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Abstract—In this paper we address the problem of ap- A first example is the pointwise symmetPH (t)Q =H (t)
proximating symmetric systems with systems with the same for t € N. In words, the transformatio® applied to the
symmetry. We show that for periodic systems, a reduced order 5 js compensated by the transformafoapplied to the
periodic system can be obtained by SVD-techniques. We also touts. F | iderand/ tati
show that pointwise symmetries of the impulse response are ou PP S. or_examp €, we consiaeran prQ permu ation
retained after balanced model reduction. Both results are hsed ~Matrices. This corresponds to systems in which some of the
on the fact that under certain conditions the SVD-reductionof  inputs and/or outputs can be interchanged, without changin
a matrix with unitary symmetries leads to a lower rank matrix  the Markov parameters. Figure 1.a shows a system in which
with the same symmetries. The results are applied to model he gytputs can be interchanged. Figure 1.b gives an example
reduction of an interconnected system. . . . .

of a system in which the inputs can be interchanged. Another

I. INTRODUCTION important case is whe@ = P~ which occurs for example in
Model reduction is undoubtedly one of the most usefufyStems with identical subsystems (Figure 2). Also of eer
aspects of system theory because of its immediate relevarlgdn® case in whictiP and/orQ are rotation matrices, etc.
to model simplification. It combines mathematical modeling
problems with computational complexity issues, two of the
pillars of modern applied mathematics. However, physical
models usually have some properties which are very impor-
tant from the physical point of view, as conservativeness,
dissipativity, etc. Also symmetries fall into this categorhis
is the topic of the research domain in which this articlestall F79- 1. Systems in which the outputs (subfigure a) or inpussf{gure b)
. . can be interchanged.
How can we reduce a symmetric model and obtain a reduced
model that preserves the symmetry?

I[I. SYSTEMS WITH SYMMETRIES
We consider linear time-invariant input-output systems in

discrete time, described by Fig. 2. System as an interconnection of two identical sulesys.
Xt+1) = Ax(t)+Bu(t) )
y(t) = Cx(t), A second example has been studied in the interesting paper

that stimulated us to study this problem [1]. It corresponds

with u(t) € R", y(t) € R®, andx(t) € R*, or equivalently to systems with periodic impulse responses of pefigde.

y(t) = ZH(r)u(t—r), () Ht)=H({t+T), teN.
=1
, ! We will also consider even, odd, or even/odd impulse re-
with H(t) = CA"1B, t € N the Markov parameters of the sponses.
system. Associated with this system is the (doubly infinite) |, this paper we restrict ourselves to these two types of ex-

block Hankel matrix amples: pointwise symmetries and periodic impulse respons

H(1) H(2) H@) --- symmetries. The problem to be considered is whether model
H(2) H@3) H@) --- reduction algorithms (e.g. balanced model reduction fer th
HH=1| H(@B) H@) HGB) - |- pointwise case) respects these symmetries.
: ; I1l. SVD-TRUNCATION OF MATRICES WITH
SYMMETRIES

We will consider dynamic symmetries from a rather concrete
point of view (an abstract theory may be found in [2]). We In this section, we prove an interesting property of the
start by giving some examples of symmetries that we wilBVD-truncation of matrices. It will be the mathematicalisas
consider. of our results on model reduction for dynamic systems. We
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One example of a unitarily invariant norm is the Frobeniuiteresting question for which unitarily invariant norniget
norm. The Frobenius norm &fl = [mjj] € R**"2 is defined analogue of Proposition 1 holds.
as||M||z := /3™, I}il(mj)z- Using the above proposition, we are now able to prove the
following theorem about the SVD of a matrix with symmetry.
Theorem 2: Assume that the matrii € R*1*"2 has the
following symmetry:

Let M € Rm*"2, Denote its singular values by
(O-l(M)v UZ(M)v R Umin{nl,nz}(M))’ ordered as
01(M) > 02(M) > ... > Oninfng np} (M)-

M =PMQ
Consider the Singular Value Decomposition (SVD)Nf

s 0 with P and Q unitary matrices. Then, if
M=U [ ]VT,

O 0 Uk(M) > O-k+1(M),
with Mk, the optimal rankk approximation derived from truncat-
3 :=diag g1 (M), 52(M), .. -aamin{nl,nz}(M)) ing the SVD, has the same symmetry:
andU € R"*™ gndV € R"2*"2 unitary. Call M, = PMQ.

