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Abstract— In this paper we address the problem of ap-
proximating symmetric systems with systems with the same
symmetry. We show that for periodic systems, a reduced order
periodic system can be obtained by SVD-techniques. We also
show that pointwise symmetries of the impulse response are
retained after balanced model reduction. Both results are based
on the fact that under certain conditions the SVD-reductionof
a matrix with unitary symmetries leads to a lower rank matrix
with the same symmetries. The results are applied to model
reduction of an interconnected system.

I. INTRODUCTION

Model reduction is undoubtedly one of the most useful
aspects of system theory because of its immediate relevance
to model simplification. It combines mathematical modeling
problems with computational complexity issues, two of the
pillars of modern applied mathematics. However, physical
models usually have some properties which are very impor-
tant from the physical point of view, as conservativeness,
dissipativity, etc. Also symmetries fall into this category. This
is the topic of the research domain in which this article falls:
How can we reduce a symmetric model and obtain a reduced
model that preserves the symmetry?

II. SYSTEMS WITH SYMMETRIES

We consider linear time-invariant input-output systems in
discrete time, described by

x(t +1) = Ax(t)+ Bu(t)
y(t) = Cx(t),

(S )

with u(t) ∈ R
m, y(t) ∈ R

p, andx(t) ∈ R
n, or equivalently

y(t) =
∞

∑
τ=1

H(τ)u(t − τ), (S )

with H(t) = CAt−1B, t ∈ N the Markov parameters of the
system. Associated with this system is the (doubly infinite)
block Hankel matrix

HH =











H(1) H(2) H(3) · · ·
H(2) H(3) H(4) · · ·
H(3) H(4) H(5) · · ·

...
...

...
. . .











.

We will consider dynamic symmetries from a rather concrete
point of view (an abstract theory may be found in [2]). We
start by giving some examples of symmetries that we will
consider.
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A first example is the pointwise symmetryPH(t)Q = H(t)
for t ∈ N. In words, the transformationQ applied to the
inputs is compensated by the transformationP applied to the
outputs. For example, we considerP and/orQ permutation
matrices. This corresponds to systems in which some of the
inputs and/or outputs can be interchanged, without changing
the Markov parameters. Figure 1.a shows a system in which
the outputs can be interchanged. Figure 1.b gives an example
of a system in which the inputs can be interchanged. Another
important case is whenQ = P−1 which occurs for example in
systems with identical subsystems (Figure 2). Also of interest
is the case in whichP and/orQ are rotation matrices, etc.
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Fig. 1. Systems in which the outputs (subfigure a) or inputs (subfigure b)
can be interchanged.
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Fig. 2. System as an interconnection of two identical subsystems.

A second example has been studied in the interesting paper
that stimulated us to study this problem [1]. It corresponds
to systems with periodic impulse responses of periodT , i.e.

H(t) = H(t + T ), t ∈ N.

We will also consider even, odd, or even/odd impulse re-
sponses.

In this paper we restrict ourselves to these two types of ex-
amples: pointwise symmetries and periodic impulse response
symmetries. The problem to be considered is whether model
reduction algorithms (e.g. balanced model reduction for the
pointwise case) respects these symmetries.

III. SVD-TRUNCATION OF MATRICES WITH
SYMMETRIES

In this section, we prove an interesting property of the
SVD-truncation of matrices. It will be the mathematical basis
of our results on model reduction for dynamic systems. We
consider matrices overR. A square matrixP is said to be
[unitary] :⇔ [P⊤P = I]. The norm|| · || on R

n1×n2 is said to
be [unitarily invariant] :⇔

[(M ∈ R
n1×n2)∧ (P,Q unitary)] ⇒ [||PMQ|| = ||M||].



One example of a unitarily invariant norm is the Frobenius
norm. The Frobenius norm ofM = [mi j] ∈ R

n1×n2 is defined

as ||M||F :=
√

∑n1
i=1 ∑n2

j=1(mi j)2.

