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A Multiple-Input Multiple-Output Cepstrum
Oliver Lauwers , Oscar Mauricio Agudelo, and Bart De Moor

Abstract—This letter extends the concept of scalar cep-
strum coefficients from single-input single-output linear
time invariant dynamical systems to multiple-input multiple-
output (MIMO) models, making use of the Smith–McMillan
form of the transfer function. These coefficients are inter-
preted in terms of poles and transmission zeros of the
underlying dynamical system. We present a method to com-
pute the MIMO cepstrum based on input/output signal data
for systems with square transfer function matrices (i.e.,
systems with as many inputs as outputs). This allows us
to do a model-free analysis. Two examples to illustrate
these results are included: a simple MIMO system with
three inputs and three outputs, of which the poles and
zeros are known exactly, that allows us to directly verify
the equivalences derived in this letter, and a case study on
realistic data. This case study analysis data coming from a
(model of) a non-isothermal continuous stirred tank reactor,
which experiences linear fouling. We analyze normal and
faulty operating behavior, both with and without a controller
present. We show that the cepstrum detects faulty behavior,
even when hidden by controller compensation. The code
for the numerical analysis is available online.

Index Terms—Linear systems, fault detection.

I. INTRODUCTION

IN THIS letter, we present an extension of the definition of
the cepstrum to MIMO systems. The main contributions of

this letter are
• the definition of the MIMO cepstrum,
• its interpretation in terms of poles and zeros,
• a computational scheme to estimate the MIMO cepstrum

in the case of a system with as many inputs as out-
puts. This allows a model-free analysis of the underlying
dynamics of input/output signals. We present a control
theory case study on linear fouling in a non-isothermal
continuous stirred tank reactor.
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For the case where there are unequal numbers of inputs and
outputs, a computational scheme to estimate the cepstrum from
input and output signals is still lacking.

The cepstrum is a long-standing and versatile technique
in signal processing, first discussed in [1]. Originally, it was
applied for the echo detection in seismic signals. The cep-
strum has been used in a wide variety of applications, such as
pitch detection in acoustic signals [2], analysis of mechanical
problems [3] and human activity recognition [4].

Applications are not only diagnostic, but also include
parameter estimation [2], system identification and
prediction [5], and assessing dynamical (dis)similarity between
signals [6]. One of the main advantages of cepstral techniques
is a rich theoretical framework, with an interpretation of the
coefficients in terms of poles and zeros of the model.

This notion of the cepstrum of a signal was developed in the
context of stochastic Linear Time Invariant (LTI) Single-Input
Single-Output (SISO) dynamical systems. A major drawback
is the absence of a notion of cepstral coefficients in the case of
multiple inputs and multiple outputs (MIMO systems). While
it is possible to calculate cepstra of each individual output and
input, and create a cepstral coefficient matrix, it is not clear
how this can be interpreted in terms of poles and zeros of the
MIMO system as a whole.

The definition of the cepstrum to MIMO systems presented
in this letter produces a scalar coefficient sequence, that
reduces to the normal definition of the cepstrum in the SISO
case, but preserves the interpretation in terms of poles and
zeros of the system in the MIMO case.

This letter is structured as follows. Section II presents the
concepts, notation and definitions used throughout this letter.
Section III extends the cepstrum to the MIMO case, and its
interpretation in terms of poles and zeros of the model. It also
introduces an algorithm to compute the cepstrum in the case
of square transfer matrices. Section IV presents two numerical
illustrations: a simple, fully-known synthetic model and a case
study on a realistic dataset concerning linear fouling in a non-
isothermal continuous stirred tank reactor, violating some of the
assumptions made in introducing the cepstrum. The techniques
presented in this letter will turn out to be quite robust and allow
us to analyse this realistic scenario. Section V will provide
some general conclusions and possible paths for future work.

