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Abstract— This paper introduces a data-driven method for
determining the order of the partial difference equation of a
discrete two dimensional (2D) linear system. A Hankel matrix
(referred to as recursive Hankel matrix) is constructed from the
available two dimensional data in a recursive way. This method
of data Hankelization can be represented by a moving window
that slides over the data. This paper extends the concept of past
and future data to 2D systems and introduces the concept of
left, right, top and bottom data. It is shown that the intersection
between left, right, top and bottom Hankel matrices reveals the
order of the underlying linear 2D system. As an example, we
applied the method to data generated by a discretized transport
diffusion equation. Our method correctly estimated the order
of the difference equation.

I. INTRODUCTION

In recent years increasing attention in system theory is
paid to multidimensional dynamical systems, so-called nD
systems [1][2]. nD systems are systems characterized by
signals that depend on several independent variables. These
variables are, for example, space and time. Important model
classes for such systems are partial differential equations
(PDE’s) and partial difference equations (PdE’s), for which
the ’order’ can be different in each independent variable. For
example, the parabolic heat equation is of second order in
space and first order in time.

In this paper the ideas of the intersection algorithm [3] for
subspace identification are explored and partially extended to
two dimensional systems. The notion of the recursive Hankel
matrices (Hr ) is introduced [4]. The left-null space of this
matrix contains the information of the coefficients of the
PdE. By calculating the dimensions of the linear intersection
between two recursive Hankel matrices, it is possible to
estimate the order of the linear dynamical system.

The presented algorithm is summarized as follows.
• Hankelize the observed output (and possibly input) data.
• Divide the Hankel matrices in Left, Right, Top and

Bottom Hankel matrices.
• Calculate the dimension of the linear intersection be-

tween the matrices.
• Based on the dimension of the intersection, the order of

the PdE is calculated.
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The outline of this paper is as follows. In section II the
two-dimensional representation of a linear system is pre-
sented as well as the concept of a stencil, which is a graphical
tool used to represent linear multidimensional systems. In
section III the main tool of our algorithm is defined, namely
the recursive Hankel matrix. This is a direct extension of a
Hankel matrix to multidimensional datasets. In section IV
the rank of a recursive Hankel matrix is discussed. Two
propositions are provided relating the rank of the recursive
Hankel matrix to the order of a PdE. In section V the concept
of past and future Hankel matrices is extended to left, right
top and bottom matrices. In section VI it is shown that the
intersections between respectively the left and right, top and
bottom Hankel matrices reveal the order of a 2D system. To
illustrate all concepts, section VII presents an example where
simulated data of the transport-diffusion equation is used to
estimate the order of the underlying equations. Finally, in
section VIII, the conclusions are formulated.

II. MULTIDIMENSIONAL SYSTEMS
Multidimensional systems are systems that depend on

several independent variables, for example, space and time.
Although several state space models have been proposed
(Givone and Roesser [5], Attasi [6] and Kurek [7]) to
represent linear nD systems, in this paper we will work with
PdEs that describe their dynamics.

A linear two-dimensional input-output discrete system can
be represented by the following difference equation,

n1∑
i=0

n2∑
j=0

αi,jy[k1 + i, k2 + j] =

o1∑
i=0

o2∑
j=0

βi,ju[k1 + i, k2 + j], (1)

where input and output of the system are respectively de-
noted by u[k1, k2] and y[k1, k2]. The values k1 and k2
are two discrete shift variables. The order of the output
dynamics is defined as the tuple (n1, n2), the order of the
input dynamics is (o1, o2). The order of the system is defined
as the tuple,

Os = (max(n1, o1),max(n2, o2)). (2)

This order definition indicates how many neighboring data
points are linearly related.

A. Stencil representation

A common method for representing discrete nD systems
in a graphical way is by using stencils [8]. A stencil is a
geometrical tool that illustrates the linear relations between
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Fig. 1: Example of a stencil representation of a PdE. This
particular stencil is know as the Crank-Nicolson stencil and
is often used to simulate the heat equation (second order in
space and first order in time). The discretization variable for
space and time are respectively denoted by k2 and k1. The
gray and black dots represent six data points in two dimen-
sions. The black lines connecting the data represent a linear
relation between the data points. In numerical simulations,
the black point is calculated as a linear combination of the
gray points.

adjacent grid points in a multidimensional dataset. As an
example the Crank-Nicolson stencil is shown in Fig. 1: this
stencil is often used in the simulation of the 1D heat equa-
tion. The gray and black points represent data points. The
black lines connecting the points represents linear relations
between six adjacent data points. In the field of numerical
simulation of partial differential equations, the black point
is calculated from the available data in the gray points. The
difference equation associated to this stensil is equal to,

y[k1 + 1, k2 + 1] = α0,0y[k1, k2] + α1,0y[k1 + 1, k2]+

α0,1y[k1, k2+1]+α0,2y[k1, k2+2]+α1,2y[k1+1, k2+2].