Let M ∈ R
n1×n2. Denote its singular values by

(σ1(M),σ2(M), . . . ,σmin{n1,n2}(M)), ordered as

σ1(M) ≥ σ2(M) ≥ . . . ≥ σmin{n1,n2}(M).

Consider the Singular Value Decomposition (SVD) ofM

M = U

[

Σ 0
0 0

]

V⊤,

with

Σ := diag(σ1(M),σ2(M), . . . ,σmin{n1,n2}(M))

andU ∈ R
n1×n1 andV ∈ R

n2×n2 unitary. Call

Mk := U

[

Σk 0
0 0

]

V⊤

with k≤ min{n1,n2} and

Σk := diag(σ1(M),σ2(M), . . . ,σk(M))

the rank k SVD-truncation of M. It is well-known that, if
the gap condition

σk(M) > σk+1(M)

holds, then the rankk SVD-truncation ofM is uniquely
defined. Indeed, while theσ(M)’s are always uniquely
defined,U andV are never unique, but nevertheless, if the
gap condition holds, then the rankk SVD-truncation ofM
is unique.

The rankk SVD-truncation ofM leads to an optimal rank
k approximation ofM, with respect to any unitarily invariant
norm. In other words

[(|| · || unitarily invariant)∧ (rank(M′) ≤ k)]

⇒ [||M−M′|| ≥ ||M−Mk||].
The purpose of this section is to prove a theorem con-

cerning the preservation of a certain kind of symmetry after
rank k SVD-truncation. It is based on the well-known fact
that Mk is the unique matrix of rankk which approximates
M optimally with respect to the Frobenius norm if the gap
condition holds.

Proposition 1: If the gap conditionσk(M) > σk+1(M)
holds, then the rankk SVD-truncationMk is the unique
matrix of rank k which approximatesM optimally in the
Frobenius norm, i.e.

[
(

σk(M) > σk+1(M)
)

∧ (rank(M′
k) ≤ k)

∧ (||M−M′
k||F = ||M−Mk||F)] ⇒ [M′

k = Mk]
Proof: This proposition is undoubtedly very well-

known, but for the sake of completeness, we give a proof
in appendix.

Of course, it follows that if the gap conditionσk(M) >
σk+1(M) holds, then the rankk SVD-truncationMk is the
unique matrix of rankk which approximatesM optimally,
simultaneously for all unitarily invariant norms. It is an

interesting question for which unitarily invariant norms the
analogue of Proposition 1 holds.

Using the above proposition, we are now able to prove the
following theorem about the SVD of a matrix with symmetry.

Theorem 2: Assume that the matrixM ∈ R
n1×n2 has the

following symmetry:

M = PMQ

with P andQ unitary matrices. Then, if

σk(M) > σk+1(M),

Mk, the optimal rankk approximation derived from truncat-
ing the SVD, has the same symmetry:

Mk = PMkQ.
Proof: The Frobenius norm is unitarily invariant, so

||M−Mk||F = ||P(M−Mk)Q||F = ||M−PMkQ||F.

HencePMkQ is an optimal rankk approximation ofM with
respect to the Frobenius norm. So by the uniqueness shown
in Proposition 1,PMkQ = Mk.
In the sequel, we often assume that the gap condition is
satisfied. It is easy to see that this is a generic condition,
both for matrices and for Hankel matrices of LTI-systems.

IV. EXAMPLES

In this section, we give some examples of matricesM ∈
R
n1×n2 for which M = PMQ with P andQ unitary matrices.

We restrict the examples to matrices which are relevant for
model reduction of LTI systems with symmetries.

A. Matrices with equal rows/columns

Let Pi, j be then1×n1 permutation matrix such that inPi, jx
the i-th and j-th elements ofx are permuted. Then inPi, jM,
the i-th and j-th rows are permuted. NowM = Pi, jM means
that thei-th and the j-th rows of M are equal. Theorem 2
allows us to conclude that if the gap condition holds, then
Mk = Pi, jMk, i.e. thei-th and j-th rows ofMk are also equal.
A matrix M for which the symmetryM = Pi, jM holds for
many pairs of(i, j), corresponds to either a matrix with more
than two equal rows or a matrix with more than one group of
rows which are identical. If the gap condition holds, all these
symmetries separately are retained after SVD-truncation.
Analogous results can be obtained for the columns ofM.