II. CONCEPTS, NOTATION AND DEFINITIONS

In this section, we explain some concepts, notation and def-
initions that are used in the rest of this letter. In Section II-A,
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we give a brief overview of the cepstrum in the traditional
SISO framework and repeat its interpretation in terms of poles
and zeros of the system. Section II-B introduces the concept
of Smith-McMillan forms of MIMO transfer matrices, which
we employ in defining a MIMO cepstrum.

A. SISO Cepstrum

A LTI SISO dynamical system can be represented as a state-
space model {

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (1)

where t denotes (discrete) time, x(t) ∈ Rn are the states of the
model, u(t) and y(t) input and output sequences respectively
and A, B, C and D system matrices of appropriate dimen-
sions. We assume the model to be minimal (i.e., observable
and controllable).

Using the z-transform from [7] with x(0) = 0, this can be
written as

Y(z) = H(z)U(z), (2)

where U(z) and Y(z) are the z-transform of input and output
respectively, and H(z), the transfer function of the system,
which is the z-transform of the impulse response of the system.

The transfer function is a rational function of z, with both
numerator and denominator polynomials. We can write

H(z) = g
b(z)

a(z)
, (3)

where g ∈ R is the constant gain of the system, and a(z) and
b(z) are monic polynomials of degree n, the roots of which
are respectively poles (denoted by αi, i ∈ {1, 2, . . . , n}) and
zeros (denoted by βi, i ∈ {1, 2, . . . , n}) of the system. For
simplicity we assume the system to be stable (i.e., |αi| <

1,∀i), causally invertible (i.e., n poles and n zeros),1 minimum-
phase (i.e., |βi| < 1,∀i)2 and minimal (i.e., αi �= βj,∀i,∀j).
To keep notation simple, we assume that all poles and zeros
are simple (i.e., they have multiplicity 1) throughout this text.
Extensions to multiple poles and zeros are possible but would
burden notation.

The transfer function leads to the notion of power spectral
density, defined as [7]

�H(eiω) = H(eiω)H(eiω) = ∣∣H(eiω)
∣∣2 =

∣∣∣∣gb(eiω)

a(eiω)

∣∣∣∣
2

. (4)

Here, the subscript ·H denotes that it is the power spectral
density of the transfer function. Similar notation for input and
output leads to �U and �Y . Here, U(eiω) and Y(eiω) are esti-
mated empirically using Welch’s method [6], [8]. The overbar

1Note that we can assume this without loss of generality. For the purpose
of this letter, we can always add zeros at z = 0 without changing results. We
will see that the expression of the cepstrum in terms of the poles and zeros
of the model, Equation (7), is not impacted by zeros at z = 0. For a more
detailed discussion, see [5].

2The assumptions of stable and minimum-phase systems assures us that
the series expansion in Equation (29) in the Appendix converges. Unstable
poles and maximum-phase zeros can be included, as in the SISO case, but
some conceptual issues remain. For a detailed discussion, see [2].

denotes the complex conjugate, i the imaginary unit and ω is
the angular frequency.

The (power) cepstrum3 of a system is then defined as

cH(k) = F−1(log �H(eiω)), (5)

where F−1 is the inverse Fourier transform. Similar defini-
tions hold for the cepstra of input and output, cU and cY .

The rationale behind the use of the cepstrum in signal
processing comes from homomorphic signal processing [2].
A look at Equation (5) shows us that the cepstrum takes
convolutions in the time domain to a multiplication in the
power spectral domain and then to additions via the loga-
rithm. To return to (a transformed version of) the time domain,
the inverse Fourier transform is applied. The original con-
volutional structure is thus equivalent to an additive one.
In other words, a convolution of two signals in the time
domain, u = u1 ∗ u2, will result in an addition of their cep-
stra, cU = cU1 + cU2 . This rationale serves as an intuitive
interpretation of the cepstrum: it serves as a transformation
of the time domain that simplifies the convolutional structure
typical in signal processing. A physical interpretation in terms
of poles and zeros is given below.

