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Abstract— In this paper we consider the following problem which a positive factorization exists, nor a procedure to
for (quasi) hidden Markov models: given a minimal (quasi) calculate an exact nonnegative factorization. At this maime
hidden Markov model, what can be said about the set of all - oy anproximate nonnegative factorizations proceduss e
equivalent (quasi) hidden Markov models of the same order. . . .

A distinction is made between Mealy and Moore type of [4], [6]- I.n ,th's paper, we consider the. equwalenc_g problem
hidden Markov models. A Comp|ete solution is presented for fOI‘ quaSI h|dden MarkOV models and g|Ve some |n|t|a| I’esu|tS
the quasi HMM case. For quasi Mealy models, there exists for the positive hidden Markov case.

already a description of the.sgt of equiyalent models. In ttg In Section Il we introduce Moore and Mealy type of hid-

paper, we prove that for minimal quasi Moore models, the yen Markov models and their quasi forms. In Section 11l we

set of equivalent models consists of only one element (up to .. - .
a permutation of the states). Finally, we present some inidi first recall the description of the complete set of equivalen

results for the positve HMM case and show a motivating duasi M_galy models, SeCOﬂd'Y_ we give some initial r_esults_fo
simulation example. the positive Mealy case and finally we perform a simulation

example. In Section IV subsequently, we show that, under
. INTRODUCTION certain conditions, the class of equivalent (quasi) Moore
Hidden Markov models (HMMs) were introduced in thehidden Markov models consists of only one element (up to
literature in the late 1950s [2]. Twenty years later, HMMsa permutation of the states). In Section V we summarize the
started to be used in engineering applications, such aslspe¢esults and in Section VI finally, we draw some conclusions.
processing, image processing and bioinformatics. Detipite ~ The following notation is used throughout the paper. If
success in applications, many theoretical questions remaK is a matrix, thenX;., ;; denotes the submatrix ok
unanswered until now. An example of an open theoreticddrmed by thei-th to the k-th row and by thej-th to the
problem is theealization problemgiven string probabilities [-th column of X. With X;; we mean the, j-th element of
of all possible finite length strings, find all hidden Markov.X, and with X. ; and X; ., we mean thej-th column and
models that realize these string probabilities. The ratibn  i-th row respectively.
problem can_be split up inf[(.) three subprobllems. Thg_ first Il. MOORE AND MEALY TYPE OF HMM
subproblem is the realizability problem: derive conditon ) o
for string probabilities to be realizable by a hidden Markoy Hidden Markov models (HMM) are used to model finite-
model. In [9] almost necessary and sufficient condition¥aluéd output processggdefined on the time axis. Hidden
for the realizability of string probabilities are derivethe Markov models assume the existence of an underlying finite-
second subproblem is the realization problem itself: give}@!u€d Markov process, called the state process, on which
realizable string probabilities, find a corresponding keidd he output process depends in a probabilistic manner. & thi
Markov model. Partial solutions for this problem are givers€ction, we introduce two different types of hidden Markov
in [1], [8], [9]. The third subproblem concerns the questiof0dels:Moore hidden Markov modeland Mealy hidden
of finding all possible realizations which are equivalenato Markov modelsWe also introduce the so-callegiasi forms
given realization. For Gauss-Markov systems, where bath ttpf these two types of models. Finally, we discuss convession
states and observations take values from continuous bigts, {€tween Moore and Mealy models.
problem was already solved early [3]. However for hiddem Mealy type of HMM

Markov models, to the best of our knowledge, not much is A Mealy type of hidden Markov model assumes that the

known about the equivalence problem. . : ) . )
" S . event of going to a certain state at time instanrt 1 given
The positive realization problem for hidden Markov mod-, P .
. ) ) o the state at time instamtis dependent on the output symbol
els can be written as a nonnegative matrix factorizatiobpro

lem of a certain matrix containing the string probabilitiesprOducecj at time instant Consequently, a Mealy hidden

The equivalence problem for positive hidden Markov modelg/Iarkov model is denoted by the quadruglé, ¥, T1, 7 (1))