B. Matrices with zero-rows/-columns

To express that thei-th row of M is zero, consider the
matrix Pi = diag(1, . . . ,1,−1,1, . . . ,1), with the −1 on the
i-th position, and express thatM = PiM. If the gap condition
holds, then for the optimal rankk approximation ofM holds
that Mk = PiMk, i.e. thei-th row of Mk is also equal to zero.
If the symmetryM = PiM holds for different values ofi,
then more than one row ofM are equal to zero. All the
symmetries separately are retained after SVD-truncation if
the gap condition holds. Analogous results can be obtained
for the columns ofM.



C. Circulant matrices

In this section we consider block matrices withn× n

blocks of sizep× m. Define the special permutation matrix
Π ∈ R

n×n

Π =

[

0 In−1

1 0

]

,

where In−1 denotes the identity matrix of sizen− 1. Let
F = [ F⊤

1 . . . F⊤
n ]⊤ with Fi ∈ R

p×m, i = 1, . . . ,n, then
the block matrixCF with n×n blocks of sizep×m

CF :=
[

F (Π⊗ Ip)F (Π⊗ Ip)2F · · · (Π⊗ Ip)n−1F
]

, (1)

where⊗ denotes the Kronecker product, is called theblock
circulant matrix generated by F . Such a matrix looks like

CF =









F1 F2 . . . Fn−1 Fn
F2 F3 . . . Fn F1
...

...
...

...
Fn−1 Fn . . . Fn−3 Fn−2
Fn F1 . . . Fn−2 Fn−1









.

Observe theblock Hankel structure of block circulant matri-
ces. An equivalent way of defining block circulant matrices
is:

[M ∈ R
np×nm is block circulant] ⇔ [M = (Π⊗ Ip)M(Π⊗ Im)].

A generalization of block circulant matrices are theblock
g-circulant matrices. The block matrixGF with n×n blocks
of sizep×m defined as

GF :=
[

F (Π⊗ Ip)gF (Π⊗ Ip)2gF · · · (Π⊗ Ip)(n−1)gF
]

is called the blockg-circulant matrix generated byF . Again,
an equivalent way of defining blockg-circulant matrices is:

[M ∈ R
np×nm is block g-circulant] ⇔ [M = (Π⊗ Ip)M(Π⊗ Im)

g].

We already noticed that block circulant matrices haveblock
Hankel structure. On the other hand a block(n−1)-circulant
matrix hasblock Toeplitz structure1.

A second generalization of block circulant matrices
are the block skew-circulant matrices. Define the special
permutation-like matrixΘ ∈ R

n×n

Θ =

[

0 In−1

−1 0

]

.

Let F ∈ R
np×m, then the block matrixSF with n×n blocks

of sizep×m

SF :=
[

F (Θ⊗ Ip))F (Θ⊗ Ip)2F · · · (Θ⊗ Ip)n−1F
]

,

, is called the block skew-circulant matrix generated byF.
An equivalent way of defining block skew-circulant matrices
is:

[M ∈ R
np×nm is block skew-circulant] ⇔ [M = (Θ⊗ Ip)M(Θ⊗ Im)].

It follows from Theorem 2 that ifM is block circulant (in
any of the senses considered above) and if the gap condition
holds, then the truncated SVDMk is also block circulant (in
the same sense). We know from Proposition 1 that if the
gap condition holds, the rankk SVD-truncationMk is the
unique matrix of rankk which approximatesM optimally
in the Frobenius norm. As a consequence of this, the SVD-
truncationMk of a block circulant matrix can very nicely be

1Some authors define block circulant matrices to be block Toeplitz and
their block (n−1)-circulant matrices are block Hankel. For further use, we
prefer the definition given above.

computed using the Discrete Fourier Transform (DFT). We
explain this only for the vector case. Consider

M =













m1 m2 . . . mn−1 mn

m2 m3 . . . mn m1
...

