
BIOINFORMATICS APPLICATIONS NOTE Vol. 20 no. 12 2004, pages 1974–1976
doi:10.1093/bioinformatics/bth179

A genetic algorithm for the detection of new
cis-regulatory modules in sets of coregulated
genes

Stein Aerts∗, Peter Van Loo, Yves Moreau and Bart De Moor

Department of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee (Leuven), Belgium

Received on August 7, 2003; revised on December 30, 2004; accepted on January 29, 2004

Advance Access publication March 25, 2004

ABSTRACT
Summary: The implementation of a genetic algorithm is
described that provides a fast method of searching for the
optimal combination of transcription factor binding sites in a
set of regulatory sequences.
Availability: The algorithm can be used transparently as
a web service from within the Toucan software. Toucan
can be accessed at http://www.esat.kuleuven.ac.be/~saerts/
software/toucan.php. A standalone version of the software is
available upon request.
Contact: stein.aerts@esat.kuleuven.ac.be

Microarray and other high-throughput experiments in
metazoans often yield sets of coexpressed genes that might
share common cis-regulatory modules in their promoters or
enhancers. Toucan (Aerts et al., 2003a) can be used to select
putative regulatory regions from Ensembl (Hubbard et al.,
2002) and to perform so-called cis-regulatory analysis. This
includes for example the annotation of putative transcrip-
tion factor binding sites (TFBSs) and the detection of new
DNA motifs. Recently, we have added a new web service
that searches for the optimal combination of TFBSs in a
sequence set using an A∗ tree search algorithm (Aerts et al.,
2003b). The score function that is used is essentially the
sum of the log-odds scores of the best hit of each indi-
vidual TF within a window of specified length L, summed
over all sequences in the set. Although this method guaran-
tees finding the optimal solution, it can be slow for certain
parameter settings, for large sequence sets or for modules
that contain many different transcription factors (e.g. more
than five). Therefore, we have implemented another search
algorithm based on genetic algorithms (GAs) that is faster
and more practical. The algorithm starts with the creation of
p random modules. A module is a vector that contains n�

position-specific probability matrices derived from TRANS-
FAC (Wingender et al., 2000) or from other matrix collections
that are available on our server. The list of modules is sorted

∗To whom correspondence should be addressed.

according to the score function mentioned above, and the s

highest scoring modules are retained for the reproduction step.
In the reproduction step, the population grows back to size
p by successive pairing and mutating of randomly selected
modules. When two modules are paired, for each position
in the vector one element is chosen from either of the two
parents, unless this element or a similar element is already
present in the child module. Each element of a child mod-
ule can then be mutated according to a mutation probability
ρ. After g generations, the ‘fittest’ module is selected as the
solution.

The complexity of the algorithm is O[g(p−s)nqn� ], where
n is the number of sequences in the set and q is the average
number of binding sites of a transcription factor on a sequence.
Figure 1A summarizes the GA procedure and Figure 1B shows
visually a reproduction example.

For the technical and biological validation of the algorithm,
we refer to the validation of the A∗ algorithm (Aerts et al.,
2003b). Since the GA does not guarantee optimality, the user
can perform multiple runs of the GA and select only those
modules that are found consistently among different runs. In
order to compare GA with A∗ in terms of accuracy (i.e. does
GA also find the optimal solution that A∗ finds?) and of speed,
we have run the GA and the A∗ versions on the same set of
sequences as in Aerts et al. (2003b). For a set of genes that
are coexpressed with cyclin B2 according to a time course
microarray experiment during cell cycle in human HeLa cells
(Whitfield et al., 2002), all human–mouse conserved sequence
blocks within 10 kb upstream of the transcription start site
are selected and scored with all position weight matrices of
TRANSFAC using the MotifScanner. The CPU time (on a
1 GHz Pentium III processor running Red Hat Linux) taken by
the GA, setting L to 100 bp and g to 100 iterations, is about 7,
10, 13 and 18 min when n� is set to 4, 5, 6 and 7, respectively.
The time required for A∗ increases more dramatically with n�.
For n� = 4, A∗ takes about 30 min, and for n� = 5 it takes
between 5 h and 3 days, depending on the dataset and on L.
n� > 5 was not feasible for this particular dataset, neither in
time nor in memory.

