
Recursive Filtering using Quasi-Realizations

Bart Vanluyten1 2, Jan C. Willems1, and Bart De Moor1

1 Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven,
3001 Heverlee (Leuven), Belgium. bart.vanluyten@esat.kuleuven.be

2 Bart Vanluyten is a Research Assistant with the fund for Scientific
Research-Flanders (FWO-Vlaanderen).

Summary. In this paper we consider a finite state Markov chain with two outputs,
an observed output and a to-be-estimated output, and derive a recursive estimator
for the to-be-estimated output from an observed output string. The main point of
this article is to illustrate that for this kind of filtering problem, it is not needed
to have a positive hidden Markov realization of the joint process, but it suffices to
have a quasi-realization. We also present an approximate quasi-realization algorithm.
We perform a simulation comparing the behavior of the exact, experimental and
approximate quasi-realizations and checking the performance of the estimator.

1 Filtering problems for finitary processes

Consider a stochastic process
[

y z
]⊤

defined on the time axis N, where both
outputs y and z take values from finite sets. The main problem is to derive a
recursive estimator for the to-be-estimated output z from an observed output
string y. As data for the problem we assume the string probabilities of all

possible strings
(

[y(1) z(1)]
⊤

[y(2) z(2)]
⊤

, · · · , [y(T) z(T)]
⊤

)

for all T ∈ N.

Our approach is to split up the problem in two steps. In the first step we
model the given output probabilities by a joint quasi-hidden Markov model.
The second step is the filtering step where we calculate the estimate for z based
on the joint quasi-hidden Markov model and the observed string y. We will
show that for this filtering application, it suffices to have a quasi-realization
of the string probabilities rather than a true realization. The advantages of
this last fact are twofold: first of all, there is no need to calculate a true
realization, which is usually much more complicated to obtain than a quasi-
realization [1, 5]. In fact, there exist no general algorithms for computing a
true stochastic realization. Moreover, there are processes for which a true
realization does not exist while a quasi-realization does exist. Second, the
dynamic order of a quasi-realization is often smaller than the order of a true
realization which makes the filtering computation less expensive.

2 Bart Vanluyten , Jan C. Willems, and Bart De Moor

In Section 2 we give a overview of the quasi-realization problem and recall
an algorithm to solve it. In Section 3 we derive the formulas for the recur-
sive filter. In Section 4 we present an approximate quasi-realization algorithm
which obtains a balanced reduced quasi-realization of the string probabilities
and in Section 5 finally, we give a simulation example showing the effectiveness
of the proposed estimator.

The following notation is used throughout the paper. If X is a matrix, then
Xi:k,j:l denotes the submatrix of X formed by the i-th to the k-th row and
by the j-th to the l-th column of X . With Xi,j , we mean the i, j-th element
of X .

2 Quasi-realizations of finitary processes

Consider a stochastic process y defined on the time axis N taking values from
a finite set Y, called the output alphabet, with |Y| the cardinality of Y. Denote
by Y

∗ the set of all finite strings with symbols from the set Y (including the
empty string) and by y = y1y2 . . . y|y| an output sequence from Y

∗, where |y|
denotes the length of y. Let P : Y

∗ 7→ [0, 1] be string probabilities, defined
as P(y) := P (y(1) = y1, y(2) = y2, . . . , y(|y|) = y|y|). Of course, the string
probabilities satisfy P(φ) = 1 and

∑

y∈Y
P(yy) = P(y).

A quasi-hidden Markov model is defined as (Xq, Y, Πq, πq, eq), where

• Xq with |Xq| < ∞ is the quasi-state alphabet, and Y is the output alphabet;
• eq is a column vector in R

|Xq|, and πq is a row vector in R
|Xq| with πqeq = 1.

• Πq is a mapping from Y to R
|Xq|×|Xq| with the matrix ΠXq

:=
∑

y∈Y
Πq(y)

such that ΠXq
eq = eq.

In the quasi-realization problem, we are given the output string probabil-
ities P and the problem is to find a quasi-HMM that realizes P, which means
that for all y = y1y2 . . . y|y| ∈ Y

∗, it holds that P(y) = πqΠq(y)eq, where
Πq(y) = Πq(y1)Πq(y2) . . . Πq(y|y|).