. . . Where:

is therefore related to the problem of findirdl minimal < with X is th Iohabet andwith [
nonnegative factorizations of a given nonnegative ma#jx[ ° Wr']t IX] < Ool'sht be st?/;[/eh_ahp aleta fW't | ||.<
This is a far from trivial problem, as there does not even oo the output alphabet. Ithout loss of generality, we

exist a procedure to find the minimal inner dimension for iderltifyX - {1,’2’ oo (X[ X[ |X|
o II is a mapping fromY to R , Wwherellx =
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of going from statei to statej while observing output A Mealy hidden Markov modelX, Y, IT, 7(1)) with string
symboly. The matrixIIy is called the transition matrix; probabilities? and a quasi Mealy hidden Markov model
o 7(1) is a vector inR‘f‘ for which 7(1)e = 1. The (X, Y,II;,m4(1),eq) with string probabilities?, are said
elementr; (1) is P(z(1) = i), the probability that the to be equivalentif and only if they satisfy? = P,. The
initial state isi. minimal order of a quasi HMM is lower than or equal to the
The number of state$X| is called theorder of the minimal order of an equivalent positive HMM.
hidden Ma_rko_v m_ode_l. The model is calle;_lationary if _B. Moore type of HMM
the state distribution is the same at every time instant, i.e ) )
if the initial state distribution vector is the left eigemter In a Moore type of hidden Markov model, the generation

of the transition matrix corresponding to the eigenvalue 22f the next state and the generation of the output are

_ independent. For a Moore HMM there exists a maiffix
m(1)Ix = m(1). ! X|
Denote byY* the set of all finite strings with symbols @nd & mappings from ¥ to R, such that for eacly € ¥
from the setY (including the empty string) and by = it holds that .
Viy2 ...Y]y| @n output sequence frofi*, wherely| denotes II(y) = diag(B(y))Ilx,
the length ofy. Let P : Y* — [0, 1] be string probabilities  where diag(-) is the diagonal matrix with the elements of
defined asP(y) := P(y(1) = y1,4(2) = ya,---,¥([y]) = the vector- on its diagonal. The elemerlly),; is then
y|y|)- Of course, the string probabilities satisB(¢) = 1, equal to P(x(t + 1) = j|z(t) = i), the probability of
where ¢ denotes the empty string, anil, ., P(yY) = going from statei to statej. The element3(y); is equal
P(y)L. One can easily see that the string probabilities fog P(y(t) = yl|z(t) = i), the probability of observing
ally = y1yz2...yy € Y* can be calculated as the symboly given that the present state is equal ito
Py) = m(DIL(y)e, Suppose we have an orderifg,, k = 1,2,...,|Y|) of the
output symbols of the seY, then the matrixB is defined
wherell(y) = II(y1)I(y2) . .. II(y}y)- asB:= [ B(y1) ... B(Yy)) ]. One can easily see that

Two Mealy hidden Markov model$X, Y, II, (1)) and
(X', Y, I, 7'(1)) with string probabilitiesP and?’ respec-
tively are said to besquivalentif and only if they satisfy
P =P, ) . D

. _ . and (X', Y, II%, 8/, 7/ (1)) with string probabilitiesP and P’

.A_Meally hidden Mar.kov model |$X,Y,H,7r(1)) is called respectively are said to bequivalentif and only if they

minimal if and only if for any other equivalent model satisfy P — P’

U U ! H U
(XI")t{ﬁHN’IW (Il)) 'tl.hOIt(.jS thatElﬂ < [X']. . I ol A Moore model (X,Y,IIx, 5,7(1)) is called minimal
n thelealy realization probiewe are given all POSsIDIE ¢ only if for any other equivalent Moore model
output string probabilities? and the problem is to find a (X', Y, 114, @, (1)), it holds that|X| < [X/|
) » X0 9 ) = .