Proof: The Frobenius norm is unitarily invariant, so

M :=U [zok 8} Al
[IM —My|z = [[P(M —My)Q|[z = |[M — PM:Q||5.

with k < min{ny, n2} and HencePM,Q is an optimal rank approximation oM with

%, = diago1(M), 02(M),...,0x(M)) respect to the Frobenius norm. So by the uniqueness shown
in Proposition 1 PM,Q = M. [ |

In the sequel, we often assume that the gap condition is

satisfied. It is easy to see that this is a generic condition,

Ox(M) > Gy 1(M) both for matrices and for Hankel matrices of LTI-systems.

the rank k SVD-truncation of M. It is well-known that, if
the gap condition

holds, then the rank SVD-truncation ofM is uniquely IV. EXAMPLES

defined. Indeed, while ther(M)'s are always uniquely In this section, we give some examples of matribes
defined,U andV are never unique, but nevertheless, if thn;xn, 5, \which M — PMQ with P and Q unitary matrices
gap condition holds, then the rankSVD-truncation ofM We restrict the examples to matrices which are relevant for

is unique. : : :
. . model reduction of LTI systems with symmetries.
The rankk SVD-truncation ofM leads to an optimal rank y y

k approximation oM, with respect to any unitarily invariant A, Matrices with equal rows/columns

norm. In other words Let R j be then; xn1 permutation matrix such that i jx

[(||- ] unitarily invariany A (rankM’) < k)] thei-th andj-th elements ok are permuted. Then iR ;M,
/ thei-th and j-th rows are permuted. NoM = P jM means
= [[IM =M = [[M — M][] that thei-th and thej-th rows of M are equal. Theorem 2
The purpose of this section is to prove a theorem cor&llows us to conclude that if the gap condition holds, then
cerning the preservation of a certain kind of symmetry aftévh, = R jMy, i.e. thei-th andj-th rows of My are also equal.
rank k SVD-truncation. It is based on the well-known factA matrix M for which the symmetryM = R ;M holds for
that My is the unique matrix of rankk which approximates many pairs of(i, j), corresponds to either a matrix with more
M optimally with respect to the Frobenius norm if the gaghan two equal rows or a matrix with more than one group of
condition holds. rows which are identical. If the gap condition holds, allsbe
Proposition 1: If the gap conditiongy(M) > o, 1(M) Symmetries separately are retained after SVD-truncation.
holds, then the rank SVD-truncationM; is the unique Analogous results can be obtained for the columnMof
matrix of rank k which approximatesM optimally in the

Frobenius norm, i.e. B. Matrices with zero-rows/-columns
To express that théth row of M is zero, consider the
[(0k(M) > Gy 1(M)) A (rankMy) <k) matrix P = diag(1,...,1,—1,1,...,1), with the —1 on the
A(IM =M||z = [IM — M| |3)] = [My. = My] i-th position, and express thist = BM. If the gap condition

Proof: This proposition is undoubtedly very well- holds, then for the optimal rarikk approximation ofM holds
known, but for the sake of completeness, we give a prodiiat My, = PMy, i.e. thei-th row of M, is also equal to zero.
in appendix. m If the symmetryM = RM holds for different values of,

Of course, it follows that if the gap conditioi,(M) > then more than one row d¥l are equal to zero. All the
0x+1(M) holds, then the rank SVD-truncationMy is the symmetries separately are retained after SVD-truncafion i
unique matrix of rankk which approximates optimally, the gap condition holds. Analogous results can be obtained
simultaneously for all unitarily invariant norms. It is anfor the columns oM.