...
...

...
mn−1 mn . . . mn−3 mn−2
mn m1 . . . mn−2 mn−1













,

with mt ∈ R
p for t = 1,2, . . .n. Let

m̃f :=
n

∑
t=1

mte
−if 2π

n
t , f = 0,1, . . . ,n−1

be the DFT of the first block row ofM: m1,m2, . . . ,mn, such
that

mt =
1
n

n−1

∑
f=0

m̃feif 2π
n

t , t = 1,2, . . . ,n.

Using for example realization theory, it follows readily that
the rank ofM equals the cardinality of the set

{f ∈ {0,1, · · · ,n−1} | ||m̃f|| 6= 0}.

It is also known that

1
n
||M||2F =

n

∑
t=1

||mt ||2 =
1
n

n−1

∑
f=0

||m̃f||2.

Therefore, in order to obtainMk, an optimal rankk approx-
imation of M in the Frobenius norm, we can proceed as
follows. First calculate

m̂t =
1
n

∑
f∈Fk

m̃feif 2π
n

t , t = 1,2, . . . ,n,

with Fk the subset of{0,1, . . . ,n−1} of cardinalityk with
the property

[(f ∈ Fk)∧ (f′ /∈ Fk)] ⇒ [||m̃f|| ≥ || m̃f′ ||].

Now, it is easy to see thatMk is equal to the block circulant
matrix induced by the vector

[

m̂⊤
1 m̂⊤

2 . . . m̂⊤
n

]⊤
(see

equation (1)). Under obvious conditions onFk, Mk is real.
Note also thatMk is the unique optimal rankk approximation
of M in the Frobenius norm if

[(f ∈ Fk)∧ (f′ /∈ Fk)] ⇒ [||m̃f|| > ||m̃f′ ||].

Assume that both these conditions are satisfied. ThenMk

approximatesM optimally in the Frobenius norm with a
block circulant matrix of rankk and it is the unique block
circulant matrix that does so. Hence we derived an alternative
way to calculate the SVD-truncationMk by making use of the
DFT. Moreover, since ˆmt , t = 1,2, . . .n−1 may be computed
using the Fast Fourier Transform (FFT), it is numerically
much more efficient to computeMk by first computing ˆmt ,
t = 1,2, . . .n−1 and then formingMk, than it is to compute
the SVD. This observation is valid also when we look for
an optimal rankk approximation ofM in another unitarily
invariant norm than the Frobenius norm.



V. APPLICATION TO MODEL REDUCTION

A. Impulse responses with pointwise symmetry

In this section, it is shown that if the Markov parameters
H(1),H(2), . . . ,H(t), . . . of a stable (meaning∑t∈N ||H(t)||<
∞) systemS have a pointwise symmetry, then the Markov
parametersHred(1),Hred(2), . . . of the balanced reduced sys-
temSred have the same symmetry. We first prove this result
and then present some applications.

Proposition 3: Assume that the systemS is stable and
that its Markov parameters have the symmetry

PH(t)Q = H(t), t ∈ N,

with P and Q given unitary matrices. Then, ifσk(HH) >
σk+1(HH), the Markov parameters of the balanced reduced
systemSred of orderk have the same symmetry:

PHred(t)Q = Hred(t), t ∈ N.
Proof: A balanced realization of the systemS can be

obtained from the reduced SVD of its Hankel matrixHH =
UΣHV⊤ as

A =

√

Σ−1
H U⊤

HσHV
√

Σ−1
H ,

B =

√

Σ−1
H U⊤

H
∞,1
H ,

C = H
1,∞
H V

√

Σ−1
H .

where

HσH =











H(2) H(3) H(4) · · ·
H(3) H(4) H(5) · · ·
H(4) H(5) H(6) · · ·

...
...

...
. . .