The point y[k1, k2] corresponds to the upper-left gray dot in
Fig 1. The size of the stencil is related to the order of the
PdE. For a PdE in two dimensions of order (n1, n2), the
corresponding stencil is of size (n1 + 1, n2 + 1). For input-
output systems there are two stencils to represent the linear
relations in the input and output data.

B. Partial difference equation on a rectangular grid

In this paper the results are restricted to two dimensional
PdEs on a rectangular domain. Together with the difference
equation a sufficient set of boundary conditions must be
provided to guarantee a unique solution of the PdE. For
a two dimensional problem the boundary conditions are
one dimensional signals (time series). For a PdE of order
(n1, n2) there are (n1 − 1) boundary conditions in one
direction and (n2 − 1) in the other direction. As soon as
the boundary conditions are defined, the internal data points
can be calculated with the linear difference equation. This
result will form the basis of the order estimation.

III. RECURSIVE HANKEL MATRIX

At the basis of the order estimation algorithm proposed in
this paper lies the concept of the recursive Hankel matrix
(Hr ) [9]. The measured input-output data is reshaped to
reveal linear relations between adjacent data points. For a
scalar time series u[k] with k = 0, 1, 2, . . . , a Hankel matrix
H is defined as,

H[i, j] = u[i+ j − 2], (3)

for i, j = 1, 2, . . . and i ≤ n1 and j ≤ n2, with H ∈
Rn1×n2 . The values of n1 and n2 are user defined parameters
for the hankelization and must be chosen ”large enough”[10].
When the data depends on several dimensions this definition
has to be extended to account for the additional dimensions,
resulting in the so-called recursive Hankel matrix.

Definition 1 (Recursive Hankel matrix (2D)): For a two
dimensional dataset y[k1, k2], the recursive Hankel matrix
(Hr) is defined in two steps. First the matrix Y0|m1−1,j is
defined as,

Y0|m1−1,j =


y0,j y1,j . . . yp−1,j
y1,j y2,j . . . yp,j

...
...

. . .
...

ym1−2,j ym1−1,j . . . ym1+p−3,j
ym1−1,j ym1,j . . . ym1+p−2,j

 . (4)

The parameter p is a user defined value and must be
”large enough”. This is a Hankel matrix where the second
coordinate in the data has been kept constant and a Hanke-
lization is carried out over the first coordinate. In the above
definition the notation yk,l = y[k, l] was used. The matrix
Y0|m1−1,j has dimensions m1 × p. The recursive Hankel
matrix Y0|m1−1,0|m2−1 is a block Hankel matrix given by,

Y0|m1−1,0 Y0|m1−1,1 . . . Y0|m1−1,q−1
Y0|m1−1,1 Y0|m1−1,2 . . . Y0|m1−1,q

...
...

. . .
...

Y0|m1−1,m2−2 Y0|m1−1,m2−3 . . . Y0|m1−1,m2+q−3
Y0|m1−1,m2−1 Y0|m1−1,m2

. . . Y0|m1−1,m2+q−2


(5)

The parameter q is a user defined value and must be ”large
enough”. The size of this matrix is equal to,

(m1m2)× (pq).

The order of this Hankelization is defined as the tuple,
(m1,m2). For a dataset y[k1, k2] of size M1×M2 and using
all the available data for the Hankelization the size of Hr is,

(m1m2)× ((M1 −m1 + 1)(M2 −m2 + 1)). (6)

This result is obtained by setting m1 + p− 2 =M1 − 1 and
m2+q−2 =M2−1. This definition can be extended to a nD
dataset by Hankelizing the different dimensions separately.