The cepstrum coefficients can be interpreted in terms of
poles and zeros of the underlying system. In particular, for a
system with transfer function

H(z) = g
b(z)

a(z)
= g

∏n
i=1(1 − βiz−1)∏n
i=1(1 − αiz−1)

, (6)

we can show (see the Appendix for a derivation) that

cH(k) =
n∑

j=1

α
|k|
j

|k| −
n∑

j=1

β
|k|
j

|k| ∀k �= 0,

cH(0) = log(g2). (7)

These expressions link the power cepstrum to the poles and
zeros of the underlying dynamics. It is this connection that
makes the cepstrum a powerful signal processing technique.
E.g., this property allows the cepstrum to be employed to
define a similarity measure that takes into account underlying
dynamics of signals [6], [9]. It is therefore a logical conclusion
to demand that any extension of the cepstrum to the MIMO
case should retain this interpretability.

In what follows, we will define an extension that is con-
nected in a similar way to poles and zeros of the MIMO
system. To do so, we introduce the Smith-McMillanform, mak-
ing the connection between the transfer matrix and its poles
and zeros more explicit.

B. Smith-McMillan Form

For a system with l inputs and m outputs, a transfer matrix
is a m × l matrix, the elements of which are rational func-
tions. In this section, we explain the Smith-McMillan form of a

3The terminology power cepstrum comes from the fact that it is derived
from the power spectrum of the signal. A similar concept, based on the z-
transform itself, is known as the complex cepstrum. In this letter, we only
discuss the power cepstrum. We will use the terms power cepstrum and
cepstrum interchangeably.
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rational matrix. This form of the transfer function is a pseudo-
diagonal matrix, with non-zero diagonal elements consisting
of polynomials. For the definition in this Subsection, we rely
heavily on [7].

Pseudo-diagonalising the transfer matrix is done by apply-
ing elementary operations on a rational matrix, which are

• multiplication of a row/column by a constant,
• switching positions of two rows/columns,
• addition of a polynomial multiple of one row/column to

another.
These elementary operations can be represented as matri-
ces, which multiply a rational matrix from the left for row
operations, and from the right for column operations.

Combining the corresponding row operations into a unimod-
ular (i.e., of constant determinant) polynomial matrix V1(z),
and the corresponding column operations into a unimodular
polynomial matrix V2(z), we can write for a transfer matrix
H(z)

V1(z)H(z)V2(z) = M(z), (8)

with

M(z) =
(

diag
{

bi(z)
ai(z)

}
0

0 0

)
, (9)

where ai+1(z)|ai(z) (i.e., ai+1(z) exactly divides ai(z)),
bi(z)|bi+1(z) and i ∈ {1, 2, . . . , r}, with r the normal rank
of H(z). Any constant gains are absorbed into the unimodular
matrices in Equation (8).

We denote

b(z) =
r∏

i=1

bi(z), a(z) =
r∏

i=1

ai(z), (10)

the zero and pole polynomial respectively, i.e., the solutions
of b(z) = 0 and a(z) = 0, equal to the zeros and poles of the
transfer matrix H(z).

In fact, poles and zeros can be (and are) defined for MIMO
systems as the roots of the diagonal elements of the Smith-
McMillan form. A more detailed discussion on MIMO poles
and zeros can be found in [7].

III. MIMO CEPSTRUM

For the MIMO case, the assumptions on the transfer matrix
are the same as in the SISO case, presented directly after
Equation (3), with one notable exception: as the transfer matrix
is of size m×l, and therefore not necessarily square, we cannot
assume invertibility of H(z). We replace it by an assumption
on the normal rank of the transfer matrix:

r = min{m, l}. (11)

Based on the size of H(z) (i.e., the amount of inputs, l relative
to the amount of outputs, m), this assumption is equivalent to:

m > l we assume left-invertibility, i.e., there exists an l×m
matrix L(z) such that L(z)H(z) = 1l, where 1l is
the l × l identitiy matrix; this matrix L(z) is the
left-inverse of H(z),

m < l we assume right-invertibility, i.e., there exists an
m × l matrix R(z) such that H(z)R(z) = 1m, where

1m is the m × m identitiy matrix; this matrix R(z)
is the right-inverse of H(z),

m = l we assume the matrix to be invertible.

