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Abstract— In this paper we consider the following problem
for (quasi) hidden Markov models: given a minimal (quasi)
hidden Markov model, what can be said about the set of all
equivalent (quasi) hidden Markov models of the same order.
A distinction is made between Mealy and Moore type of
hidden Markov models. A complete solution is presented for
the quasi HMM case. For quasi Mealy models, there exists
already a description of the set of equivalent models. In this
paper, we prove that for minimal quasi Moore models, the
set of equivalent models consists of only one element (up to
a permutation of the states). Finally, we present some initial
results for the positive HMM case and show a motivating
simulation example.

I. INTRODUCTION

Hidden Markov models (HMMs) were introduced in the
literature in the late 1950s [2]. Twenty years later, HMMs
started to be used in engineering applications, such as speech
processing, image processing and bioinformatics. Despitethe
success in applications, many theoretical questions remain
unanswered until now. An example of an open theoretical
problem is therealization problem: given string probabilities
of all possible finite length strings, find all hidden Markov
models that realize these string probabilities. The realization
problem can be split up into three subproblems. The first
subproblem is the realizability problem: derive conditions
for string probabilities to be realizable by a hidden Markov
model. In [9] almost necessary and sufficient conditions
for the realizability of string probabilities are derived.The
second subproblem is the realization problem itself: given
realizable string probabilities, find a corresponding hidden
Markov model. Partial solutions for this problem are given
in [1], [8], [9]. The third subproblem concerns the question
of finding all possible realizations which are equivalent toa
given realization. For Gauss-Markov systems, where both the
states and observations take values from continuous sets, this
problem was already solved early [3]. However for hidden
Markov models, to the best of our knowledge, not much is
known about the equivalence problem.

The positive realization problem for hidden Markov mod-
els can be written as a nonnegative matrix factorization prob-
lem of a certain matrix containing the string probabilities.
The equivalence problem for positive hidden Markov models
is therefore related to the problem of findingall minimal
nonnegative factorizations of a given nonnegative matrix [7].
This is a far from trivial problem, as there does not even
exist a procedure to find the minimal inner dimension for
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which a positive factorization exists, nor a procedure to
calculate an exact nonnegative factorization. At this moment
only approximate nonnegative factorizations procedures exist
[4], [6]. In this paper, we consider the equivalence problem
for quasi hidden Markov models and give some initial results
for the positive hidden Markov case.

In Section II we introduce Moore and Mealy type of hid-
den Markov models and their quasi forms. In Section III we
first recall the description of the complete set of equivalent
quasi Mealy models, secondly we give some initial results for
the positive Mealy case and finally we perform a simulation
example. In Section IV subsequently, we show that, under
certain conditions, the class of equivalent (quasi) Moore
hidden Markov models consists of only one element (up to
a permutation of the states). In Section V we summarize the
results and in Section VI finally, we draw some conclusions.

The following notation is used throughout the paper. If
X is a matrix, thenXi:k,j:l denotes the submatrix ofX
formed by thei-th to thek-th row and by thej-th to the
l-th column ofX . With Xij we mean thei, j-th element of
X , and with X:,j and Xi,:, we mean thej-th column and
i-th row respectively.

II. MOORE AND MEALY TYPE OF HMM

Hidden Markov models (HMM) are used to model finite-
valued output processesy defined on the time axisN. Hidden
Markov models assume the existence of an underlying finite-
valued Markov processx, called the state process, on which
the output process depends in a probabilistic manner. In this
section, we introduce two different types of hidden Markov
models: Moore hidden Markov modelsand Mealy hidden
Markov models. We also introduce the so-calledquasi forms
of these two types of models. Finally, we discuss conversions
between Moore and Mealy models.

A. Mealy type of HMM

A Mealy type of hidden Markov model assumes that the
event of going to a certain state at time instantt + 1 given
the state at time instantt is dependent on the output symbol
produced at time instantt. Consequently, a Mealy hidden
Markov model is denoted by the quadruple(X, Y, Π, π(1))
where:

• X with |X| < ∞ is the state alphabet andY with |Y| <

∞ the output alphabet. Whithout loss of generality, we
identify X = {1, 2, . . . , |X|}.