Mealy HMM (XY, II,w(1)) that realizesP, which means We define a quasi hidden Markov modelof

that for ally = yiys...yy € Y7, it holds thatP(y) = vioore  type  as (X,,Y,TTx,, By my(1).e,) OF  as

T(DII(y1))H(y2) - - -H(Y\yl)e- Y. 11 B
s . . . ¢ Y, Ix 4, By, m4(1), e4), Wherellx 4, 84, By, m4(1) and
The realization problem is very hard in practice because éjf are the analogues dfly, 3, B, (1) and e, but the

the positivity contraints om (1) andIl. For that reason, one vectorsg(y), the matrixIT; and the row vectorr,(1) are

prically (first) solves the quasi realizatiqn problem, o over R instead ofR, and the column vectar, is a vector
|s.exactly the same problem as the realization proplem bld%/er R instead of a fixed vectoe. For theqinitial quasi
wnhou; the positivity contraints. However, the quasi mbd.estate distribution, it holds that,(1)e, = 1, for the quasi
which is found from the quasi realization procedure retains o o
. . : " State transition matrix it holds thaix ,e, = e, and for the
some of the interesting properties of a positive model [8]. output matrixB, it holds thatB,e = .
S . : 4 € = €.

b A'Ehguaeséttldlgg hgl{a;l;ovﬂngcl))d ff)Mvssleyretépe;s((li)e g?lzd Equivalence and minimality of quasi Moore hidden

y P PY&2g, X, Ug, Tg( 1), €q), a " Markov models is defined in an analogous way as minimality
eq are the analogues @f, 7(1) ande, but the image of the for Moore hidden Markov models
mappingll, are matrices oveR instead ofR , moreover the )

. A Moore hidden Markov model(X,Y,II, 7(1)) with
vectorm, (1) is a row vector oveRR, and the column vector __ . e : .
. . X string probabilities? and a quasi Moore hidden Markov
eq is a vector overR instead of a fixed vectoe. For the

initial quasi state distribution, it holds that,(1)e, = 1 and model(X,, ¥, Iy, my (1), ¢q) with string probabilitiesP, are

o h uast st vanstion matic = o111 i eEent ndonl ey seleh
holds thatllx ,e, = e,. The number of state,| is called

the (quasi) orderof the hidden Markov model. models is defined analogously.
Equivalence and minimality of quasi Mealy hiddenC. Conversions between Moore and Mealy
Markov models are defined in an analogous way as for |t can be shown that the expressive power of Moore
positive Mealy hidden Markov models. HMMs and Mealy HMMs is the same [9], which means that
1with yy, we mean the concatenation of the string y with the symybol & finite valued process is realizable with a Moore hidden
concatenation of two strings is defined analogously. Markov model if and only if it is realizable with a Mealy

IIxe = e and thatBe = e. A Moore HMM is fully described
by (X7 Y? HX? /67 ﬂ-(l)) Or (X’ Y? HX? B’ ﬂ-(l))'
Two Moore hidden Markov model$X, Y, IIx, 8, (1))



hidden Markov model. However, one easily sees that thar that there exists a diagonal mattix such that
minimal order needed to realize a certain finite process with _ _
a Mealy model is smaller than or equal to the minimal order TT(y,)T ™" = DTTl(y2) T
of a Moore model. One can easily see that this matix always exists under
Converting a minimal Moore mod€lX, Y, Ilx, 3, 7(1))  the condition thatow(II,(y;)) = row(IT,(ys)).
into a Mealy mode(X, Y, II, 7(1)) is always possible, using  For Mealy hidden Markov models with more than two
outputs the above result does not hold in general anymore,

I(y) = diag(5(y))ILx. so it is possible that a minimal quasi Moore model equivalent
However, the obtained Mealy model can be nonminimaf® @ minimal quasi Mealy model, has more states than the
even if the Moore model was minimal. Mealy model.