A. Definition of the MIMO Cepstrum

With the assumptions made above, we extend the cepstrum
to the MIMO case, for a transfer matrix H(z) with Smith-
Mcmillan form M(z) and m < l, as

cM(k) = F−1
(

log det
(

M(eiω)M(eiω)
ᵀ))

, (12)

with ·ᵀ denoting the matrix transpose. For the case where
m > l the definition is the same, but with the position of the
transpose switched. For m = l, these are equivalent.

In the next Subsection, we will show how to interpret this
extension of the cepstrum in terms of poles and zeros of the
transfer matrix.

B. Interpretation in Terms of Poles and Zeros

In this section, we work with the assumption that the trans-
fer matrix is right-invertible (i.e., m < l). The other cases are
completely analogous, with transposes switching places, and
we will not repeat the derivation.

From Equation (9), and the assumption that H(z) (and there-
fore M(z)) has normal rank r = min{m, l} = m, we have (with
i ∈ {1, 2, . . . , r})

M(eiω)M(eiω)
ᵀ = diag

{∣∣∣∣bi(eiω)

ai(eiω)

∣∣∣∣
2
}

. (13)

Taking the determinant, and applying Equation (10), we find

det
(

M(eiω)M(eiω)
ᵀ)

=
∣∣∣∣b(eiω)

a(eiω)

∣∣∣∣
2

. (14)

This ratio of the zero and pole polynomial, however, is equiv-
alent to the SISO case, where these polynomials are directly
encapsulated in the transfer function (6). The MIMO problem
can now be solved in exactly the same way, following the
derivation in the Appendix. We again get the result

cM(k) =
n∑

j=1

α
|k|
j

|k| −
n∑

j=1

β
|k|
j

|k| ∀k �= 0.

cM(0) = 0. (15)

Note that the difference for k = 0 between the MIMO and
SISO cases stems from the fact that, in the Smith-McMillan
form, the constant gain is absorbed in the unimodular matrices
in Equation (8). This gives an interpretation of the MIMO
cepstrum in terms of poles and zeros of the underlying model.

The power cepstrum can now be readily derived whenever
the Smith-McMillan form (8) is available. In general, it is not
straightforward to compute it given only input and output sig-
nals. When m �= l, we have no way of computing the cepstrum
without explicitly estimating a model and deriving the Smith-
McMillan form. For the case where m = l, we present a way
to do so in the next Subsection.



LAUWERS et al.: MIMO CEPSTRUM 275

C. Computation When m = l

When there are as many inputs as outputs, we will prove
that definition (12) is equivalent (except for k = 0) to

cH,comp(k) = F−1(log det �H(eiω)), (16)

with �h the transfer matrix power spectrum, defined as

�H(eiω) = H(eiω)H(eiω)
ᵀ
. (17)

We can calculate the determinant of the power spectrum, using
the Smith-McMillan form (8), as

det �H = det
(

V−1
1 MV−1

2 V−1
1 MV−1

2

ᵀ)
. (18)

Here, V−1
1 and V−1

2 are the inverse of the unimodular matri-
ces in Equation (8), and therefore themselves unimodular.
We dropped the variables to make notation easier, but we
understand all the matrices involved to be evaluated on the
unit circle, e.g., �H = �H(eiω). Working out the transpose,
and using the fact that the determinant is a multiplicative
map4 for square matrices (i.e., for square matrices A and B,
det(AB) = det(A) det(B)), we can write

det �H = det
(

V−1
1 V−1

1

ᵀ)
det

(
MM

ᵀ)
det

(
V−1

2 V−1
2

ᵀ)
. (19)