• Π is a mapping fromY to R
|X|×|X|
+ , where ΠX =

∑

y∈Y
Π(y) is a stochastic matrix, i.e.ΠXe = e, where

e :=
[

1 1 . . . 1
]⊤

. The elementΠ(y)i,j is equal
to P (x(t + 1) = j, y(t) = y|x(t) = i), the probability



of going from statei to statej while observing output
symboly. The matrixΠX is called the transition matrix;

• π(1) is a vector inR
|X|
+ for which π(1)e = 1. The

elementπi(1) is P (x(1) = i), the probability that the
initial state isi.

The number of states|X| is called the order of the
hidden Markov model. The model is calledstationary if
the state distribution is the same at every time instant, i.e.
if the initial state distribution vector is the left eigenvector
of the transition matrix corresponding to the eigenvalue 1:
π(1)ΠX = π(1).

Denote byY
∗ the set of all finite strings with symbols

from the setY (including the empty string) and byy =
y1y2 . . . y|y| an output sequence fromY∗, where|y| denotes
the length ofy. Let P : Y

∗ 7→ [0, 1] be string probabilities,
defined asP(y) := P (y(1) = y1, y(2) = y2, . . . , y(|y|) =
y|y|). Of course, the string probabilities satisfyP(φ) = 1,
where φ denotes the empty string, and

∑

y∈Y
P(yy) =

P(y)1. One can easily see that the string probabilities for
all y = y1y2 . . .y|y| ∈ Y

∗ can be calculated as

P(y) = π(1)Π(y)e,

whereΠ(y) = Π(y1)Π(y2) . . . Π(y|y|).
Two Mealy hidden Markov models(X, Y, Π, π(1)) and

(X′, Y, Π′, π′(1)) with string probabilitiesP andP′ respec-
tively are said to beequivalentif and only if they satisfy
P = P′.

A Mealy hidden Markov model is(X, Y, Π, π(1)) is called
minimal if and only if for any other equivalent model
(X′, Y, Π′, π′(1)) it holds that|X| ≤ |X′|.

In theMealy realization problem, we are given all possible
output string probabilitiesP and the problem is to find a
Mealy HMM (X, Y, Π, π(1)) that realizesP, which means
that for all y = y1y2 . . . y|y| ∈ Y

∗, it holds thatP(y) =
π(1)Π(y1))Π(y2) . . . Π(y|y|)e.

The realization problem is very hard in practice because of
the positivity contraints onπ(1) andΠ. For that reason, one
typically (first) solves the quasi realization problem, which
is exactly the same problem as the realization problem but
without the positivity contraints. However, the quasi model
which is found from the quasi realization procedure retains
some of the interesting properties of a positive model [8].

A quasi hidden Markov modelof Mealy type is defined
by the pentuple(Xq, Y, Πq, πq(1), eq), whereΠq, πq(1) and
eq are the analogues ofΠ, π(1) ande, but the image of the
mappingΠq are matrices overR instead ofR+, moreover the
vectorπq(1) is a row vector overR, and the column vector
eq is a vector overR instead of a fixed vectore. For the
initial quasi state distribution, it holds thatπq(1)eq = 1 and
for the quasi state transition matrixΠX,q =

∑

y∈Y
Πq(y) it

holds thatΠX,qeq = eq. The number of states|Xq| is called
the (quasi) orderof the hidden Markov model.

Equivalence and minimality of quasi Mealy hidden
Markov models are defined in an analogous way as for
positive Mealy hidden Markov models.

1With yy, we mean the concatenation of the string y with the symboly,
concatenation of two strings is defined analogously.

A Mealy hidden Markov model(X, Y, Π, π(1)) with string
probabilitiesP and a quasi Mealy hidden Markov model
(Xq, Y, Πq, πq(1), eq) with string probabilitiesPq are said
to be equivalentif and only if they satisfyP = Pq. The
minimal order of a quasi HMM is lower than or equal to the
minimal order of an equivalent positive HMM.

