations in (1) and (2).

TABLE III
SETTINGS SPECIFIC TO THE FEDERATED STRATEGIES WITH ✏ THE TOTAL
NUMBER OF CLIENTS IN THE FEDERATION, � THE NUMBER OF CLIENTS
RANDOMLY SAMPLED FROM ✏ IN EACH ROUND OF TRAINING AND (�dv ,

�sa , �th) THE HYPERPARAMETERS FOR CLIENT RECRUITMENT

Strategy ✏ � �dv �sa �th

Fed-AC 189 189 - - -
Fed-SC 189 19 - - -
Fed-ARC 54 54 0.5 0.5 0.1
Fed-SRC 54 5 0.5 0.5 0.1

federation, 10% of which are randomly sampled to partake
in each training round, (iii) Fed-ARC: recruited clients make
up the federation and partake in each training round and (iv)
Fed-SRC: recruited clients make up the federation, 10% of
which are randomly sampled to partake in each training round.
The settings specific to each of the strategies in the federated
setting are summarized in Table III.

V. RESULTS AND DISCUSSION

The results obtained for both the central and federated
training procedures as described in IV-D1 and IV-D2 are
reported in Table IV with ⌧ the training time in seconds and
the best performance per metric listed in bold.

A. Client recruitment results

When considering the results reported in Table IV, the
best performance for MSLE amongst the federated models
is obtained by Fed-AC for both GRU and LSTM. Here, all
clients make up the federation and partake in each round of

training. However, considering all clients at each round of
training incurs significant overhead, as illustrated by the high
training time for Fed-AC. The second best performing model
in terms of MSLE is Fed-SRC, trained with recruited clients,
for which a subset was randomly sampled at each round of
training. More specifically, as seen in Table III, 54 clients were
recruited from which 5 were randomly sampled at each round
of training. For both GRU and LSTM, Fed-SRC outperforms
Fed-SC and Fed-ARC in terms of MAE, MSE, MSLE and
training time. For GRU, Fed-SRC is the best overall performer
in terms of MAE and training time, whereas the best MAE for
LSTM is obtained by Fed-AC at 2.21 days, nevertheless, Fed-
SRC yields an MAE of 2.22 days at a fraction of the training
time.

The improved training time is a direct result of the reduced
number of clients recruited for the federation. The improved
performance can be attributed to the fact that model training
is subject to less noise in the data, again as a direct result of
the client recruitment procedure. Therefore, more informative
model updates are produced at each round of training, resulting
in lower empirical loss, which in turn improves performance.

In summary, the client recruitment approach allows for
models to be trained that outperform the standard FL approach
(Fed-SC) and perform on par or better than the centrally
trained model depending on the metric of interest. In addition,
the total training time is drastically reduced compared to either
central or federated models without client recruitment. In this
use case, models with a lower MAE in combination with
lower training time are of most value to the ICU. For both
GRU and LSTM, Fed-SRC outperforms the standard Fed-SC



TABLE IV
MODEL PERFORMANCE FOR CENTRAL AND FEDERATED MODELS WITH AND WITHOUT CLIENT RECRUITMENT. STATISTICAL SIGNIFICANCE AMONG THE

FEDERATED MODELS IN COMPARISON TO FED-SC IS INDICATED AS ⇤ AT THE 5% SIGNIFICANCE LEVEL AND ⇤⇤ AT THE 1% SIGNIFICANCE LEVEL.