Converting a minimal Mealy model in a Moore model, can For positive Mealy HMMs we prove the following theorem
be done always by connecting a state of the Moore model to Theorem 2:For a positive Mealy hidden Markov model
every state transition of the Mealy model and then calaugati (X, Y, 1L, (1)) the following holds: If there exists a nonsin-
the state transition probabilities and the output profizsl ~ gular matrix7T" such that
Typically, this approach will lead to a nonminimal Moore o Te=ce,
model. o m()T~! andTII(y)T~! Vy € Y are nonnegative

In section Ill, we will show that a (quasi) Mealy modelthen (X,Y,7TIT!, #(1)T~') is a positive hidden
with two outputs can always be converted into a quasi Moodlarkov model which is equivalent to the given HMM

model with the same number of states. (X, Y, II, w(1)).
Proof: We first prove that(X,Y,TTIT !, 7(1)T~1)
Il. EQUIVALENCE FOR MEALY HMMS is a positive hidden Markov model. As the system matrices

In this section we investigate the set of equivalent Mealfir® nonnegative by construction, we only need to prove the
hidden Markov models: suppose we are given a minim&onsistency properties.
HMM with certain string probabilities, how can we find The fact that the entries of(1)7~' sum to one, follows
(all) equivalent Mealy HMMs? Of course, given a certainffom
qua;i or positive Mealy quel, one can always obtain an AT e = 7(l)e = 1.
equivalent model by permuting the states. However, there ar
many more equivalent models than only the ones obtainedThe fact that_, . TI(y)T—! is a stochastic matrix,
by permuting states. In addition, for the quasi case, thesclafollows from

of equivalent quasi Mealy hidden Markov models can be

characterized in an appropriate way. In the positive hidden ZTH(y)T‘le = T <Z H(y)) e
Markov case the problem is more complicated and to the yey yey

best of our knowledge there exists no characterization®f th = Te = e

set of equivalent models. We prove some initial results and . P .
Now we prove that(X,Y,TTIT ', «(1)T~') is equiv-

give a simulation example. ;
For quasi Mealy HMMs the set of all equivalent realiza—alent to (X,Y,ILx(1)). This follows from the fact that

tions is characterized by the following theorem [9]. the string probabilities ofX, ¥, II, #(1)) are equal to the

i o o re t
Theorem 1:Two ~minimal quasi Mealy models "9 probag@esi gf(X,Y T, w(1)T~1) forall y =

(XQ7_Y3an7T.q(1),eq) and (X;,Y’H;’ﬁ;(1)7€;) are Yiy2.-- Yyl , L.e.

equivalent (i.e. they have the same string probabilitiés), T(DTI(y1) ... Ty )e =

and only if there exists a nonsingular matifx such that _ _ _
()T ' TH(y) T~ ... TH(yy )T e,

_ / -1
(1) = W‘?(})T . which follows from the fact thal’~!e = e. [
Hy(y) = TH(y)T™ VyeY In the same way as in the proof of the theorem, it
eq = Te; can be proven that if the given model is stationary (i.e.

This theorem allows us to prove that a (quasi) Mealyr(1)>_, .y II(y) = m(1)), that the equivalent model is also
model with two outputsy, andy,, can always be converted stationary.
into an equivalent quasi Moore model with the same number Notice that the converse of Theorem 2 is not true in
of states under the condition that the row spacédlgfy,) general. There exist equivalent positive Mealy models tvhic
equals the row space af,(y,), which is fulfilled for most are not connected trough a similarity transfofm So the
HMMs. For that conversion, we need to find a nonsingulaiheorem does not give a way to find tlemplete set
matrix " such that there exists a matilik , and two vectors of hidden Markov models equivalent to a given hidden

B4(y1) and B4(y) for which Markov model (in contradiction to the case with quasi Mealy
models).
TI,(y )T~ = diag(By(y1))xq However, in case a positive hidden Markov model is

TT,(y.) Tt = diag(B,(Y2)) kg, minimal in the set of quasi HMMs then the converse of



Theorem 2 does hold (by combining Theorem 1 and Theorem
2). In that case, one can say that if two positive HMMs are
equivalent that there must exist a transformatfiofulfilling
the conditions of Theorem 2. Consequently, in that case the
theorem gives a description of the complete set of equitalen
positive hidden Markov models.