,

andH
i, j
H denotes the submatrix ofHH consisting of the first

i block rows andj block columns. ExpressHH as

HH =
[

U1 U2
]

[

ΣH1 0
0 ΣH2

]

[

V1 V2
]⊤

,

where the size ofΣH1 is equal tok. The balanced reduced
systemSred of orderk then has the realization

Ared =
√

Σ−1
H1

U⊤
1 HσHV1

√

Σ−1
H1

,

Bred =
√

Σ−1
H1

U⊤
1 H

∞,1
H ,

Cred = H
1,∞
H V1

√

Σ−1
H1

.

Call P = I∞ ⊗P andQ = I∞ ⊗Q, then

HH = PHHQ.

It follows from Theorem 2 that, if the conditionσk(HH) >
σk+1(HH) holds,

PU1ΣH1V⊤
1 Q = U1ΣH1V⊤

1 .

Because the Moore-Penrose pseudo-inverse of a given matrix
is uniquely defined, we also have that

Q
⊤V1Σ−1

H1
U⊤

1 P
⊤ = V1Σ−1

H1
U⊤

1 .

The first Markov parameter is equal to

CredBred = H
1,∞
H V1Σ−1

H1
U⊤

1 H
∞,1
H

= (PH
1,∞
H Q)(Q⊤V1Σ−1

H1
U⊤

1 P
⊤)(PH

∞,1
H P)

= PCredBredQ.

The same can be done forCredAredBred, CredA2
redBred, . . . We

conclude that

PCredA
t−1
red BredQ = CredA

t−1
red Bred, t ∈ N.

We now present some applications (assuming that the gap
condition holds) of the above proposition.

Suppose that for allt, row i and j of the Markov
parametersH(t) of a systemS are equal. In that case, we
see that outputsyi and y j of the systemS are identical.
Now from Proposition 3, we know that the outputyred,i and
outputyred, j of the balanced truncated systemSred are also
equal.

Similarly, suppose that for allt, column i and j of the
Markov parametersH(t) of a systemS are equal. In that
case, we see that the outputy of the systemS does not
depend on thei-th and j-input separately, but depends only
on its sum. Now from Proposition 3, we know that the output
yred of the balanced truncated systemSred also depends only
on the sum of inputsi and j.

If the i-th column ofH(t) is equal to 0 for allt, the output
of the systemS does not depend on itsi-th input. Again,
we know from Proposition 3, that the output ofSred is also
independent of thei-th input. Analogous conclusions can be
drawn for the case where rows ofH(t) are equal to 0.

B. Periodic impulse response

Assume that the impulse responseH(1),H(2), . . . ,H(t), . . .
is periodic with periodT : H(t + T ) = H(t) for t ∈ N. The
problem is to obtain a reduced order model with an impulse
response which is also periodic. Now since rank(HH) =
rank(HT,T

H ), it is logical to look for a periodicHred such
that

||HT,T
H −H

T,T
Hred

||

is small and that rank(HT,T
Hred

) < rank(HT,T
H ). SinceH

T,T
H is

block circulant, the problem is to find a low rank block
circulant approximation of a block circulant matrix. We
know that if the gap condition holds, the truncated SVD
of H

T,T
H gives an optimal approximation in any unitarily

invariant norm which is again block circulant. Moreover, itis
shown in [1] that this reduction corresponds to reduction by
finite time balancing. As was shown in the previous section,
the SVD-truncation of the circulant Hankel matrix, can be
efficiently computed using the DFT, which in addition can be
implemented with the FFT-algorithm. This yields a fast way
of computing a reduced order periodic model. This result is
of relevance in image processing, as shown in [1] and [3].



C. Even/odd periodic impulse response

Assume that the impulse responseH(1),H(2), . . . ,H(t), . . .
is periodic with periodT : H(t + T ) = H(t) for t ∈ N.
Consider in addition that the impulse response iseven:
H(T − t) = H(t) for t ∈ [0,T − 1]. The problem is to find
a reduced order model with an impulse response which is
also periodic and even. The Hankel matrixH

T,T
H has two

symmetries:

H
T,T
H = (Π⊗ Ip)H

T,T
H (Π⊗ Im)

H
T,T
H = (Λ⊗ Ip)H

T,T
H (Λ⊗ Im),

with

Λ =









1
1

. .
.