C. Circulant matrices

In this section we consider block matrices withx n
blocks of sizep x m. Define the special permutation matrix

M e R .
_ Infl
- )

1
where |, ; denotes the identity matrix of size — 1. Let
F=[F .. F']" with FeRP™ i=1..n, then
the block matrixgr with n x n blocks of sizep x m

%k=[F (Mel)F (M®l)%F M®lp)*F], (@)

where® denotes the Kronecker product, is called bhaeck
circulant matrix generated by F. Such a matrix looks like

Fl F2 anl Fn
PR R R F
F=| 1 : E
an 1 Fn an 3 Fn72
Fa Fi Fo2 F1

Observe théblock Hankel structure of block circulant matri-

ces. An equivalent way of defining block circulant matrices

IS:
[M € R?*P*™* s block circulant< [M = (M@ l,)M(M @ Iy)].

A generalization of block circulant matrices are thleck
g-circulant matrices. The block matrix4r with n x n blocks
of sizep x m defined as

Y =[F (Nol,)9F
is called the bloclg-circulant matrix generated y. Again,
an equivalent way of defining bloak-circulant matrices is:

(MN®lp)%F (MN®l,)m"1oF]

[M € R*™*™ is block g-circulani < [M = (M & l,)M(M @ Iy)9].

We already noticed that block circulant matrices hblazek
Hankel structure. On the other hand a blogk— 1)-circulant
matrix hasblock Toeplitz structuré.

computed using the Discrete Fourier Transform (DFT). We
explain this only for the vector case. Consider

m my Mh—1 m,
m mz my my
M= : : : N
M1 My M3 My2
my, m M2 My1

with m e RP fort =1,2,...n. Let
rﬁf::zlme*if%nt, £=0,1,...,n—1
t=

be the DFT of the first block row df1: my,m,,...,m,, such
that

1nfl o
m = — Z)r”nfe'f%t, t=1,2,...,n
f—

Using for example realization theory, it follows readilyath
the rank ofM equals the cardinality of the set

{f € {0717 ,1’1—1} | ||ﬁ1f|| 5&0}

It is also known that

1 n 1nfl .
—||M||§:Z|IMI|2:—Z || |2
n t= ol =}

Therefore, in order to obtaikl,, an optimal rankk approx-
imation of M in the Frobenius norm, we can proceed as
follows. First calculate
.1
m=-

D g

et t=12,...

with R, the subset 0f0,1,...,n— 1} of cardinalityk with

A second generalization of block circulant matriceghe property

are theblock skew-circulant matrices. Define the special
permutation-like matri® € R**»

_ 0 Infl
o-[% "5
Let F € R**" then the block matrix?¢ with n x n blocks
of sizep xm

Sr=[F (Oxl))F (O 1,)*7F],

, is called the block skew-circulant matrix generatedFay

(O®1,)2F

[(f € R)A(f ¢ Rl = [[IMe]| =[] M ]]

Now, it is easy to see thadl, is equal to the block circulant
matrix induced by the vectdr iy M) ... m | (see
equation (1)). Under obvious conditions &, My is real.
Note also thaMy, is the unique optimal rank approximation

of M in the Frobenius norm if

(£ eR)A(E € R)] = [lIMe]| > || ]]].

An equivalent way of defining block skew-circulant matrices

is:
[M € R*P*™* s block skew-circulant < [M = (O®1,)M(O® I)].

It follows from Theorem 2 that iM is block circulant (in
hold
gap condition holds, the rank SVD-truncationMy is the
uniqgue matrix of rankk which approximatesvl optimally

Assume that both these conditions are satisfied. THen
approximatesM optimally in the Frobenius norm with a
block circulant matrix of rankk and it is the unique block

of the senses considered above) and if the gap Conditigiﬁculant matrix that does so. Hence we deri\{ed an alteraati
s, then the truncated SV is also block circulant (in way to calculate the SVD-truncatidvi, by making use of the
the same sense). We know from Proposition 1 that if th

BFT. Moreover, sincen,t=1,2,...n—1 may be computed
using the Fast Fourier Transform (FFT), it is numerically

in the Frobenius norm. As a consequence of this, the SVDPAuch more efficient to computé, by first computingnt,

truncationMy of a block circulant matrix can very nicely be

1Some authors define block circulant matrices to be block lftaegnd

their block (n— 1)-circulant matrices are block Hankel. For further use, we'

prefer the definition given above.

t=12,...n—1 and then formingVl,, than it is to compute
the SVD. This observation is valid also when we look for
an optimal rankk approximation ofM in another unitarily

invariant norm than the Frobenius norm.