We now show a simulation example where we try to get
an idea of the set of all equivalent positive models equivale
to (X, Y, II, 7(1)), with |X| =3, Y =1{0,1} and

[ 0.05 04 0.1]
o) = 0.2 015 0.2 |,
| 0.35 0.15 0.2

[ 0.15 0.1 0.2
i) = 0.1 0.05 0.3 |,
| 0.05 0.15 0.1

x(1) = [0.3060 0.3284 0.3657 ].

One can easily see that this model is minimal as a quasi
realization (by calculating the rank of the associated téank
matrix (see [5])) and that the model is in addition statignar
ie.m(1) >y ey H(y) = 7(1).

An equivalent HMM is found by taking a nonsingular
matrix 7' of the form

Fig. 1. Plot of stationary state distribution of possible MBI which are
T Tio 1— (T +Ti2) equivalent to a given HMM (the two subplots give differenews of the

T=1| Ty Too 1—(To1+To) |, same plot).
T3 T30 1 — (T51 + Ts2)

ealy modef then the following holds: if all states of the
oore model have a different output distribution and if
the state transition matriXlx , has full rank, then there
hdoes not exist any minimal (quasi) Moore model which is
enontrivially equivalent to the given (quasi) Moore model
Proof: Suppose that (X,Y,IIx 4, By, T4(1), &4)
an equivalent model to the given model
X, Y, IIx ., By, m(1),e,) and has the same order as
4 qr"q q
the given model. Then from Theorem 1, we know that there
g
S’f(iStS a transformatiof®’ such that

and checking whether the second condition of Theorem
holds. We now perform a matlab experiment that investigan%
matricesT’ on a grid, i.eTy; = —1,-0.9,-0.8,...,1 (with
steps of0.1), and the same fd¥ls, To1, Tao, 131 andTss.
In that way, we find a whole class of realizations whic
are equivalent to the given HMM. In Figure 1 we show th
stationary state distribution(1) of each of these equivalent .
realizations. IS
Of course allr(1)s are lying on the plane; (1)+m2 (1) +
m3(1) = 1. In the figure, it seems that not all equilibrium
state distributions are possible and that the possible-eq

librium state distributions make some complex form. The 7,(1) = m (1)

question whether these observations are coincidence and du .1 ! ’ 4

to the grid size will be topic of the authors’ further res¢arc 128 AY)xg = T'diag f(y)lx,, 7 Wy €Y, (1)
eq = Tey.

IV. EQUIVALENCE FOR MOORE HMMS ) .
, , . , _ From the fact thaflx , has full rank, it follows thatllx ,
In this section we investigate the set of equivalent Moorg, < Il rank. So we conclude from (1) that there exist
hidden Markov models. As was the case with Mealy mOdel%onsingular matrice® and S such that

one can always obtain a model equivalent to a given quasi or

positive Moore model by permuting the states of the original diag3(y) = Tdiagg(y)S™' VyeY,

model. In contrast to the Mealy case, we will show here My, = Sy T "

that under certain conditions these permuted models are the 4 4

only possible equivalent models of the same order than tiBut from consistency of the HMM

original model.

The uniqueness of the (quasi) Moore model can be de-?We say that a model is "minimal as a quasi Mealy model” if théoes

; ; not exist any equivalent quasi Mealy model of lower orde, if. the order
scribed by the foIIowmg theorem of the model is equal to the rank of the associated Hankelixni.