1









.

If the gap condition holds, the truncated SVD of the Hankel
matrix H

T,T
H gives an optimal approximation in any unitarily

invariant norm for which the same symmetries hold. Again,
the problem can be solved more efficiently using DFT-
techniques.

Analogous results can be obtained for anodd periodic
impulse responseH(1),H(2), . . . ,H(t), . . . with period T
defined as:H(t + T ) = H(t) for t ∈ N, H(T − t) = −H(t)
for t ∈ [0,T −1]. In that case, the Hankel matrixHT,T

H has
the symmetries

H
T,T
H = (Π⊗ Ip)H

T,T
H (Π⊗ Im)

H
T,T
H = (Λ⊗ Ip)H

T,T
H (−Λ⊗ Im).

In the combination of the even and odd case, skew-
circulant matrices pop up. For aneven-odd periodic impulse
responseH(1),H(2), . . . ,H(t), . . . with period 2T it holds
that: H(t + 2T ) = H(t) for t ∈ N, H(T − t) = H(t) for
t ∈ [0,T − 1], H(2T − t) = −H(t) for t ∈ [0,2T − 1]. In
this case the Hankel matrix with the size equal tohalf the
period,HT,T

H is block skew-circulant. The problem of finding
a reduced order model with an impulse response which is
also periodic and even-odd can again be solved by truncating
the SVD ofHT,T

H .

VI. SIMULATION EXAMPLE

We consider the problem of how to model reduce a system
consisting of the interconnection of many identical building
blocks. Model reduction of interconnected systems while
preserving the interconnection structure is important in many
applications. In this section we study the interconnectionof
two identical building blocks shown in Figure 2. In order
to model reduce the interconnected system, we can proceed
in two ways: either model reduce the building block and
interconnect, or model reduce the interconnected system and
view the reduced model as an interconnection of identical
subsystems. The simple simulations which we carried out
showed that the second procedure gives much better results.

Take a ‘random‘ fourth order system forS .

x(t +1) = Ax(t)+
[

B1 B2
]

[

u1(t)
u2(t)

]

[

y1(t)
y2(t)

]

=

[

C1

C2

]

x(t),
(S )

with

A =







−0.1067 −0.1458 −0.2499 −0.0102
−0.2803 −0.1569 −0.0534 0.2273
0.0680 −0.0575 −0.1349 0.2395
0.0248 0.3294 −0.0029 −0.1033






,

[

B1 B2
]

=







0.1209 1.1343
−0.2222 0

0 −1.4671
−0.3001 0






,

[

C1
C2

]

=

[

0 −0.6936 −2.2374 −0.0016
0.5654 0.8339 0 −1.6146

]

.

First order balanced reduction givesSred

Ared = [−0.1322] ,
[

B1,red B2,red
]

=
[

−0.1088 −1.8262
]

,
[

C1,red
C2,red

]

=

[

−1.7962
−0.3604

]

.

The interconnected system is given byScon

Acon =

[

A B2C2
B2C2 A

]

,

Bcon =

[

B1 0
0 B1

]

,

Ccon =

[

C1 0
0 C1

]

,

which after second order balanced reduction givesScon, red

Acon, red =

[

−0.0647 0.8248
0.8248 −0.0647

]

,

Bcon, red =

[

0.8328 −0.0075
−0.0075 0.8328

]

,

Ccon, red =

[

1 0
0 1

]

.

Notice thatScon, redhas the same symmetry asScon. After
approximatingBcon, red by

Bcon, red≃
[

0.8328 0
0 0.8328

]

,

Scon, redcan be seen as the interconnection of two systems
S

′
red

A′
red = [−0.0647] ,

[

B′
1,red B′

2,red
]

=
[

0.8328
√

0.8248
]

,
[

C′
1,red

C′
2,red

]

=

[

1√
0.8248

]

.