V. APPLICATION TO MODEL REDUCTION The first Markov parameter is equal to
A. Impulse responses with pointwise symmetry o ®
T . CeBred = Hr VaZylUg o5
In this section, it is shown that if the Markov parameters Lo e T ol
H(1),H(2),...,H(t),... of a stable (meaningcy |[H (t)|| < = (PO 2)(2 iz Uy 7 )(Z9)7P)
o) system.” have a pointwise symmetry, then the Markov = PCedBredQ.

parameter$deq(1), Hred(2), . .. of the balanced reduced sys-
tem.#.q have the same symmetry. We first prove this resulthe same can be done f6fe¢AredBred: CredAeqBred: - -- We

and then present some applications. conclude that
Proposition 3: Assume that the systen¥ is stable and
that its Markov parameters have the symmetry PCreAled BredQ = CredPloBred, tEN.

PHt) Q=H(), teN, .
with P and Q given unitary matrices. Then, ifi(Hn) > Wg now present some applications. (assuming that the gap
Or11(HH), the Markov parameters of the balanced reducegPndition holds) of the above proposition.
system.#eq of orderk have the same symmetry: Suppose that for alt, row i and j of the Markov

parameterdi (t) of a system? are equal. In that case, we
PHred(t)Q = Hred(t), te€N. see that outputy; andy; of the system¢ are identical.
_Proof: A balanced realization o_f the systesf can be  Now from Proposition 3, we know that the outpuég; and
obtained from the reduced SVD of its Hankel matfix = outputyreqj Of the balanced truncated systeffieq are also
UshV' as equal.
Iy 7 Similarly, suppose that for all, columni and j of the
A = zHluTﬁ"HV ZHl’ Markov parameter$i (t) of a system” are equal. In that
B — zﬁluTgE,l’ case, we see that the outputof the system.” does not
depend on thé-th and j-input separately, but depends only
CcC = ﬁﬁmv zﬁl, on its sum. Now from Proposition 3, we know that the output
Vreq Of the balanced truncated systeffq also depends only
where on the sum of inputs and j.
H(2) H(3) H4) --- If the i-th column ofH(t) is equal to O for alt, the output
H(@3) H(4) H(5) - of the system¥ does not depend on iisth input. Again,
HoH = | H(4) H(5) H(®B) - |- we know from Proposition 3, that the output .&feq is also

independent of théth input. Analogous conclusions can be
drawn for the case where rows Hift) are equal to 0.

andsﬁi,j,j denotes the submatrix ¢fy consisting of the first

i block rows andj block columns. Expres$y as B. Periodic impulse response
_ >y O T Assume that the impulse resport$gl), H(2),...,H(t),...
on=[Us U] [ 0 ZH2:| MoV is periodic with periodT: H(t+T) =H(t) for t € N. The

problem is to obtain a reduced order model with an impulse
response which is also periodic. Now since rghk) =
rank(f‘)L’T), it is logical to look for a periodicH;eq such

where the size oty is equal tok. The balanced reduced
system.%;¢q Of orderk then has the realization

Aed = \/ZiUf SonViy 2], that
5T e 195" — 9oyl
Brea = z|_|1U]_ '6H' ) re
- TT TT o TT .
Coq — ﬁhmvl /Zgl. is smal! and that ranig,;_) <.ranl<(5§_H ). Since 9, is
1 block circulant, the probTem is to find a low rank block
Call Z=l,®Pand 2 =1, ® Q, then circulant approximation of a block circulant matrix. We