1974 Bioinformatics 20(12) © Oxford University Press 2004; all rights reserved.

http://www.esat.kuleuven.ac.be/~saerts/


Finding cis-regulatory modules

Evaluation: every module has 
a fitness value. The s best 

scoring modules are survivors.
g

Population: p random 
modules are generated.

Mutation: a factor in a module can be 
replaced by another factor with a 

certain mutation probability.

Reproduction: survivors are 
paired to create p new 
modules by crossover.

A

B

CJAVA Swing Graphical User Interface

Ensj-core

BioJava

MySQL SOAP HTTP

Ensembl EMBL

KULeuven 
Firewall

SOAP

fastA

JNLP

GFF

Supporting
data

ESAT
Numbercruncher

ESAT
Webserver

(1) (2)

Fig. 1. (A) Procedure of the GA; g is the number of generations. (B) Example of the generation of child modules by pairing (1) and
mutations (2). Each geometrical figure represents a transcription factor. (C) The Toucan software environment showing the use of BioJava,
Ensj-core and SOAP web services.

The maximum scores of three GA runs with 100 itera-
tions are, for n� = 3, 4, 5, exactly the same (and thus the
optimal module is found) as in A∗. Although we have no
results of A∗ for n� > 5, the results of GA for larger n�s
show the same scores in multiple runs of the GA (e.g. in two
out of three runs), and therefore, these can be assumed to
be the optimal scores. In conclusion, the GA version of the
ModuleSearcher is capable of finding the optimal combina-
tion of binding sites without a limitation on the number of
sites and within a fraction of the time that A∗ needs.

A newly found module should be validated in silico by
screening the full genome of the species that was used. For
this purpose, several methods have been published recently
that take the individual matrices of a module as input and
that return putative hits with a certain statistical signific-
ance: COMET (Frith et al., 2002), MSCAN (Johansson et al.,
2003), Stubb (Sinha et al., 2003), CREME (Sharan et al.,
2003), MCAST (Bailey and Noble, 2003) and ModuleScanner
(Aerts et al., 2003b). A module that was found in the ‘train-
ing set’ by using the ModuleSearcher (either the A∗ or the
GA version) can be retained for experimental validation in
case (1) multiple top-scoring genes found in the genome-
scan overlap with the genes of the training set; and (2) the
top-scoring genes are functionally coherent and related to the
function of the genes in the training set. The latter can be
investigated by comparing the over-represented Gene Onto-
logy annotations of both gene sets, using tools like FatiGO
(http://fatigo.bioinfo.cnio.es/), GOMiner (Zeeberg et al.,
2003), EASE (http://david.niaid.nih.gov/david/ease.htm) or
GO4G (Coessens et al., 2003).

The ModuleSearcher is available within Toucan. This is
a Java application that can be launched directly from our
web site using Java Web Start. Behind the user interface,

we have made extensive use of the BioJava library for all
sequence and annotation actions. The bottom layer of the
application serves two goals: data access classes and web ser-
vice client classes. The Ensj-core library of Ensembl is used
to retrieve genes, transcripts and annotations either from the
public Ensembl database or from a local Ensembl installation.
Via the MySQL classes, direct queries to the Ensembl MySQL
database are also possible. The Apache SOAP (simple object
access protocol) implementation is used to send requests in
XML format to services running on our servers. For most
services, a fastA formatted string together with some para-
meters of the algorithm is sent to the service (running within
Tomcat on Apache), and GFF formatted features are sent back
to Toucan after the execution of the algorithm. For reasons of
efficiency we do not run the methods on the web server itself
but send RMI (remote method invocation) requests to a dedic-
ated machine that performs all calculations. Figure 1C shows
a detailed view of the design of the Toucan platform with its
components and its web services.

The following web services are available currently: Motif-
Scanner, MotifLocator, MotifSampler, AVID/VISTA (Bray
et al., 2003), Footprinter (Blanchette and Tompa, 2002)
and ModuleSearcher. To find modules, the user runs Motif-
Scanner, MotifLocator or MotifSampler to annotate putative
TFBSs and then he/she runs ModuleSearcher on the annot-
ated set. A manual, tutorial, installation instructions, news
list, references and a list of all available web services can be
found on the application’s website.