A. Graphical interpretation of the Hankelization process

The generation of Hr can be illustrated in a graphical
way, in which a 2D window slides over the two-dimensional
dataset, as shown in Fig 2. The size of the window is equal
to m1 × m2. The dotted line in the image illustrates the
order of the elements in the columns of Hr with respect to
the position in the data matrix. The linear relation associated
with this particular stencil is,

y[k1+1, k2] = α1y[k1, k2−1]+α2y[k1, k2]+α3y[k1, k2+1]
(7)

for some parameters αi. In Fig. 3 the vectorized data within
the Hankelization window is shown. This illustrates the
structure of the row space of Hr . The important observation
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Fig. 2: Illustration of the Hankelization method. Inside a
predetermined data window, shown here by the box, the
data is Hankelized following the dotted line. Each column
of the recursive Hankel matrix contains the vectorized data
from such a Hankelization window. Also present in the
picture is a stencil. The stencil is completely enclosed by
the Hankelization window, such that the linear relation of
the stencil is captured by the Hankelization window.

is that the information of the linear relation of the PdE is
present in the row space of Hr , which will result in the
rank deficiency of the Hankel matrix. The linear relation
is depicted by the black lines connecting the four linearly
related points. The left null space of Hr associated with
the Hankelization window depicted in Fig. 2 with data that
satisfies the difference equation (7) is spanned by,[

α1 0 α2 −1 α3 0
]

(8)

B. Example of Hankelization for a two dimensional dataset

To illustrate the concept of Hankelization, a small example
is provided for a two-dimensional 3× 3 dataset,

Y =

y0,0 y0,1 y0,2
y1,0 y1,1 y1,2
y2,0 y2,1 y2,2

 .
A Hankelization window of size 2× 2 is used, indicated by
the green square: this window slides over the dataset. This
produces the following recursive Hankel matrix,

H =


y0,0 y1,0 y0,1 y1,1
y1,0 y2,0 y1,1 y2,1
y0,1 y1,1 y0,1 y1,1
y1,1 y2,1 y1,2 y2,2

 .
Every column contains the vectorized data of a shifted
Hankelization window. The values of p and q from the
definition of Hr are both equal to 3. The green color on the
Hankel matrix indicates the relation between the data matrix
and the Hankel matrix. In the next section the properties of
this matrix are further analyzed.

IV. RANK OF THE RECURSIVE HANKEL MATRIX

In previous research the recursive Hankel matrix has been
introduced in the context of 2D spectral analysis. The rank of
Hr is related to the number of rank-one 2D wave functions
that make up the dataset Y [4]. In this paper the rank of Hr is
related to the order (1). To ensure that a unique solutions
exist, some conditions must be satisfied.

Fig. 3: Illustration of the column structure of the Hr matrix.
Notice that the stencil is present in the structure of the Hankel
matrix. The first, third, fourth and fifth row are linearly
dependent. The linear relation is denoted by the black lines.
The dotted line is the vectorized line of Fig. 2.

A. Persistency of excitation

Before the rank proposition for input-output systems is
provided, the concept of persistency of excitation must be
extended to 2D systems. The condition of persistency of
excitation ensures that the solutions is unique. For multidi-
mensional input-output systems the boundary condition and
the input must be persistently exciting.

Definition 2 (Persistently exciting 2D-signal): A two-
dimensional signal y[k1, k2] for k1 = 0, . . . ,M1 − 1 and
k2 = 0, ...,M2−1 is persistently exciting of order (m1,m2)
when the recursive Hankel matrix Y0|m1−1,0|m2−1 is full
rank. Or stated less, the signal y[k1, k2] is not linearly
related within a Hankelization window of size (m1,m2).
The definition of a persistently exciting boundary condition
is as follows,

Definition 3 (Persistently exciting boundary condition):
For a two dimensional problem the boundary conditions
are one dimensional signals (time series). A boundary
condition is persistently exciting of order mi when the
corresponding Hankel matrix H0|mi−1 is full rank [11]. The
set of boundary conditions of a PdE is persistently exciting
when the boundary conditions are linearly independent.
These two definitions are important to eliminate the effects
of ”insufficiently rich” input signals. In the context of partial
difference equations the distinction between boundary con-
ditions and initial conditions is often made. In this paper the
initial condition is also referred to as a boundary condition.

B. Autonomous 2D systems

Autonomous 2D systems are systems with no inputs,
represented by the following difference equation,

n1∑
i=0

n2∑
j=0

αi,jy[k1 + i, k2 + j] = 0 (9)

where αi,j are the coefficients of the PdE and (n1, n2) the
order of the PdE.