B. Moore type of HMM

In a Moore type of hidden Markov model, the generation
of the next state and the generation of the output are
independent. For a Moore HMM there exists a matrixΠX

and a mappingβ from Y to R
|X|
+ such that for eachy ∈ Y

it holds that
Π(y) = diag(β(y))ΠX,

wherediag(·) is the diagonal matrix with the elements of
the vector · on its diagonal. The element(ΠX)ij is then
equal to P (x(t + 1) = j|x(t) = i), the probability of
going from statei to statej. The elementβ(y)i is equal
to P (y(t) = y|x(t) = i), the probability of observing
the symboly given that the present state is equal toi.
Suppose we have an ordering(yk, k = 1, 2, . . . , |Y|) of the
output symbols of the setY, then the matrixB is defined
as B :=

[

β(y1) . . . β(y|Y|)
]

. One can easily see that
ΠXe = e and thatBe = e. A Moore HMM is fully described
by (X, Y, ΠX, β, π(1)) or (X, Y, ΠX, B, π(1)).

Two Moore hidden Markov models(X, Y, ΠX, β, π(1))
and(X′, Y, Π′

X
, β′, π′(1)) with string probabilitiesP andP′

respectively are said to beequivalent if and only if they
satisfyP = P′.

A Moore model (X, Y, ΠX, β, π(1)) is called minimal
if and only if for any other equivalent Moore model
(X′, Y, Π′

X
, β′, π′(1)), it holds that|X| ≤ |X′|.

We define a quasi hidden Markov model of
Moore type as (Xq, Y, ΠX,q, βq, πq(1), eq) or as
(Xq, Y, ΠX,q, Bq, πq(1), eq), whereΠX,q, βq, Bq, πq(1) and
eq are the analogues ofΠX, β, B, π(1) and e, but the
vectorsβ(y), the matrixΠX and the row vectorπq(1) are
over R instead ofR+, and the column vectoreq is a vector
over R instead of a fixed vectore. For the initial quasi
state distribution, it holds thatπq(1)eq = 1, for the quasi
state transition matrix it holds thatΠX,qeq = eq and for the
output matrixBq it holds thatBqe = e.

Equivalence and minimality of quasi Moore hidden
Markov models is defined in an analogous way as minimality
for Moore hidden Markov models.

A Moore hidden Markov model(X, Y, Π, π(1)) with
string probabilitiesP and a quasi Moore hidden Markov
model(Xq, Y, Πq, πq(1), eq) with string probabilitiesPq are
said to beequivalentif and only if they satisfyP = Pq.

Equivalence between (quasi) Moore and (quasi) Mealy
models is defined analogously.

C. Conversions between Moore and Mealy

It can be shown that the expressive power of Moore
HMMs and Mealy HMMs is the same [9], which means that
a finite valued process is realizable with a Moore hidden
Markov model if and only if it is realizable with a Mealy



hidden Markov model. However, one easily sees that the
minimal order needed to realize a certain finite process with
a Mealy model is smaller than or equal to the minimal order
of a Moore model.

Converting a minimal Moore model(X, Y, ΠX, β, π(1))
into a Mealy model(X, Y, Π, π(1)) is always possible, using

Π(y) = diag(β(y))ΠX.

However, the obtained Mealy model can be nonminimal,
even if the Moore model was minimal.

Converting a minimal Mealy model in a Moore model, can
be done always by connecting a state of the Moore model to
every state transition of the Mealy model and then calculating
the state transition probabilities and the output probabilities.
Typically, this approach will lead to a nonminimal Moore
model.

In section III, we will show that a (quasi) Mealy model
with two outputs can always be converted into a quasi Moore
model with the same number of states.

III. EQUIVALENCE FOR MEALY HMMS

In this section we investigate the set of equivalent Mealy
hidden Markov models: suppose we are given a minimal
HMM with certain string probabilities, how can we find
(all) equivalent Mealy HMMs? Of course, given a certain
quasi or positive Mealy model, one can always obtain an
equivalent model by permuting the states. However, there are
many more equivalent models than only the ones obtained
by permuting states. In addition, for the quasi case, the class
of equivalent quasi Mealy hidden Markov models can be
characterized in an appropriate way. In the positive hidden
Markov case the problem is more complicated and to the
best of our knowledge there exists no characterization of the
set of equivalent models. We prove some initial results and
give a simulation example.