A quasi-realization (Xq, Y, Πq, πq, eq) of P is called minimal if for any other
realization (X′

q, Y, Π ′
q, π

′
q, e

′
q) of P, it holds that |Xq| ≤ |X′

q|.
The (generalized) Hankel matrix of P plays a central role in the quasi-

realization problem [4]. To build the Hankel matrix, we need two arbitrary
orderings u := (ui, i = 1, 2, . . .) and v := (vj , j = 1, 2, . . .) of the strings of
Y

∗. The generalized Hankel matrix H of P is now defined as the doubly in-
finite matrix with i, j-th element P(uivj), where ui and vj are the i-th and
j-th elements of u and v, and where uivj denotes the concatenation of the
strings ui and vj . Typically, in the first ordering the strings are ordered lexi-
cographically from right to left, which gives (φ, 0, 1, 00, 10, 01, 11, 000, 100, . . .)
for Y = {0, 1}. In the second ordering the strings are ordered lexicograph-
ically from left to right, which means (φ, 0, 1, 00, 01, 10, 11, 000, 001, . . .) for
Y = {0, 1}. The top left corner of the Hankel matrix H for the case where
Y = {0, 1} then looks like

Recursive Filtering using Quasi-Realizations 3

1 P(0) P(1) P(00) P(01) P(10) P(11)

P(0) P(00) P(01) P(000) P(001) P(010) P(011)
P(1) P(10) P(11) P(100) P(101) P(110) P(111)

P(00) P(000) P(001) P(0000) P(0001) P(0010) P(0011)
P(10) P(100) P(101) P(1000) P(1001) P(1010) P(1011)
P(01) P(010) P(011) P(0100) P(0101) P(0110) P(0111)
P(11) P(110) P(111) P(1100) P(1101) P(1110) P(1111)

.

The Hankel matrix of the string probabilities P of the output process of a
minimal quasi-HMM with |Xq| finite can be decomposed as H = OqCq, with

Oq = col(πq, πqΠq(0), πqΠq(1), πqΠq(00), πqΠq(10), . . .),

Cq = row(eq, Πq(0)eq, Πq(1)eq, Πq(00)eq , Πq(01)eq, . . .),

where Oq is injective and Cq is surjective. Now, the following theorem is
well-known [2]:

Theorem 1 Let P be the string probabilities of a process with values from a
finite set Y. Then:

1. There exists a quasi-realization (Xq, Y, Πq, πq, eq) of P if and only if the
rank of the (infinite) generalized Hankel matrix H of P, is finite.

2. The minimal order of a quasi-realization |Xq|min is equal to the rank of
the Hankel matrix H.

3. If (Xq, Y, Πq, πq, eq) and (Xq, Y, Π ′
q, π

′
q, e

′
q) are two minimal quasi- real-

izations, then there exists a nonsingular matrix T such that

πq = π′
qT, Π(y) = T−1Π ′(y)T, eq = T−1e′q.

We now present a general algorithm to find a minimal quasi-realization
given the generalized Hankel matrix H associated with the output string prob-
abilities.

Step 1: Find a sub-matrix M ∈ R
n′×n′′

of H with rank(M) = rank(H).
Assume that M is formed by the elements in the rows indexed by the strings
ur1 , ur2 , . . . , urn′

and columns vc1 , vc2 , . . . , vcn′′
.

Step 2: Let R ∈ R
1×n′′

be the sub-matrix of H formed by the elements
in the first row and columns indexed by the strings vc1 , vc2 , . . . , vcn′′

and

analogously K ∈ R
n′×1 be the sub-matrix of H formed by the elements in the

rows indexed by the strings ur1 , ur2, . . . , urn′
and the first column. For each

y ∈ Y define σyM ∈ R
n′×n′′

as the submatrix of H formed by the elements
in the rows indexed by the strings ur1y, ur2y, . . . , urn′

y and in the columns
indexed by the strings vc1 , vc2 , . . . , vcn′′

, where uri
y denotes the concatenation

of the string uri
and the symbol y.

Step 3: Find P ∈ R
|Xq|min×n′

and Q ∈ R
n′′×|Xq|min such that PMQ =

I|Xq|min
.

Step 4: A minimal quasi-realization (Xq, Y, Πq, πq, eq) is now obtained as
follows:

Πq(y) = PσyMQ ∀ y ∈ Y,

πq = RQ,

eq = PK.