Theorem 3:Given a .(QU{JISI) _ .Moore HMM_ 3with a trivial equivalent” model, we denote a model obtainby
(X,Y,IIx 4, B, mq(1),€4) Which is minimal as a quasi permuting the states of the original model.



minimal quasi Mealy models

(vav ﬁwiéq?ﬁq(l)véq)
> TdiagBly)S' =1
yey

we find that (a)

T = 8. minimal quasi Mealy models

@ unique quasi
Moore model

quasi Moore model

Now we have that

diag f(y) = T'diag ()T~ Vy €Y, >
and together with the fact that all states of the Moore model N ®) .
have a different output distribution, this allows us to dode Mosly models  Moore models
thatT" can only be equal to a permutation matrix. [ |
If there do exist states with the same output distribution, no Moore

but all the other conditions of Theorem 3 are fulfilled, then
there exists a set of equivalent Moore models (apart from
the models obtained by permuting the states). Suppose for ©

instance that the output distribution of the first state éxjuafig- 2. The three main case concerning the equivalenceesiasshidden
the output distribution of the second state, in that case thNtl-:‘arkOV models.

transformatiorl” of the proof of Theorem 3 is of the form

T_P[ T52 ? ] , @) V. SUMMARY OF THE RESULTS

where P is a permutation matrix7hs a nonsingular matrix N this section, we summarize the results so far, by
of size 2 x 2 with Tyse = ¢ and I is the unit matrix of showing the three different cases that can occur concerning

appropriate dimensions. This gives a complete descriptig® €duivalence classes of Moore and Mealy models (see
of the equivalence set. Notice that all elements of the set §Buré 2). Notice that in all cases, there is a whole set of
equivalent Moore models have the same output mar{up equivalent minimal quasi Mealy models, as explained in

to a permutation of the states). They only differ in the statd€orem 1. In case (a) (figure 2(a)), the quasi Moore model
transition matrixily. is minimal as a quasi Mealy model and every state has a

From Section Ill, we know that, under very generaplif'ferentoutputdistribution and the transition matrixsHall

conditions, a (quasi) Mealy model with two outputs can b&NK SO that we know from Theorem 3 that this minimal
converted into an equivalent quasi Moore model with th10oré model is unique. In case (b) (figure 2(b)), the quasi
same number of states. So every minimal quasi Moore mod¥c0re model is again minimal as a quasi Mealy model, but
with two outputs is minimal as a quasi Mealy HMM. gothe other conditions of Theorem 3 are not fulfilled, such that

from Theorem 3 we conclude that a minimal quasi Moord1€re exists a set of equivalent Moore models. In case (c)
model with two outputs, with a full rank transition matrix (igure 2(c)) there does not exist a Moore model of the same

and with a different output distribution for each state, has °rder as the minimal Mealy model, so any minimal Moore
equivalents (except trivial equivalents). model is of higher order. In that case, nothing is proven abou

However, the theorem is also useful for hidden Markoyl€ class of equivalent minimal Moore models, but we expect

models with more than two outputs. Consider for examplif1at @ whole set will exist.
the Moore modelX, Y, ITx, B, 7(1 ith
(X, ¥, Ix, B, n(1)) wi VI. CONCLUSIONS

[ 0.8 0.1 0.1 ] In this paper we considered the following problem for

Iy = 0.3 0.3 04 |, (quasi) hidden Markov models: given a minimal (quasi)
02 02 06 hidden Markov model, what can be said about the set of all
T 03 03 0471 equivalent (quasi) hidden Markov models of the same order.
B = 0.1 01 08 |, For quasi hidden Markov models of Mealy type, a necessary
0.2 0.6 0.2 and sufficient condition for two models to be equivalent was

already proven in literature. In addition, we have proven
m(1) [ 0.5405 01622 0.2973 ] : a suffi?:/iepnt condition for two positive Mealy modelspto be
One can show that the minimal order of an equivalergéquivalent. In a simulation example, we computed a set of
guasi Mealy model equals three. This allows us to concludequivalent positive Mealy models. We have also proven that,
that the Moore model is minimal as a quasi Mealy modelinder certain conditions, the set of equivalent models for
In addition, the output distribution is different in evertate  minimal quasi Moore models consists of only one element
andIIx has full rank, so that we conclude from Theorem Jup to a permutation of the states). It was shown that for
that the only way to obtain a minimal Moore equivalent taMoore models with an output alphabet of two symbols,
the given model, is by permuting the states. these conditions are always fulfilled. In future work, welwil



investigate the equivalence problem for positive HMMs in[2]

more detail.
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