Unimodular matrices are matrices that have, by definition, a
constant determinant. Denote the determinant of V−1

1 as cV1

and that of V−1
2 as cV2 , which leads to

det �H = |cV1 |2|cV2 |2 det
(
MM

ᵀ)
. (20)

Using this, and comparing Equation (16) and (12),

cH,comp(k) = cM(k) + F−1 log
(
|cV1 |2|cV2 |2

)
. (21)

Following the derivation in the Appendix, we see that this
leads to

cH,comp(k) = cM(k) ∀k �= 0,

cH,comp(0) = log
(
|cV1 |2|cV2 |2

)
. (22)

While it is true that we cannot, in general, know the size
of the error of our estimation on cM(0), in practical applica-
tions of the cepstrum (see for example the distances defined
in [6], [9], and [12]), this coefficient is often not important, as
it contains only information on the gain of the system.

One last step, to be able to compute the MIMO cep-
strum based on input/output data of a system, is to estimate
log det �H . We know �Y = �H�U , and easily see that, for
square systems,

log det �H = log det �Y − log det �U . (23)

Equivalently, since the inverse Fourier transform is a linear
operator, we can calculate the cepstra of input and output with
Equation (16) and write

cH,comp(k) = cY,comp(k) − cU,comp(k),∀k �= 0. (24)

4This is the troublesome step when m �= l and there will not necessarily be a
straightforward equivalence between det �H and det(MMᵀ

). A generalization
of the multiplicative property, the Binet-Cauchy theorem [10], [11], may offer
a solution, which we will not explore further here.

Since u(k) and y(k), the input and output signals, are given,
we have found a data-driven, model-free way to compute the
MIMO cepstrum for systems with m = l.

In the next Section, we will give some numerical illustra-
tions and applications.

IV. ILLUSTRATION AND APPLICATION

In this Section, we first give a numerical illustration on
synthetic data coming from a simple model. This will provide
insight in the techniques presented in this letter. Afterwards,
we show numerical results for a case study on faults in a Non-
isothermal Continuous Stirred Tank Reactor. This is a realistic
dataset and violates some of the assumptions made in this text.
The cepstrum turns out to be quite robust. The code used to
analyse these models is available online.5

A. Numerical Illustration

The first example serves as a numerical illustration. It con-
sists of a fully known, synthetic dataset, generated from an
easy-to-understand model. The purpose of this first exam-
ple is to show that the results obtained in Section III-C,
namely the equivalence between the proposed algorithm and
the theoretical results from Section III-B, indeed hold true
numerically.

We implement (in MATLAB) a simple MIMO system with
3 inputs and 3 outputs. The poles, zeros and gains of the
individual entries are chosen randomly, but it is made sure
that the transmission zeros of the MIMO system are minimum-
phase. The seed of the random number generator was set to
default, for reproducibility. The system is generated as a state-
space model, which behaves better numerically in the MIMO
case. The transmission zeros of the MIMO system are βi =
{−0.9681, 0.4419, 0.0916 ± 0.1453i} and the poles are αi =
{0.1786 ± 0.3300i,−0.2769 ± 0.1793i, 0.0634}.

We generate a white noise input of length 216, with random
gains for every individual input channel. The computation in
Section III-C is used as an estimate of the cepstrum, and com-
pared with the exact cepstrum in Equation (15). Results are
shown in Fig. 1. The computational cepstrum is indeed a very
good estimate of the exact one.

The white noise data results in a power cepstrum that is non-
zero for cH,comp(0), but vanishes everywhere else, analogous
to the SISO case [5]. This was to be expected, but provides
an extra argument that the definition presented in this text is
a natural generalization.