ACKNOWLEDGEMENTS
S.A. is a research assistant at the K.U.Leuven. Y.M. is a
postdoctoral researcher of the FWO-Vlaanderen, currently on

1975

http://fatigo.bioinfo.cnio.es/
http://david.niaid.nih.gov/david/ease.htm


S.Aerts et al.

leave at the Center for Biological Sequence Analysis, Danish
Technical University, Lyngby, Denmark. B.D.M. is a full
professor of the K.U.Leuven. Research supported by Research
Council KUL, GOA-Mefisto 666, IDO; Flemish Govern-
ment, FWO, projects G.0115.01, G.0240.99, G.0407.02,
G.0413.03, G.0388.03, G.0229.03, ICCoS, ANMMM; AWI;
IWT; STWW-Genprom, GBOU-McKnow, GBOU-SQUAD,
GBOU-ANA; Belgian Federal Government, DWTC (IUAP
IV-02 and IUAP V-22); EU, CAGE; ERNSI; Contract
Research/agreements, VIB.

REFERENCES
Aerts,S., Thijs,G., Coessens,B., Staes,M., Moreau,Y. and

De Moor,B. (2003a) Toucan: deciphering the cis-regulatory logic
of coregulated genes. Nucleic Acids Res., 31, 1753–1764.

Aerts,S., Van Loo,P., Thijs,G., Moreau,Y. and De Moor,B.
(2003b) Computational detection of cis-regulatory modules.
Bioinformatics, 19(Suppl. 2), II5–II14.

Bailey,T. and Noble,W. (2003) Searching for statistically significant
regulatory modules. Bioinformatics, 19(Suppl. 2), II16–II25.

Blanchette,M. and Tompa,M. (2002) Discovery of regulatory ele-
ments by a computational method for phylogenetic footprinting.
Genome Res., 12, 739–748.

Bray,N., Dubchak,I. and Pachter,L. (2003) AVID: a global alignment
program. Genome Res., 13, 97–102.

Coessens,B., Thijs,G., Aerts,S., Marchal,K., De Smet,F.,
Engelen,K., Glenisson,P., Moreau,Y., Mathys,J. and De Moor.,B.
(2003) INCLUSive: a web portal and service registry for micro-
array and regulatory sequence analysis. Nucleic Acids Res., 31,
3468–3470.

Frith,M. C., Spouge,J. L., Hansen,U. and Weng,Z. (2002) Statistical
significance of clusters of motifs represented by position specific
scoring matrices in nucleotide sequences. Nucleic Acids Res., 30,
3214–3224.

Hubbard,T., Barker,D., Birney,E., Cameron,G., Chen,Y., Clark,L.,
Cox,T., Cuff,J., Curwen,V., Down,T. et al. (2002) The Ensembl
genome database project. Nucleic Acids Res., 30, 38–41.

Johansson,O., Alkema,W., Wasserman,W. and Lagergren,J. (2003)
Identification of functional clusters of transcription factor bind-
ing motifs in genome sequences: the MSCAN algorithm.
Bioinformatics, 19(Suppl. 1), I169–I176.

Sharan,R., Ovcharenko,I., Ben-Hur,A. and Karp,R. (2003) CREME:
a framework for identifying cis-regulatory modules in human-
mouse conserved segments. Bioinformatics, 19(Suppl. 1),
I283–I291.

Sinha,S., Van Nimwegen,E. and Siggia,E. (2003) A probab-
ilistic method to detect regulatory modules. Bioinformatics,
19(Suppl. 1), I292–I301.

Whitfield,M.L., Sherlock,G., Saldanha,A.J., Murray,J.I., Ball,
C.A., Alexander,K.E., Matese,J.C., Perou,C.M., Hurt,M.M.,
Brown,P.O. and Botstein,D. (2002) Identification of genes peri-
odically expressed in the human cell cycle and their expression in
tumors. Mol. Biol. Cell., 13, 1977–2000.

Wingender,E., Chen,X., Hehl,R., Karas,H., Liebich,I., Matys,V.,
Meinhardt,T., Pruss,M., Reuter,I. and Schacherer,F. (2000)
TRANSFAC: an integrated system for gene expression regulation.
Nucleic Acids Res., 28, 316–319.

Zeeberg,B.R., Feng,W., Wang,G., Wang,M.D., Fojo,A.T.,
Sunshine,M., Narasimhan,S., Kane,D.W., Reinhold,W.C.,
Lababidi,S. et al. (2003) GoMiner: a resource for biological
interpretation of genomic and proteomic data. Genome Biol.,
4, R28.

1976