Proposition 1 (Rank of Hr for autonomous systems):
Consider a two-dimensional dataset coming from the
autonomous system described by Eq. (9) with persistently
exciting boundary conditions. The size of the dataset is
equal to M1 × M2. The recursive Hankel matrix of order
(m1,m2) from Eq. (5), is rank-deficient when,

mi > ni, with 1 ≤ i ≤ 2, (10)

with (n1, n2) the order of the autonomous difference equa-
tion. Stated in a less formal way, the recursive Hankel matrix
is rank-deficient when the Hankelization window captures
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at least the complete stencil of the difference equation. We
further assume that the size of the data matrix is large enough
such that Hr is a fat matrix (more columns than rows), that
is,

Mi ≥ 2mi + 1, with 1 ≤ i ≤ 2. (11)

Under the condition of a persistently exciting boundary
condition, and a fat Hr , the rank of the recursive Hankel
matrix is equal to,

(m1 − n1)(m2 − n2)− (m1m2). (12)

It follows that the dimension of the left-null space is,

(m1 − n1)(m2 − n2). (13)
Proof: The proof of this proposition is found by

inspecting the row space of Hr . Every column of Hr is equal
to,
[yk1,k2

yk1+1,k2
. . . yk1+m1,k2

yk1,k2+1 yk1+1,k2+1 . . . yk1+m1,k2+1

. . .
yk1,k2+m2

yk1+1,k2+m2
. . . yk1+m1,k2+m2

]T ,

(14)

for some value k1 and k2. Under the condition of Eq. 10
there exists a non-trivial linear relation between the elements
of Eq. (14). This relation is given by coefficients of the
difference equation,

[α0,0 α1,0 α2,0 . . . αn1,0 0 . . . 0
α0,1 α1,1 α2,1 . . . αn1,1 0 . . . 0

. . .
α0,n2

α1,n2
α2,n2

. . . αn1,n2
0 . . . 0]T

(15)

Under the condition of persistently exciting boundary con-
ditions there are no trivial linear relations in the output data
y. The only linear relations are formed by the coefficients of
the difference equation. To prove the size of the null space
we define the matrix N[k,l] ∈ Rm1×m2 as follows,

N[k1,k2](i, j) =

αi−k1−1,j−k2−1,
0 ≤ i− k1 − 1 ≤ n1
0 ≤ j − k2 − 1 ≤ n2

0, Otherwise.
(16)

This is a sparse matrix containing a block matrix of size
(n1+1)×(n2+1) starting at position (k1, k2) and containing
the coefficients of the PdE. The matrix can be represented
in the following way,

k1

n1 + 1

k2 n2 + 1

m2

m1N[k1,k2] =





The vector obtained by stacking the columns of this matrix
and taking the transpose lies in the left null space of Hr ,
this vector is denoted by,

Nk1,k2 = vect(N[k1,k2])
T ∈ R1×(m1m2). (17)

For k1 and k2 both equal to zero this results in the vector of
Eq. (15). The total number of basis vectors for the null space
that can be constructed in this way is (m1 − n1)(m2 − n2).
This follows immediately from Eq. (16) that the left null
space is spanned by,

[N[0,0]; N[1,0]; . . . ; N[m1−n1−1,0];
N[0,1]; N[1,1]; . . . ; N[m1−n1−1,1];
N[0,m2−1]; N[1,m2−1]; . . . ; N[m1−n1−1,m2−n2−1]]

,

where ”; ” indicates that the vectors are stacked. The size of
this matrix is equal to

(m1 − n1)(m2 − n2)× (m1m2) (18)

This proves the proposition.

C. Input-output systems

For input-output systems the current output not only de-
pends on neighboring output values but also on neighboring
input values. These input values must thus be included in the
Hankel structure.