For quasi Mealy HMMs the set of all equivalent realiza-
tions is characterized by the following theorem [9].

Theorem 1:Two minimal quasi Mealy models
(Xq, Y, Πq, πq(1), eq) and (X′

q, Y, Π′
q, π

′
q(1), e′q) are

equivalent (i.e. they have the same string probabilities),if
and only if there exists a nonsingular matrixT , such that

πq(1) = π′
q(1)T−1

Πq(y) = TΠ′
q(y)T−1 ∀y ∈ Y

eq = Te′q
This theorem allows us to prove that a (quasi) Mealy

model with two outputs,y1 andy2, can always be converted
into an equivalent quasi Moore model with the same number
of states under the condition that the row space ofΠq(y1)
equals the row space ofΠq(y2), which is fulfilled for most
HMMs. For that conversion, we need to find a nonsingular
matrixT such that there exists a matrixΠX,q and two vectors
βq(y1) andβq(y2) for which

TΠq(y1)T
−1 = diag(βq(y1))ΠX,q

TΠq(y2)T
−1 = diag(βq(y2))ΠX,q ,

or that there exists a diagonal matrixD such that

TΠq(y1)T
−1 = DTΠq(y2)T

−1.

One can easily see that this matrixD always exists under
the condition thatrow(Πq(y1)) = row(Πq(y2)).

For Mealy hidden Markov models with more than two
outputs the above result does not hold in general anymore,
so it is possible that a minimal quasi Moore model equivalent
to a minimal quasi Mealy model, has more states than the
Mealy model.

For positive Mealy HMMs we prove the following theorem
Theorem 2:For a positive Mealy hidden Markov model

(X, Y, Π, π(1)) the following holds: If there exists a nonsin-
gular matrixT such that

• Te = e,
• π(1)T−1 andTΠ(y)T−1 ∀y ∈ Y are nonnegative

then (X, Y, TΠT−1, π(1)T−1) is a positive hidden
Markov model which is equivalent to the given HMM
(X, Y, Π, π(1)).

Proof: We first prove that(X, Y, TΠT−1, π(1)T−1)
is a positive hidden Markov model. As the system matrices
are nonnegative by construction, we only need to prove the
consistency properties.

The fact that the entries ofπ(1)T−1 sum to one, follows
from

π(1)T−1e = π(1)e = 1.

The fact that
∑

y∈Y
TΠ(y)T−1 is a stochastic matrix,

follows from

∑

y∈Y

TΠ(y)T−1e = T

(

∑

y∈Y

Π(y)

)

e

= Te = e.

Now we prove that(X, Y, TΠT−1, π(1)T−1) is equiv-
alent to (X, Y, Π, π(1)). This follows from the fact that
the string probabilities of(X, Y, Π, π(1)) are equal to the
string probabilities of(X, Y, TΠT−1, π(1)T−1) for all y =
y1y2 . . . y|y| ∈ Y

∗, i.e.

π(1)Π(y1) . . . Π(y|y|)e =

π(1)T−1TΠ(y1)T
−1 . . . TΠ(y|y|)T

−1e,

which follows from the fact thatT−1e = e.
In the same way as in the proof of the theorem, it

can be proven that if the given model is stationary (i.e.
π(1)

∑

y∈Y
Π(y) = π(1)), that the equivalent model is also

stationary.
Notice that the converse of Theorem 2 is not true in

general. There exist equivalent positive Mealy models which
are not connected trough a similarity transformT . So the
theorem does not give a way to find thecomplete set
of hidden Markov models equivalent to a given hidden
Markov model (in contradiction to the case with quasi Mealy
models).

However, in case a positive hidden Markov model is
minimal in the set of quasi HMMs then the converse of



Theorem 2 does hold (by combining Theorem 1 and Theorem
2). In that case, one can say that if two positive HMMs are
equivalent that there must exist a transformationT fulfilling
the conditions of Theorem 2. Consequently, in that case the
theorem gives a description of the complete set of equivalent
positive hidden Markov models.