B. Case Study: Fouling in Non-Isothermal Continuous
Stirred Tank Reactor

Continuous Stirred Tank Reactors (CSTRs) are one of the
most important and fundamental units in chemical industry.
They are characterized by highly nonlinear dynamics and they
pose a challenging problem for fault prognosis and early fault
detection algorithms. The CSTR considered in this section is a
non-isothermal reactor where a single, first order, irreversible,
and exothermic reaction takes place (A → B).

5https://github.com/Olauwers/MIMOcepstrum
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Fig. 1. The theoretical cepstrum from Equation (15) and the estimate
presented in Section III-C for the synthetic data from Section IV-A. We
see that the computational cepstrum is a very good estimate of the exact
one. The differences (for k �= 0) are of order 10−4.

The model of the reactor consists of the following nonlinear
ordinary differential equations:

dCA

dt
= q

V

(
CAf − CA

) − CAk0e− E
RT + v1

dT

dt
= q

V

(
Tf − T

) − �H

ρCp
CAk0e− E

RT + UA

VρCp

(
Tj − T

) + v2

(25)

with CA and T the reactant concentration and temperature
respectively inside the reactor, Tj the jacket temperature, q
the flow rate of the feed flow, Tf the temperature of the
feed flow, CAf the concentration of the reactant in the feed
flow, and v1, v2 independent system noise processes, with
vi ∼ N(0, σ 2

vi
= 0.01). Parameters of the model and their

numerical values (taken from [13]) are: V = 100 L (volume of
the mix), k0 = e13.4 min−1 (kinetic constant), E/R = 5360 K
(E is the activation energy and R is the ideal gas con-
stant), (−�H) = 17835.821 J/mol (heat of the reaction),
ρ = 1000 g/L (density), Cp = 0.239 J/g/K (specific heat),
and UA = 11950 J/min/K (U is the overall heat transfer coef-
ficient, A is the area of the heat exchange between reactor
wall and jacket) in ideal conditions (no fouling). Under nor-
mal conditions, the operating point of the reactor is given by
C∗

A = 0.2 mol/L, T∗ = 446 K, q∗ = 100 L/min, T∗
j = 419 K,

T∗
f = 400 K and C∗

Af
= 1 mol/L.

A control system consisting of two PID controllers and a
decoupler keeps CA and T around their nominal values C∗

A and
T∗, by manipulating the jacket temperature Tj and the flow rate
of the feed flow q. The control law in the Laplace domain is
as follows [13]:[

q(s)
Tj(s)

]
=

[
5 1
1 2

][
(Kp + Kds + Ki/s)EC(s)
(Kp + Kds + Ki/s)ET(s)

]
(26)

with EC(s) = CA(s) − C∗
A(s), ET(s) = T(s) − T∗(s), Kp = 1,

Kd = 0.1 and Ki = 10.
Fouling, the accumulation of unwanted material on a heat

transfer surface that increases its thermal resistance, is one
of the most serious issues in heat transfer equipment. We
distinguish two types of fouling: asymptotic and linear. In
asymptotic fouling the resistance to heat transfer increases fast

Fig. 2. The cepstrum coefficients for input, output and process. We
show both normal and faulty operating behavior, with (CL) and without
(OL) the controller. The cepstral coefficients for the process in (c) clearly
show different fingerprints for the different cases. The normal operating
behavior changes only slightly when turning on the controller, capturing
the extra dynamics of the controller. However, faulty operating behavior
results in a deviation from the normal operating behavior, both in OL
and, notably, in CL, capturing faults hidden by the controller. We can see
the different contributions to this process cepstrum (see Equation (24))
in (a) and (b): (a) shows the change in the input dynamics in the faulty
regime, when the controller starts compensating. (b) shows the change
in the output in the faulty regime when the controller is turned off.

when the operation starts and becomes asymptotic to a steady
state value at the end. In linear fouling the resistance increases
linearly during the entire process operation. Here, we consider
the second type, linear fouling. The overall heat transfer coef-
ficient U multiplied by the heat exchange area A in (25) is
given by the equation (t in minutes)

U(t)A =
{

11950, t ≤ 5000
11950 − 0.8365(t − 5000), t > 5000.