Proposition 2 (Rank of Hr for input-output systems):
Consider input-output data coming from system (1). The
size of both the input and output datasets is equal to
M1 ×M2. Two recursive Hankel matrices U0|m1−1,0|m2−1
and Y0|m1−1,0|m2−1 of order (m1,m2) respectively from
the input and output data are constructed and the columns
are concatenated,

W0|m1−1,0|m2−1 =

[
U0|m1−1,0|m2−1
Y0|m1−1,0|m2−1

]
=

[
Hu

Hy

]
(19)

This matrix is rank-deficient when,

mi > max(ni, oi), with 1 ≤ i ≤ 2. (20)

Or stated in a less formal way, the recursive Hankel matrix
is rank-deficient when the Hankelization window captures at
least the complete input- and output stencils of the PdE.
Under the condition of a persistently exciting boundary
condition and input signal, and a large enough dataset, with,

Mi ≥ 2mi + 1, with 1 ≤ i ≤ 2, (21)

the rank of the recursive Hankel matrix is equal to,

(m1 − n1)(m2 − n2)− 2(m1m2) (22)

It follows that the dimension of the left-null space is,

(m1 − n1)(m2 − n2). (23)

The result is the same as for the autonomous case. This is a
consequence of the persistently exciting input signal.

Proof: The proof of Proposition 2 follows from the
proof of Proposition 1. Under the condition of a persistently
exciting input signal, Hu is full rank. When the input-output
data satisfies the difference equation (1), a non trivial left
null space exists. The dimension of the left null space is the
same as for the autonomous case, and therefore the rank of
the matrix is equal to,

(m1 − n1)(m2 − n2)− 2(m1m2). (24)
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Fig. 4: Illustration of the linearly independent points inside
the Hankelization window. The stencil used is denoted by
the white dots; it is the same as in Fig. 2. The dark points
are linearly related to the gray boundary points. The size of
the stencil is 2 × 3 and is shown by the blue dashed box.
The rank of the Hankelized data matrix is 11.

The dimension of the left-null space is equal to,

(m1 − n1)(m2 − n2). (25)

The previous two proposition relate the rank of Hr to the
order of the system and the order of the Hankelization. Based
on these results the order estimation algorithm is derived.

D. Number of independent points in the data matrix

Equations (12) and (22) states that the rank of Hr equals
the number of data points that can be chosen freely and
independent inside each Hankelization window. These free
points are the boundary conditions and the input signal
contained inside the window. Once the boundary and input
values are fixed, all the internal points can be calculated as
a linear combination of these free points. This concept is
illustrated in Fig. 4. The original stencil, indicated by the
white dots, is the same as that from Fig. 2. The gray dots
are the boundary conditions and the black points are internal
points that are linearly related to the boundary. The size of
the stencil is 2× 3, which is related to a difference equation
of order (1, 2). The size of the Hankelization window is 4×5.
Plugging in these values in Eq. (12) we find that the rank of
this matrix is 4 × 5 − 3 × 2 = 11. This is exactly equal to
the number of linearly independent boundary points of the
PdE denoted by the gray dots.

V. LINEAR RELATION BETWEEN ROWS OF
HANKEL MATRICES

One thing that has not been shown yet is how the order
of the 2D system can be determined based on the rank of
Hr . To determine the order of the system the dimension of
the intersection between two Hr matrices is calculated.

A. Left, right, top and bottom recursive Hankel matrices

For a two-dimensional dataset, top and bottom is extended
to left and right. Graphically the concept of top and bottom
is shown in Fig. 5. The data matrix is first Hankelized, and
afterwards split up in four smaller Hr matrices. In Fig. 5 the
stencil of a simple PdE of order (1, 1) is shown, this PdE is,

y[k1 + 1, k2] = y[k1, k2 + 1]. (26)

Left Right

Top

Bottom

Fig. 5: Illustration of the concept of left, right, top and
bottom data. In total four matrices are shown, top-left, top-
right, bottom-left and bottom-right. The linear combinations
between the intersections is shown with dotted lines.

For a Hankelization window of size 2 × 2 there exists one
linear relation in the row space of the Hr matrix, this linear
relation is indicated with the solid black line.

B. Linear intersection between the row space of Hr

The intersection algorithm for 1D systems was one of
the first subspace algorithms to identify input-output state
space models [3]. This algorithm splits the Hankel matrix
into two separate parts associated with top and future data.
The intersection between two matrices contains the top state
sequence. Based on this subspace, the size of the state
vector and the state sequence are calculated. Consider a 2D
dataset coming from an autonomous system. The dataset is
Hankelized in four different ways to,

left right
top Y0|m1−1,0|m2−1 Y0|m1−1,m2|2m2−1

bottom Ym1|2m1−1,0|m2−1 Ym1|2m1−1,m2|2m2−1

.

These four matrices contain shifted data with respect to each
other, the shift is introduced by changing the starting index of
the Hankelization. There is a direct correspondence between
these four matrices and Fig. 5. The method to determine the
order of the PdE calculates the dimension of the intersection
between these different Hankel matrices.