We now show a simulation example where we try to get
an idea of the set of all equivalent positive models equivalent
to (X, Y, Π, π(1)), with |X| = 3, Y = {0, 1} and

Π(0) =





0.05 0.4 0.1
0.2 0.15 0.2
0.35 0.15 0.2



 ,

Π(1) =





0.15 0.1 0.2
0.1 0.05 0.3
0.05 0.15 0.1



 ,

π(1) = [ 0.3060 0.3284 0.3657 ].

One can easily see that this model is minimal as a quasi
realization (by calculating the rank of the associated Hankel
matrix (see [5])) and that the model is in addition stationary:
i.e. π(1)

∑

y∈Y
Π(y) = π(1).

An equivalent HMM is found by taking a nonsingular
matrix T of the form

T =





T11 T12 1 − (T11 + T12)
T21 T22 1 − (T21 + T22)
T31 T32 1 − (T31 + T32)



 ,

and checking whether the second condition of Theorem 2
holds. We now perform a matlab experiment that investigates
matricesT on a grid, i.e.T11 = −1,−0.9,−0.8, . . . , 1 (with
steps of0.1), and the same forT12, T21, T22, T31 andT32.
In that way, we find a whole class of realizations which
are equivalent to the given HMM. In Figure 1 we show the
stationary state distributionπ(1) of each of these equivalent
realizations.

Of course allπ(1)s are lying on the planeπ1(1)+π2(1)+
π3(1) = 1. In the figure, it seems that not all equilibrium
state distributions are possible and that the possible equi-
librium state distributions make some complex form. The
question whether these observations are coincidence and due
to the grid size will be topic of the authors’ further research.

IV. EQUIVALENCE FOR MOORE HMMS

In this section we investigate the set of equivalent Moore
hidden Markov models. As was the case with Mealy models,
one can always obtain a model equivalent to a given quasi or
positive Moore model by permuting the states of the original
model. In contrast to the Mealy case, we will show here
that under certain conditions these permuted models are the
only possible equivalent models of the same order than the
original model.

The uniqueness of the (quasi) Moore model can be de-
scribed by the following theorem

Theorem 3:Given a (quasi) Moore HMM
(X, Y, ΠX,q, Bq, πq(1), eq) which is minimal as a quasi

Fig. 1. Plot of stationary state distribution of possible HMMs which are
equivalent to a given HMM (the two subplots give different views of the
same plot).

Mealy model2 then the following holds: if all states of the
Moore model have a different output distribution and if
the state transition matrixΠX,q has full rank, then there
does not exist any minimal (quasi) Moore model which is
nontrivially equivalent to the given (quasi) Moore model3.

Proof: Suppose that (X̃, Y, Π̃X,q, B̃q, π̃q(1), ẽq)
is an equivalent model to the given model
(X, Y, ΠX,q, Bq, πq(1), eq) and has the same order as
the given model. Then from Theorem 1, we know that there
exists a transformationT such that

π̃q(1) = πq(1)T−1,

diag β̃(y)Π̃X,q = T diag β(y)ΠX,qT
−1 ∀y ∈ Y, (1)

ẽq = Teq.

From the fact thatΠX,q has full rank, it follows thatΠ̃X,q

has full rank. So we conclude from (1) that there exist
nonsingular matricesT andS such that

diag β̃(y) = T diag β(y)S−1 ∀y ∈ Y,

Π̃X,q = SΠX,qT
−1.

But from consistency of the HMM

2We say that a model is ”minimal as a quasi Mealy model” if theredoes
not exist any equivalent quasi Mealy model of lower order, i.e. if the order
of the model is equal to the rank of the associated Hankel matrix [5].

3With a ”trivial equivalent” model, we denote a model obtained by
permuting the states of the original model.



(X̃, Y, Π̃X,q, B̃q, π̃q(1), ẽq)
∑

y∈Y

T diag β(y)S−1 = I

we find that
T = S.