4 Bart Vanluyten , Jan C. Willems, and Bart De Moor

A hidden Markov model (HMM) (X, Y, Π, π, e) is a special case of a quasi-
hidden Markov model where the elements of π, Π(y), y ∈ Y are nonnegative

and e :=
[

1 1 . . . 1
]⊤

.
In the case of a hidden Markov model, the system matrices have a proba-

bilistic interpretation. There is an underlying state process x which generates
the output process y. The process x takes values from the finite set X with
cardinality |X|. Without loss of generality, we take X = {1, 2, . . . , |X|}. The
element Π(y)i,j is equal to P (x(t + 1) = j, y(t) = y|x(t) = i), the probability
of going from state i to state j while producing the output symbol y. The
element πi is equal to P (x(1) = i), the initial distribution of the underlying
state process.

The hidden Markov model (X, Y, Π, π, e) is said to be a realization of P if,
for all y1y2 . . . y|y| ∈ Y

∗, it holds that P(y) = πΠ(y1)Π(y2) . . .Π(y|y|)e.
It is immediately clear that the minimal order of a true stochastic realiza-

tion of an output process P is at least as large than the minimal order of a
quasi-realization of P.

3 Recursive filtering

We consider a quasi-hidden Markov model (Xq, Y × Z, Πq, πq, eq) with two
output processes, an observed output process y and a to-be-estimated output
process z. The output alphabets are Y and Z respectively. The aim is to find
a mapping ẑ from Z × Y

∗ to R+ such that

ẑ(z; y1 . . .yt−1) = P (z(t) = z|y(1) = y1, . . . , y(t − 1) = yt−1).

Define B
(z)
q as a mapping from Z to R

|Xq| where B
(z)
q (z) =

∑

y∈Y
Πq(y, z)eq

and Π
(y)
q as a mapping from Y to R

|Xq|×|Xq| where Π
(y)
q (y) :=

∑

z∈Z
Πq(y, z).

Proposition 1 The following equations define a recursive algorithm that
computes ẑ from the past of y:

π̃1 = πq,

π̃t+1 = π̃tΠ
(y)
q (yt),

π̂t =
π̃t

π̃teq

,

ẑ(z; y1 . . . yt−1) = π̂tB
(z)
q (z), ∀z ∈ Z.

This can be seen from

ẑ(z; y1 . . . yt−1) =
P (y(1) = y1, . . . y(t − 1) = yt−1, z(t) = z)

P(y1y2 . . . yt−1)
=

π̃tB
(z)
q (z)

π̃teq

.

Recursive Filtering using Quasi-Realizations 5

As a true realization is a special case of a quasi-realization, the formulas
are also valid for a true realization. In that case, the intermediate variable π̂t

has a probabilistic interpretation. One can show that π̂t = P (x(t) = j|y(1) =
y1, . . . , y(t − 1) = yt−1).

So we derived a recursive filter which can be calculated from a quasi-
realization without the need for calculating a true stochastic realization. As
already mentioned, the advantage of this approach is twofold. First of all,
there is no need to calculate a true stochastic realization, which is typically
more expensive than calculating a quasi-realization. In fact, there exist no
general algorithms for computing a true stochastic realization. Second, a quasi-
realization typically has lower order than a true realization, which makes that
the filter itself becomes less complex.

4 Approximate quasi-realization

In this section, we extend the idea of balanced realizations for linear time-
invariant systems to quasi-realizations of hidden Markov models. We will also
show that balanced realizations can be used for model reduction.

First define matrices Wq and Mq, which are the analogue of the control-
lability and observability Gramians in system theory, as:

Wq :=
X

y∈Y∗

Πq(y)eqe
⊤

q Πq(y)⊤ = CqC
⊤

q ,

Mq :=
X

y∈Y∗

Πq(y)⊤π
⊤

q πqΠq(y) = O
⊤

q Oq.

Obviously, Wq = W⊤
q ≥ 0 and Mq = M⊤

q ≥ 0. Moreover, if Cq is surjective
and Oq is injective (as is the case for minimal quasi-realizations), then the
strict inequality holds.

We assume that the infinite sums in the definitions above, are finite. It is a
topic of our current research to check under which conditions on Πq(y), y ∈ Y

this assumption is fulfilled.
If the matrices Wq and Mq are finite, then it is easy to verify that they

are solutions to the Lyapunov equations:
X

y∈Y

Πq(y)WqΠq(y)
⊤ − Wq = −eqe

⊤

q , (1)

X

y∈Y

Πq(y)
⊤

MqΠq(y) − Mq = −π
⊤

q πq . (2)

A realization is called balanced if the matrices Wq and Mq are diagonal
and equal to each other. It can be shown that for every quasi-realization, there
exists an equivalent balanced quasi-realization. We now show that the algo-
rithm of Section 2 can be modified such that it gives immediately a balanced
quasi-realization.