_ 269 know that if the gap condition holds, the truncated SVD
DH = DH 2. of ﬁL’T gives an optimal approximation in any unitarily
It follows from Theorem 2 that, if the conditiom, () >  invariant norm which is again block circulant. Moreovesisit

Oes1(HH) holds, shown in [1] that this reduction corresponds to reduction by
. . finite time balancing. As was shown in the previous section,
PU1zn\Vp £ =U1ZnVy . the SVD-truncation of the circulant Hankel matrix, can be

Because the Moore-Penrose pseudo-inverse of a given maffciently computed using the DFT, which in addition can be
is uniquely defined, we also have that implemented with the FFT-algorithm. This yields a fast way

of computing a reduced order periodic model. This result is
2"z luf 2T =iz luf of relevance in image processing, as shown in [1] and [3].



C. Even/odd periodic impulse response Take a ‘random’ fourth order system for'.

Assume that the impulse resport$gl), H(2),..., H(t),...
is periodic with periodT: H(t+ T) = H(t) for t € N.
Consider in addition that the impulse responseeisn: [ yi(t) ] _ [ G }x(t)
H(T —t) = H(t) for t € [0,T — 1. The problem is to find 0 ] | & ’
a reduced order model with an impulse response which \i/§ith
also periodic and even. The Hankel mat T has two

Xt+1) = AX(t)—F[ Bi B } [ 3228 } ()

o —~0.1067 —0.1458 —0.2499 —0.0102
symmetries: A_ | —0.2803 —0.1569 —0.0534 02273
T | 00680 -00575 -0.1349 02395
oyt = (Mel)9y (Mol 00248 03294 —0.0029 -0.1033
o = (AR1L)HLTADIL), 01209 11343
(B B - -0.2222 0
with SR 0 —1.4671 |
1 -0.3001 0
3 1 G ] 0 —-0.6936 —22374 —0.0016
A= : C, |~ | 05654 08339 0  -16146 |-
L First order balanced reduction give4eq
If the ga}rp condition holds, the truncated SVD of the Hankel Aed = [-01327,
matrix QH’T gives an optimal approximation in any unitarily [ Bired Barea ] = [ —0.1088 -1.8262],
invariant norm for which the same symmetries hold. Again, { Cred } 3 { ~1.7962 }
the problem can be solved more efficiently using DFT- Cared - -0.3604 |-
techniques.

Analogous results can be obtained for edd periodic ~ 1he interconnected system is given B%on
impulse responseH(1),H(2),...,H(t),... with period T A BG
defined asH(t+T) =H(t) fort € N, H(T —t) = —H(t) { BC2 A }
for t € [0,T —1]. In that case, the Hankel matri;;" has B.  — { Bt O }
the symmetries - 0 B [

Acon =

Coon — {cl 0 }
ST = (Mel)HL (Mol 0 G
TT TT
9 = (A@)H (-ASh). which after second order balanced reduction gi¥ésn, req
In the combination of the even and odd case, skew- Aconred = [ _ooé%ig 7%85537},

circulant matrices pop up. For aven-odd periodic impulse 0'8328 0'0075
responseH (1),H(2),...,H(t),... with period ZI it holds Beon,red = { 00075 08328 }
that: H(t +2T) = H(t) for t € N, H(T —t) = H(t) for 1 0
t e[0T —1], H2T —t) = —H(t) for t € [0,2T —1]. In Ceon,red = {o 1}

this case the Hankel matrix with the size equahtdf the

period,sﬁL’T is block skew-circulant. The problem of finding Notice that.-%con, reqhas the same symmetry a&on. After
a reduced order model with an impulse response which &pproximatingBcon, red by

also periodic and even-odd can again be solved by truncating 08328 0

the SVD of 6);". Beon, red= { 0 08328 }

Yeon, redCan be seen as the interconnection of two systems
/!