(27)

Two datasets of 10000 points have been generated (sam-
pling time = 1 min), one when the controller is active and
one when the controller has been switched off. Only the
controlled (CA and T) and manipulated variables (q and
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Tj) are measured, which are contaminated with measurement
noise: ηCA ∼ N(0, σ 2

CA
= 10−5), ηT ∼ N(0, σ 2

T = 0.005),
ηq ∼ N(0, σ 2

q = 10−6), and ηTj ∼ N(0, σ 2
Tj

= 10−6).
We estimate the cepstra of input, output and of the process

itself and show that the MIMO cepstrum indeed captures the
dynamics of the processes and controller involved. The 200
data points around the fault are omitted. Results are shown
and discussed in Fig. 2a for the input signals, Fig. 2b for the
output signals and Fig. 2c for the process dynamics. Notice
that the cepstrum of the process explicitly shows the change in
the reactor dynamics, whether the controller is on or off, and
detects hidden faults in a process, without having to model the
process.

This makes the MIMO cepstrum a very promising technique
for building new anomaly detection or fault prognosis algo-
rithms, for example by extending and employing the distance
measure from [5], [6], and [12] in a clustering algorithm.

V. CONCLUSION AND FUTURE WORK

In this letter, we introduced a new definition for the power
cepstrum, that extends it to systems with multiple inputs and
outputs, based on the Smith-McMillan form of the system.
This new power cepstrum is then interpreted in terms of the
poles and zeros of the underlying models. For systems with
as many inputs as outputs, we provide a method to calculate
the power cepstrum based on input and output data.

We then illustrate the theoretical results from this letter with
a numerical example on a simple synthetic model, and on
a realistic dataset concerning a Non-isothermal Continuous
Stirred Tank Reactor. We show that the methods and inter-
pretations presented here indeed hold numerically.

The Reactor case study shows potential to leverage the
extended power cepstrum as an anomaly detection technique.
We believe that every fault will have its own "fingerprint"
in the cepstrum domain, which will then allow us to discern
between different (perhaps compounded) types of faults.

Future work includes extending the distance in [6] to the
MIMO case, providing data-driven ways to compute the cep-
strum in the case of unequal number of inputs and outputs
and proving links with canonical correlations and mutual
information, as in the SISO case [5].

APPENDIX

In this Appendix, we derive the results in Equation (7).
Starting from Equation (6) and using Equation (4), we write

log(�H(eiω))

= log(H(eiω)H(eiω))

= log(g2) +
n∑

i=1

(
log

(
1 − βie

−iω) + log
(
1 − β ie

iω))

−
n∑

i=1

(
log

(
1 − αie

−iω) + log
(
1 − αie

iω))
. (28)

Employing the series expansion

log(1 − x) = −
∞∑

k=1

xk

k
∀|x| < 1, (29)

we find

log(�H(eiω)) = log(g2) −
n∑

i=1

( ∞∑
k=1

βk
i

k
e−ikω +

∞∑
k=1

β
k
i

k
eikω

)

+
n∑

i=1

( ∞∑
k=1

αk
i

k
e−ikω +

∞∑
k=1

αk
i

k
eikω

)
. (30)

The final step consists of noting that the cH(k), are the inverse
Fourier transform of log(�H), or

∞∑
k=−∞

cH(k)e−ikθ = log �H(eiθ ). (31)

Matching Equations (31) and (30), we obtain Equation (7).
Note that this, in essence, would mean we can reverse

this procedure and calculate poles and zeros starting from
the power cepstra. This would force us to make some fur-
ther assumptions on amount of poles and zeros, and is beyond
the scope of this letter.
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