6 Bart Vanluyten , Jan C. Willems, and Bart De Moor

The sub-matrix M of Step 1 of the algorithm is taken equal to the complete
Hankel matrix H ∈ R

∞×∞. The matrices K and R of Step 2 become H1:∞,1

and H1,1:∞ respectively. The decomposition of Step 3 is performed using the
singular value decomposition (SVD) of the Hankel matrix H = UΣV ⊤ =

U
√

Σ
√

ΣV ⊤, with Σ = diag
(

σ1, σ2, . . . , σ|Xq|min

)

. Then one can show that
the realization of Step 4 is balanced and is given by

Π
b
q(y) =

√
Σ−1U

⊤
σyHV

√
Σ−1 ∀ y ∈ Y,

π
b
q = H1,1:∞V

√
Σ−1,

e
b
q =

√
Σ−1U

⊤
H1:∞,1.

If the quasi-realization is in balanced form, a reduced model of order |Xr
q|

can be obtained by truncating the model such that only the first |Xr
q| states

are retained. We are presently working on obtaining error bounds for this
balanced reduced quasi-realization.

5 Simulation example

We now apply the ideas of filtering and SVD-based approximate realization
in a simulation. Suppose we are given two corresponding strings (of length
5000) y(1) and z(1) of an unknown hidden Markov model with two outputs, an
observed output y and a to-be-estimated output z. We are also given another
string y(2) of length 100 of the observed output y and the problem is to find
an estimate of the corresponding string z(2) of the to-be estimated output.

The strings y(1) and z(1) were generated using an HMM S = (X, Y, Π, π, e)

Π(a, 0) =

2

6

6

4

0 .09 0 0
0 .09 0 0
0 0 .01 0
0 0 .01 0

3

7

7

5

, Π(a, 1) =

2

6

6

4

0 .01 0 0
0 .01 0 .81
0 0 0 0
0 0 0 .81

3

7

7

5

, Π(b, 0) =

2

6

6

4

.81 0 0 0
0 0 0 0.9

.81 0 0 0
0 0 0 .09

3

7

7

5

, Π(b, 1) =

2

6

6

4

.09 0 0 0
0 0 0 0

.09 0 0.09 0
0 0 .09 0

3

7

7

5

,

π = [.45 .05 .05 .45] ,

where Π is a mapping from Y×Z to R
|X|×|X|
+ with |X| = 4, Y = {a, b} and

Z = {0, 1}. This model is unknown, but is given here to check the results.
It can be shown, using the method on page 26 of [3], that this fourth order

true realization is minimal. However, the rank of the Hankel matrix is equal to
3, which means that a minimal quasi-realization has order 3. For that reason,
our filtering algorithm will have an extra advantage. Not only, there is no
need to compute a true instead of a quasi-realization, but furthermore, the
minimal quasi-realization has a lower order than the minimal realization such
that the filtering computations become less expensive.

We start with the modeling step. A hidden Markov with two output pro-
cesses y and z with output alphabets Y and Z is equivalent with a hidden
Markov model with one output process w with alphabet W := Y × Z, in this
example, Y × Z = {α := a0, β := a1, γ := b0, δ := b1}.

From the output string w(1) (which is the equivalent of the strings y(1) and
z(1)) of length 5000, the probabilities of strings up to length 4 are estimated. As

Recursive Filtering using Quasi-Realizations 7

expected, the (21× 21) Hankel matrix associated with these estimated string
probabilities has full rank. However, there are 3 dominant singular values (the
singular values ordered from high to low are: 1.6105; 0.5240; 0.0171; 0.0081;
0.0054; 0.0030; 0.0018; 0.0015; . . .). We now use the algorithm of Section 4 to
find an approximate quasi-realization S r = (Xr

q, Y, Πr
q , πr

q , er
q) of order 3.

Table 1. String probabilities for strings of length 2 and length 6.

