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Abstract— Given a two-point finite valued process, we con-
sider the problem of finding an underlying two-point state
process such that the output at a certain time instant is a
probabilistic function of the state at the same time instant. This
problem is related to the hidden Markov realization problem
for finite valued processes. It is shown that the problem is
equivalent to the algebraic problem of decomposing a square
nonnegative matrix P as V AV

⊤ with A and V nonnegative.
Both multiplicative update formulas and a heuristic approach,
are proposed for the solution of this decomposition problem.
A simulation example shows the effectiveness of the proposed
methods.

I. INTRODUCTION

Consider a finite valued stochastic processy defined on the
time axisN that admits a hidden Markov representation. This
means that there exists an underlying Markov chainx such
that the outputy(t) is a probabilistic function of the state
x(t). Therealization problem for hidden Markov models [6]
has not been completely solved yet. Even ify is known to be
representable by a hidden Markov model, no algorithm has
yet been devised to produce the underlying Markov chainx

and the probabilistic function of the chain that produces the
processy.

In this paper we consider a problem which is related to
the hidden Markov realization problem. Given two random
variablesy− andy+ which both take values from the finite
setY with probability measureP (y−, y+), find two random
variablesx− and x+ both with values from a finite setX,
with |X| as small as possible, such that

P (y−, y+|x−, x+) = P (y−|x−)P (y+|x+),

andP (y+|x+) = P (y−|x−).
This problem is related to the realization problem for finite

valued processes of length 2. Indeed, lety = y(1), y(2) be
a two-point process which is the output of a hidden Markov
model, and takey− = y(1) andy+ = y(2) then the random
variablesx− andx+ can be interpreted as underlying state
variablesx(1) andx(2) respectively. The random variables
x−, x+, y− andy+ are completely described by the measures
P (x−), P (x+|x−) and P (y−|x−) = P (y+|x+), which
correspond precisely to the state distribution at time instant
1, the probability of going from a given state to another state,
and the probability of observing a certain output in a given
state. This problem is only a first step of a general problem
of finding a state process for general processes instead of
just two-point processes.
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This problem is not to be confused with the problem where
we have two random variablesy− andy+ with probability
measureP (y−, y+), which take values fromY

− and Y
+

respectively and where we want to find a random variablex

with values from a finite setX such thaty− is conditionally
independent ofy+ given x, i.e.

P (y−, y+|x) = P (y−|x)P (y+|x).

This problem, its solution based on the Nonnegative Matrix
Factorization and its link with the hidden Markov realization
problem is discussed in [2].

The rest of the paper is organized as follows. In Section
II, we introduce the notations for hidden Markov models, in
Section III, we formulate the problem of finding underlying
state variablesx(1) andx(2) for the processy(1), y(2) and
translate the problem into the algebraic problem of finding
matricesV andA such that a given square matrixP equals
P = V AV ⊤. In Section IV, we give iterative formulas and in
Section V a heuristic method for the solution of the algebraic
problem. In Section VI, we perform an experiment showing
the quality of the approach.

The following notation is used throughout the paper. If
X is a matrix, thenXi:k,j:l denotes the submatrix ofX
formed by thei-th to thek-th row and by thej-th to the
l-th column ofX . With Xij we mean thei, j-th element of
X , and with X:,j and Xi,:, we mean thej-th column and
i-th row respectively.

II. HIDDEN MARKOV MODELS

Consider a stochastic processy defined on the time axisN
taking values from a finite setY, called the output alphabet,
with |Y| the cardinality ofY. Denote byY

∗ the set of all
finite strings with symbols from the setY (including the
empty string) and byy = y1y2 . . . y|y| a sequence fromY∗,
where |y| denotes the length ofy. Let P : Y

∗ 7→ [0, 1] be
string probabilities, defined asP(y) := P (y(1) = y1, y(2) =
y2, . . . , y(|y|) = y|y|). Of course, the string probabilities
satisfyP(φ) = 1 and

∑

y∈Y
P(yy) = P(y)1.

A Mealy hidden Markov model (HMM) is defined as
(X, Y, Π, π(1)), where

• X with |X| < ∞ is the state alphabet, andY is the
output alphabet;

• π(1) is a row vector inR
|X|
+ with π(1)e = 1, where

e :=
[

1 1 . . . 1
]⊤

;

• Π is a mapping fromY to R
|X|×|X|
+ with the matrix

ΠX :=
∑

y∈Y
Π(y) such thatΠXe = e.

1With yy, we mean the concatenation of the string y with the symboly.
Concatenation of two strings is defined analogously.



One can think of an underlying state processx which
generates the output processy. The processx takes values
from the finite setX with cardinality |X|. Without loss of
generality, we takeX = {1, 2, . . . , |X|}. The elementΠ(y)ij

is then equal toP (x(t + 1) = j, y(t) = y|x(t) = i), the
probability of going from statei to statej while producing
the output symboly. The elementπ(1)i is equal toP (x(1) =
i), the initial distribution of the underlying state process.