Model Strategy MAE MAPE MSE MSLE ⌧ (s)

GRU

Central 2.21 ± 0.02 0.57 ± 0.06 21.94 ± 0.63 0.33 ± 0.01 2128 ± 18
Fed-AC 2.26 ± 0.06 0.63 ± 0.08⇤⇤ 21.61 ± 0.73⇤⇤ 0.33 ± 0.02⇤⇤ 5231 ± 29⇤⇤
Fed-SC 2.26 ± 0.06 0.46 ± 0.06 23.98 ± 1.26 0.41 ± 0.05 1469 ± 35
Fed-ARC 2.27 ± 0.12 0.57 ± 0.17⇤ 22.67 ± 1.83⇤⇤ 0.37 ± 0.05⇤ 3359 ± 25⇤⇤
Fed-SRC 2.21 ± 0.03⇤⇤ 0.46 ± 0.03 23.49 ± 0.73 0.37 ± 0.03⇤ 965 ± 24⇤⇤

LSTM

Central 2.20 ± 0.01 0.52 ± 0.04 22.45 ± 0.45 0.34 ± 0.01 1891 ± 12
Fed-AC 2.21 ± 0.04⇤⇤ 0.48 ± 0.06 23.18 ± 0.52⇤⇤ 0.37 ± 0.02⇤⇤ 4663 ± 46⇤⇤
Fed-SC 2.28 ± 0.08 0.44 ± 0.03 24.36 ± 1.13 0.43 ± 0.06 1301 ± 20
Fed-ARC 2.23 ± 0.02 0.43 ± 0.01 24.05 ± 0.48 0.40 ± 0.02 2866 ± 24⇤⇤
Fed-SRC 2.22 ± 0.03⇤⇤ 0.44 ± 0.02 23.96 ± 0.85 0.39 ± 0.03⇤ 864 ± 13⇤⇤

approach, obtaining a better MAE in a fraction of the required
training time. Thus, illustrating practical relevance of the client
recruitment procedure for larger federations in a real-world,
privacy-sensitive, setting.

B. Recruitment parameter effects

To gain additional insight in the behaviour of the client re-
cruitment procedure proposed in IV-C, we assess performance
under different settings for the user defined hyperparameters
�dv and �sa. �dv influences the importance of the divergence
in the distribution between the local target distribution and
that of the target in the global data whereas �sa affects the
importance of the local sample size in the client recruitment
approach.

We perform this analysis using the GRU model and tune
the parameters such that distribution divergence is prioritized
over the local sample size and vice versa as follows: Fed-
SRC-QG: divergence over sample size, and Fed-SRC-DG:
sample size over divergence. The parameter settings for both
the approaches are listed in Table V.

TABLE V
PARAMETER SETTINGS FOR THE QUALITY GREEDY (QG) AND QUANTITY

GREEDY (DG) APPROACHES.

Strategy �dv �sa

Fed-SRC-QG 1 0.01
Fed-SRC-DG 0.01 1

The above formulation is intuitively equivalent to the re-
cruitment process being quality greedy (QG) in the former and
quantity (data) greedy (DG) in the latter. The quality greedy
recruitment strategy allows for clients with smaller sample
sizes for which the output does not diverge significantly in
distribution to be recruited. The contrary is true for the quantity
greedy strategy in which the recruitment process neglects, to
some extent, the distribution divergence in the output and
favorably ranks clients with large local samples. Essentially,
this approach explores performance in the extremes of the
weighted function presented in (5).

The results in Table VI show that neither the quality greedy
approach, nor the quantity greedy approach perform better
than the Fed-SRC model shown in Table IV. In addition,

Fig. 4. Runtime versus MSLE (left) and runtime versus MAE (right) in
function of gradually increasing values for �th. Corresponding to a gradually
increasing number of recruited clients, denoted as Nrc, for each of the training
iterations.

we note how the data greedy approach results in increased
training time due to the larger sample sizes in the local data
of the recruited clients. The findings reported in Table VI,
when compared to the results for Fed-SRC in Table IV, show
the value of combining both divergence and local sample size
in the client recruitment process as neither of the extreme
strategies outperform the combined approach.

TABLE VI
MODEL PERFORMANCE FOR FEDERATED TRAINING WITH DATA GREEDY

AND QUALITY GREEDY RECRUITMENT STRATEGIES.