Sequence Exact Experimental Approximate Sequence Exact Experimental Approximate
αα 0.0041 0.0052 0.0052 γγ 0.3321 0.3225 0.3199
αβ 0.0369 0.0386 0.0386 γδ 0.0405 0.0382 0.0408
αγ 0.0081 0.0072 0.0072 δα 0.0045 0.0046 0.0046
βδ 0.0009 0.0012 0.0012 δβ 0.0004 0.0004 0.0004
βα 0.0045 0.0028 0.0028 δγ 0.0729 0.0732 0.0758
ββ 0.3322 0.3377 0.3377 δδ 0.0121 0.0152 0.0126
βγ 0.0369 0.0362 0.0362 βββββα 0.0018 - 0.0012
γδ 0.0365 0.0388 0.0388 ββββββ 0.1430 - 0.1453
γα 0.0369 0.0396 0.0396 βββββγ 0.0159 - 0.0161
γβ 0.0405 0.0386 0.0386 βββββδ 0.0159 - 0.0169

In the first part of Table 1, we show the exact, experimental and approxi-
mated string probabilities for strings of length 2. To check the performance of
the approximation, the string probabilities of strings longer than 4 symbols,
have to be examined. In the second part of Table 1, we show the exact and
approximated string probabilities for a selection (due to space limitations)
of strings of length 6. We conclude that the approximate quasi-realization
algorithm performs quite well.

b

a

Fig. 1. True first output, y(2).

In the second step of our simulation, we are given a string y(2) and are
asked to find an estimate for the corresponding string z(2). In Figure 1, we
show the string y(2). In Figure 2(a), we show the true second output string z(2)

with ’∗’, and the estimated probability of observing the symbol 0, based on
the approximate quasi-realization, with ’•’. One easily sees that, in general,
the probability to observe a 0 is high, when the true output is equal to 0, and
vice-versa, from which we conclude that the estimator works quite well. In
Figure 2(b), we show the difference between the probability of observing the
symbol 0 based on the approximate quasi-realization and the same probability
based on an exact quasi-realization. We notice that the differences are minor.
From these facts, we conclude that for the filtering problem, the approximate
quasi-realization of order 3 performs well, and there is no need to calculate a
quasi-realization of higher order or a true (nonnegative) realization.

In this simulation example, there is no need to calculate a true realization,
which is more complicated then obtaining a quasi-realization. In addition, the

8 Bart Vanluyten , Jan C. Willems, and Bart De Moor

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) (b)

Fig. 2. (a) True second output, z(2) (’*’) and estimated probability of observing a
0 (’•’). (b) Error on probability of observing a 0.

order of a quasi-realization is smaller than the order of a true realization,
which makes that the filtering computations become much less expensive.

6 Conclusions

In this paper, we considered HMMs with two outputs, an observed and a to-
be-estimated output. We derived filter equations for the second output based
on the past of the first output. It turned out that a quasi-realization suffices
to obtain recursive filter equations. By combining an exact quasi-realization
algorithm with an SVD-based approach, we proposed an approximate quasi-
realization algorithm.

Acknowledgements

The SISTA program is supported by: Research Council KUL: GOA AMBioRICS, several PhD/postdoc and fel-
low grants; Flemish Government: FWO: PhD/postdoc grants, projects, G.0407.02 (support vector machines),
G.0197.02 (power islands), G.0141.03 (Identification and cryptography), G.0491.03 (control for intensive care
glycemia), G.0120.03 (QIT), G.0452.04 (new quantum algorithms), G.0499.04 (Statistics), G.0211.05 (Nonlinear),
research communities (ICCoS, ANMMM, MLDM); IWT: PhD Grants,GBOU (McKnow); Belgian Federal Science
Policy Office: IUAP P5/22 (‘Dynamical Systems and Control: Computation, Identification and Modeling’, 2002-
2006) ; PODO-II (CP/40: TMS and Sustainability); EU: FP5-Quprodis; ERNSI; Contract Research/agreements:
ISMC/IPCOS, Data4s, TML, Elia, LMS, Mastercard.

References

1. B.D.O. Anderson. The realization problem for hidden markov models. Mathe-

matics of Control, Signals, and Systems, 12(1):80–120, 1999.
2. E.J. Gilbert. The identifiability problem for functions of markov chains. Annals

of Mathematical Statistics, 39:938–946, 1959.
3. A. Paz. Introduction to probabilistic automata. Academic Press, New York, 1971.
4. G. Picci. On the internal structure of finite-state stochastic processes. In R.R.

Mohler and A. Roberti, editors, Lecture notes in Economics and Mathematical

Systems, volume 162, pages 288–304. Springer-Verlag, Berlin, 1978.
5. M. Vidyasagar. A realization theory for hidden markov models: the complete

realization problem. 2005.