red

V1. SIMULATION EXAMPLE

We consider the problem of how to model reduce a system red (~0.0647,
consisting of the interconnection of many identical burifgli [ Birea Barea] = [ 08328 /08248 ],
blocks. Model reduction of interconnected systems while { Cl red } _ { 1 }

/ /
preserving the interconnection structure is important anyn Cared 0.8248
applications. In this section we study the interconnectibn
two identical building blocks shown in Figure 2. In order In Figure 3, we compare the impulse responses of
to model reduce the interconnected system, we can proceed the 8-th order interconnected systeffaon,
in two ways: either model reduce the building block and . the second order system obtained by interconnecting the
interconnect, or model reduce the interconnected systeim an  first order approximations/eq of the building blocks,
view the reduced model as an interconnection of identical « the second order system obtained by approximating the
subsystems. The simple simulations which we carried out reduced interconnected system with an interconnection
showed that the second procedure gives much better results. of two identical first order building blocks”,.



It is clear from the figure, that the second approximation APPENDIX
method, approximating the interconnected system and th@n proof of Proposition 1
viewing this reduction as an interconnection of two ideditic

Let M; be an optimal rank approximation ofM, and let
building blocks, yields the best results.

!
My =U’ {% 8} v'T

From input 1 to output 1 / From input 2 to output 2. Zi{

with & € R¥*¥, be an SVD ofM;. Then Ois obviously an optimal

— Connected system 0 0
—— Connection of reduced systems
— Reduction of connected system (approximation)

"TMV’. Partition

Ni2
N2

rank k approximation ofN := (U

~ {N1z
N= |:N21

0.8

0.6
] L[5 0
conformal with the partition o ol
o4r Observe that, since

!
rank( ﬁ;‘ N(ﬂ <k

02p |

and s N 5/
e 20 [N [ N1l <In-

0
0] I
Ni1

we obtainN;2 = 0. Similarly, No; = 0. ThereforeN = [ 0 N(;J . Observe

also that, since

5 10 15 20 25 30

From input 1 to output 2 / From input 2 to input 1.

I —Nyy O
rank({ 0 ol Sk

5 0
s <IN-[F 9]l

0
N2

—— Connected system
—— Connection of reduced systems
— Reduction of connected system

and

pp! )

O ARY I S
5

we obtainNi1 = Z. ThereforeN = z
be an SVD ofN,,, and note that

PR o T R T o T o IO B
vislo ggnfo o ool 2

0.8

:| Next, letNop = Uzzzkvzz

0.4t

. o 0 ! .
o2l is diagonal: N’ = | * s | and has zok (()) as an optimal rankk

k
approximation. This obviously implies that the srpallesigdinal element
of 3 is larger than the largest diagonal elemen&gf It follows that

[t o= o1 o]y
m-vlo w5 2l vl

5 10 15 20 25 30 is an SVD ofM and that
Fig. 3. Impulse responses (Above: from first input to firstpoiit from M, = U’ {Zﬂ 0} VT U {' 0 } Fﬁ 0} {' OT} v'T
second input to second output; Below: from first input to secoutput, 0 0 0 Ux| [0 O]0 Vy

from second output to first input) of a random 8-th order systblue)
Ycon, S€CONM Order approximation of;o, obtained by interconnecting the
first order approximation of its building blocks (red) and@ed order ap-

is a rankk SVD-truncation ofM.
Now, if the gap conditioroi (M) > di+1(M) holds, then the rank SVD-
truncation is unique. Hendel;, = M. Conclude thatV is then theunique

proximation of.%.on Obtained by approximating the reduced interconnectedptimal rankk approximation in the Frobenius norm bf.
system with an interconnection of two identical first ordeilding blocks
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VII. CONCLUSION

In this paper, we have shown how to model reduce
LTI systems with pointwise symmetries and with periodic [2]
impulse responses. We have shown that model reduction
based on SVD techniques preserves these symmetries if thg
‘gap condition' is satisfied. The results are based on the fac
that the gap condition implies that the SVD-truncation of apy
matrix with unitary symmetries leads to a lower rank matrix
with the same symmetries.