Strategy MAE MSLE ⌧ (s)
Fed-SRC-QG 2.23 ± 0.03 0.40 ± 0.03 891 ± 25
Fed-SRC-DG 2.22 ± 0.06 0.39 ± 0.05 1137 ± 15

Having covered the effects on performance under different
settings for �dv and �sa, we investigate how different settings
for �th affect the performance and training time. Higher values
for �th directly correspond to more recruited clients for the
federation, which in turn corresponds to higher training time.
To this extent, the value for �th is gradually increased in steps
of 0.05. For each step we observe the performance on the test
set in terms of MSLE, MAE and training time as shown in
Fig. 4. This shows how there is no direct relation between
performance and a higher number of recruited clients, even
more so, close to optimal performance can be obtained for
low values of �th, i.e., with few of the most representative
clients making up the federation.



VI. CONCLUSION, LIMITATIONS & FUTURE WORK

A. Conclusion

In this work, we present a client recruitment approach
considering only the local output distribution and local sample
size. In addition, we show practical relevance of the proposed
method in the medical setting. By recruiting clients in function
of the herein defined client-level representativeness, those
clients with smaller sample size in combination with those for
which the output distribution vastly diverges compared to that
of the global data are pre-excluded from the set of potential
clients for the federation. By applying client recruitment, the
predictive performance of the federated models significantly
increases compared to the models trained with the standard FL
approach. In addition, training time was significantly reduced
as a direct result of the reduced number of clients that partook
in training.

B. Limitations & Future Work

The main limitation of this work stems from the introduction
of the recruitment parameter, �th, which directly affects the
number of clients recruited for the federation. In a real-
world setting, tuning this parameter is not always feasible. In
addition, the present work is executed in a simulated, single
process environment for which communication overhead is not
a factor.

Future work will evaluate performance in a real-world
setting were data is hosted on actual servers corresponding to
the hospitals in separate networks. Here, client recruitment is
of even greater importance as it can greatly reduce the overall
required server-client communication. In addition, a direction
for future research is to look at how to, a priori, approximate
the optimal setting for �th. Furthermore, future work will
explore alternative recruitment strategies with a focus on
sampling from diverse subgroups in the data and assess local
performance of the federated models against models trained
on the local data only.
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APPENDIX

A. Features
Table VII outlines and describes the temporal and static

features that constitute the data cohort used for all training
procedures described within this work.

TABLE VII
EXTRACTED TEMPORAL AND STATIC FEATURES

Type Feature Description

Temporal

FiO2 Patient’s FiO2 value
Bedside glucose Patient’s glucose level
Cvp Patient’s cvp value
Heartrate Patient’s heart rate value
Noninvasivediastolic Patient’s non invasive diastolic value
Noninvasivemean Patient’s non invasive mean value
Noninvasivesystolic Patient’s non invasive systolic value
Respiration Patient’s respiration value
Sao2 Patient’s spO2 value
St1 Patient’s st1 value
St2 Patient’s st2 value
St3 Patient’s st3 value
Systemicdiastolic Patient’s diastolic value
Systemicmean Patient’s mean pressure
Systemicsystolic Patient’s systolic value
Temperature Patient’s temperature value in celsius
Hour Time since admission

Static

Hospitalid Surrogate key for the hospital
Gender Gender of the patient
Age Patient’s age in full years
Admissionheight Admission height of the patient in cm
Admissionweight Admission weight of the patient in kg
Intubated Whether patient is intubated at the

time of the worst ABG result
Vent Whether patient is ventilated at the

worst respiratory rate
Dialysis Whether patient is on dialysis
Eyes GCS score (1 to 4)
Motor GCS score (1 to 5)
Verbal GCS score (1 to 6)
Meds Whether GCS score could not be

obtained due to meds
Ethnicity Patient’s ethnicity
Unittype The picklist unit type of the unit
Unitadmitsource Picklist location from where the

patient was admitted
Unitstaytype Patient’s unit stay type
Physicianspeciality Picklist specialty of the care provider
> 89 Whether patient is over 89 years old