In Figure 3, we compare the impulse responses of

• the 8-th order interconnected systemScon,
• the second order system obtained by interconnecting the

first order approximationsSred of the building blocks,
• the second order system obtained by approximating the

reduced interconnected system with an interconnection
of two identical first order building blocksS ′

red.



It is clear from the figure, that the second approximation
method, approximating the interconnected system and then
viewing this reduction as an interconnection of two identical
building blocks, yields the best results.
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Fig. 3. Impulse responses (Above: from first input to first output, from
second input to second output; Below: from first input to second output,
from second output to first input) of a random 8-th order system (blue)
Scon, second order approximation ofScon obtained by interconnecting the
first order approximation of its building blocks (red) and second order ap-
proximation ofScon obtained by approximating the reduced interconnected
system with an interconnection of two identical first order building blocks
(black).

This simulation was inspired by Chapter 7 of [4].

VII. CONCLUSION

In this paper, we have shown how to model reduce
LTI systems with pointwise symmetries and with periodic
impulse responses. We have shown that model reduction
based on SVD techniques preserves these symmetries if the
‘gap condition‘ is satisfied. The results are based on the fact
that the gap condition implies that the SVD-truncation of a
matrix with unitary symmetries leads to a lower rank matrix
with the same symmetries.

APPENDIX

A. Proof of Proposition 1
Let M′

k be an optimal rankk approximation ofM, and let

M′
k = U ′

[

Σ′
k 0

0 0

]

V ′⊤

with Σ′
k ∈R

k×k, be an SVD ofM′
k. Then

[

Σ′
k 0

0 0

]

is obviously an optimal

rank k approximation ofN := (U ′)⊤MV ′. Partition

N =

[

N11 N12
N21 N22

]

conformal with the partition

[

Σ′
k 0

0 0

]

.

Observe that, since

rank(

[

Σ′
k N12

0 0

]

≤ k

and

[N12 6= 0] ⇒ [||N −
[

Σ′
k N12

0 0

]

||F < ||N −
[

Σ′
k 0

0 0

]

||F],

we obtainN12 = 0. Similarly,N21 = 0. ThereforeN =

[

N11 0
0 N22

]

. Observe

also that, since

rank(

[

Σ′
k−N11 0

0 0

]

≤ k

and

[N11 6= Σ′
k] ⇒ [||N −

[

N11 0
0 0

]

||F < ||N −
[

Σ′
k 0

0 0

]

||F],

we obtainN11 = Σ′
k. ThereforeN =

[

Σ′
k 0

0 N22

]

. Next, let N22 = U22Σ′′
kV⊤

22

be an SVD ofN22, and note that

N′ :=

[

I 0
0 U⊤

22

]

N

[

I 0
0 V22

]

=

[

I 0
0 U⊤

22

]

(U ′)⊤MV ′
[

I 0
0 V22

]

is diagonal: N′ =

[

Σ′
k 0

0 Σ′′
k

]

, and has

[

Σ′
k 0

0 0

]

as an optimal rankk

approximation. This obviously implies that the smallest diagonal element
of Σ′

k is larger than the largest diagonal element ofΣ′′
k . It follows that

M = U ′
[

I 0
0 U22

][

Σ′
k 0

0 Σ′′
k

][

I 0
0 V⊤

22

]

V ′⊤

is an SVD ofM and that

M′
k = U ′

[

Σ′
k 0

0 0

]

V ′⊤ = U ′
[

I 0
0 U22

][

Σ′
k 0

0 0

][

I 0
0 V⊤

22

]

V ′⊤

is a rankk SVD-truncation ofM.
Now, if the gap conditionσk(M) > σk+1(M) holds, then the rankk SVD-

truncation is unique. HenceM′
k = Mk. Conclude thatMk is then theunique

optimal rankk approximation in the Frobenius norm ofM.
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