Now we have that

diag β̃(y) = T diag β(y)T−1 ∀y ∈ Y,

and together with the fact that all states of the Moore model
have a different output distribution, this allows us to conclude
that T can only be equal to a permutation matrix.

If there do exist states with the same output distribution,
but all the other conditions of Theorem 3 are fulfilled, then
there exists a set of equivalent Moore models (apart from
the models obtained by permuting the states). Suppose for
instance that the output distribution of the first state equals
the output distribution of the second state, in that case the
transformationT of the proof of Theorem 3 is of the form

T = P

[

T12 0
0 I

]

, (2)

whereP is a permutation matrix,T12 a nonsingular matrix
of size 2 × 2 with T12e = e and I is the unit matrix of
appropriate dimensions. This gives a complete description
of the equivalence set. Notice that all elements of the set of
equivalent Moore models have the same output matrixB (up
to a permutation of the states). They only differ in the state
transition matrixΠX.

From Section III, we know that, under very general
conditions, a (quasi) Mealy model with two outputs can be
converted into an equivalent quasi Moore model with the
same number of states. So every minimal quasi Moore model
with two outputs is minimal as a quasi Mealy HMM. So
from Theorem 3 we conclude that a minimal quasi Moore
model with two outputs, with a full rank transition matrix
and with a different output distribution for each state, hasno
equivalents (except trivial equivalents).

However, the theorem is also useful for hidden Markov
models with more than two outputs. Consider for example
the Moore model(X, Y, ΠX, B, π(1)) with

ΠX =





0.8 0.1 0.1
0.3 0.3 0.4
0.2 0.2 0.6



 ,

B =





0.3 0.3 0.4
0.1 0.1 0.8
0.2 0.6 0.2



 ,

π(1) =
[

0.5405 0.1622 0.2973
]

.

One can show that the minimal order of an equivalent
quasi Mealy model equals three. This allows us to conclude
that the Moore model is minimal as a quasi Mealy model.
In addition, the output distribution is different in every state
andΠX has full rank, so that we conclude from Theorem 3
that the only way to obtain a minimal Moore equivalent to
the given model, is by permuting the states.

Moore model
unique quasi

minimal quasi Mealy models

(a)
minimal quasi Mealy models

quasi Moore models

(b)

Mealy models
minimal quasi
Moore models

minimal quasi

no Moore

(c)

Fig. 2. The three main case concerning the equivalence classes of hidden
Markov models.

V. SUMMARY OF THE RESULTS

In this section, we summarize the results so far, by
showing the three different cases that can occur concerning
the equivalence classes of Moore and Mealy models (see
figure 2). Notice that in all cases, there is a whole set of
equivalent minimal quasi Mealy models, as explained in
Theorem 1. In case (a) (figure 2(a)), the quasi Moore model
is minimal as a quasi Mealy model and every state has a
different output distribution and the transition matrix has full
rank so that we know from Theorem 3 that this minimal
Moore model is unique. In case (b) (figure 2(b)), the quasi
Moore model is again minimal as a quasi Mealy model, but
the other conditions of Theorem 3 are not fulfilled, such that
there exists a set of equivalent Moore models. In case (c)
(figure 2(c)) there does not exist a Moore model of the same
order as the minimal Mealy model, so any minimal Moore
model is of higher order. In that case, nothing is proven about
the class of equivalent minimal Moore models, but we expect
that a whole set will exist.

VI. CONCLUSIONS

In this paper we considered the following problem for
(quasi) hidden Markov models: given a minimal (quasi)
hidden Markov model, what can be said about the set of all
equivalent (quasi) hidden Markov models of the same order.
For quasi hidden Markov models of Mealy type, a necessary
and sufficient condition for two models to be equivalent was
already proven in literature. In addition, we have proven
a sufficient condition for two positive Mealy models to be
equivalent. In a simulation example, we computed a set of
equivalent positive Mealy models. We have also proven that,
under certain conditions, the set of equivalent models for
minimal quasi Moore models consists of only one element
(up to a permutation of the states). It was shown that for
Moore models with an output alphabet of two symbols,
these conditions are always fulfilled. In future work, we will



investigate the equivalence problem for positive HMMs in
more detail.
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