VI. ORDER ESTIMATION OF TWO DIMENSIONAL
DIFFERENCE EQUATIONS

In this section we show how the order of the PdE is linked
to the rank of the Hr matrices. We assume that the conditions
of Propositions 1 and 2 are fulfilled. The derivation is only
provided for input-output systems but the results carry over
to autonomous systems. The dimension of the left-null space
of W0|m1−1,0|m2−1 denoted by D and is equal to,

D = (n1 −m1)(n2 −m2). (27)

The next step is to concatenate the left Hankel matrices and
the top Hankel matrices, to get,

W1 =

[
W0|m1−1,0|m2−1
Wm1|2m1−1,0|m2−1

]
,W2 =

[
W0|m1−1,0|m2−1
W0|m1−1,m2|2m2−1

]
,

These two matrices span respectively the same row space as,

W0|2m1−1,0|m2−1 W0|m1−1,0|2m2−1. (28)
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TABLE I: Rank of the recursive Hankel matrix as a function
of the Hankelization window size.

Window size = (m1,m2) (2,3) (3,3) (2,4) (4,4)

D 1 2 2 6
D1 3 5 6 14
D2 4 8 6 18

Estimated order = n1 1 1 1 1
Estimated order = n2 2 2 2 2

The dimension of the left-null space of W1 and W2 is thus
respectively given by,

D1 = (2m1−n1)(m2−n2), D2 = (2m2−n2)(m1−n1).
(29)

Dividing both D1 and D2 by D and rewriting the equations
it is clear that the order of the PdE is given by,

ni =
mi(Di − 2D)

Di −D
, for 1 ≤ i ≤ 2. (30)

The right terms in this expression can be determined numer-
ically by calculating the SVD of the different Hr matrices.

VII. EXAMPLE: TRANSPORT-DIFFUSION

To illustrate the theoretical results provided in this paper
a numerical example is presented. In this example we work
with data is simulated by,

y[k1+1, k2] = ρ (y[k1, k2 + 1]− 2y[k1, k2] + y[k1, k2 − 1])

+C (y[k1, k2 + 1]− y[k1, k2 − 1])+y[k1, k2]−u[k1, k2],
(31)

where y and u are respectively the output and input. The
index k1 is associated with time and the index k2 is associ-
ated with space. The parameters of the PdE are: ρ = 0.005
and C = 0.4. This equation is the discretized transport-
diffusion equation using a forward Euler technique. The input
signal is a discrete binary (between 0 and 1) switching signal.
Approximately 10% of the data points are randomly chosen
to be equal to 1. The boundary conditions are random normal
distributed signals. There are two boundary conditions in
space and one in time (initial condition). For these random
signals the persistency condition is fulfilled. The PdE is
second order in space and first order in time. This means
that the Hankelization window of size 2× 3 is already rank
deficient. The results of the order estimation are shown in
table I. For every order of the Hankelization that we tried the
order of the PdE was estimated correctly. The null space of
Hr of order (2, 3) is spanned by the coefficients of the PdE.
Note that the retrieved order is the order of the PdE and not
of the original PDE, in this particular case both orders are
the same.

VIII. CONCLUSIONS

In this paper a method for estimating the order of a partial
difference equation has been presented. The method is based
on the ideas of the intersection algorithm for 1D systems.
First a Hankelization method was presented which can

(a) Input Data (b) Output Data
0

0.2

0.4

0.6

0.8

1

Ti
m

e

Space

Fig. 6: Input-output data for the one-dimensional transport
diffusion equation (31). The yellow points represent a high
concentration.

naturally be linked with a window that slides over the data.
Next we extended the concept of past and future data from
1D to 2D systems, and introduced the concept of left, right,
top and bottom data, resulting in 4 recursive Hankel matrices.
From the intersection between the different Hankel matrices
the order of the PdE can be calculated. At the moment no
subspace method that explicitly uses the matrix intersections
has been derived. This paper summarized the first results
of calculating intersections between Hankel matrices for 2D
systems. There are still a lot of research challenges ahead.
For example, is there a state sequence between two Hankel
matrices like in the 1D case, if so, what is the corresponding
state space model? How can these results be linked to the
Grasmann dimensionality theorem? All results presented in
this paper can be extended to PdEs in n−dimensions.
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