In this paper, we consider theMoore hidden Markov
model, which is a more structured case of the Mealy hidden
Markov model. In a Moore HMM, the generation of the next
state and the generation of the output are independent. For
a Moore HMM it holds that there exists a matrixΠX and a
mappingβ from Y to R

|X|
+ such that for eachy ∈ Y it holds

that
Π(y) = diag(β(y))ΠX,

wherediag(·) is the diagonal matrix with the elements of
the vector · on its diagonal. The element(ΠX)ij is then
equal to P (x(t + 1) = j|x(t) = i), the probability of
going from statei to statej. The elementβ(y)i is equal
to P (y(t) = y|x(t) = i), the probability of observing the
symboly given that the present state is equal toi. Suppose
we have an ordering(yk, k = 1, 2, . . . , |Y|) of the output
symbols of the setY, then the matrixB is defined as
B =

[

β(y1) . . . β(y|Y|)
]

. A Moore HMM is described
by (X, Y, ΠX, β, π(1)) or (X, Y, ΠX, B, π(1)).

In the (Moore) realization problem, we are given the
output string probabilitiesP and the problem is to find
a Moore HMM that realizesP, which means that for
all y = y1y2 . . . y|y| ∈ Y

∗, it holds that P(y) =
π(1) diag(β(y1))ΠX diag(β(y2))ΠX . . . diag(β(y|y|))ΠXe.

A Moore realization (X, Y, ΠX, β, π(1)) of P is
called minimal if for any other Moore realization
(X′, Y, Π′

X
, β′, π′(1)) of P, it holds that|X| ≤ |X′|.

If it holds for all y ∈ Y
∗ that

∑

y∈Y
P(yy) = P(y) then

the process is calledstationary2. Because of the fact that
∑

y∈Y
P(yy) = P(y) is due to consistency, we have for

stationary processes that
∑

y∈Y

P(yy) =
∑

y∈Y

P(yy).

A hidden Markov model which realizes a stationary pro-
cess, has the property that the state distribution is equal at
every time instantπ(1) = π(2) = . . . = π(t) = π whereπ

equals the equilibrium state distribution, i.e.

πΠX = π.

In the next section, we consider a problem which is
analogous to the minimal Moore realization problem for two-
point processes (i.e. the realization problem where the data
are the string probabilities of strings up to length 2): given
the output probabilities of all strings of length 2, find an
underlying state process of length 2, such that the output at

2Indeed,
P

y∈Y
P(yy) is equal toP (y(2) = y1, y(3) = y2, . . . , y(|y|+

1) = y|y|), and by imposing this to be equal toP (y(1) = y1, y(2) =
y2, . . . , y(|y|) = y|y|) for all y ∈ Y

∗, stationarity is imposed.

a certain time instant is a probabilistic function of the state
at the same time instant.

III. STATE REPRESENTATION OF TWO-POINT
PROCESSES

In this section, we introduce a matrixP which contains
probabilities of length-2-strings. In case the string proba-
bilities come from an underlying hidden Markov model,
there exist a relation between the matrixP and the system
parameters of the underlying model. This relation allows us
to translate the problem of finding a two-point state process
for a two-point output process, into a matrix problem.

Suppose we have an ordering(yk, k = 1, 2, . . . , |Y|) of
the output symbols of the setY. Let P be the |Y| × |Y|
matrix with k, l-th elementP(ykyl), whereykyl denotes the
concatenation of the symbolsyk andyl. If the underlying
process is stationary, it holds that the row sum ofP is equal
to its column sum, i.e.Pe = P⊤e.

We now derive the relation between the system matrices
and the matrixP for the case whereP contains the string
probabilities of an underlying Moore hidden Markov model
(X, Y, ΠX, B, π(1)). One can easily see that

P(y(1) = yk, y(2) = yl)

=
X

i,j

P (y(1) = yk, y(2) = yl|x(1) = i, x(2) = j)P (x(1) = i, x(2) = j)

=
X

i,j

P (y(1) = yk|x(1) = i)P (y(2) = yl|x(1) = i)P (x(1) = i, x(2) = j)

= (B
⊤

diag(π(1))ΠXB)k,l,

from which we conclude that

P = B⊤ diag(π(1))ΠXB.

The problem of finding an underlying state process for a
two point output process, is now equivalent to the problem
of finding for a given nonnegativeP ∈ R

|Y|×|Y| with =
e⊤Pe = 1, nonnegative matricesB ∈ R

|X|×|Y| and ΠX ∈
R

|X|×|X| and a nonnegative vectorπ(1) ∈ R
|X|, with |X| as

small as possible, such that

P = B⊤ diag(π(1))ΠXB,

Be = e,

ΠXe = e,

π(1)e = 1.

In fact it suffices to solve the problem of finding nonneg-
ative matricesV ∈ R

|Y|×|X| and A ∈ R
|X|×|X|, with |X| as

small as possible, such that

P = V AV ⊤.

The matricesB andΠX and the vectorπ(1) can then be
calculated as

B = (diag(V ⊤e))−1V ⊤,

A′ = diag(V ⊤e)Adiag(V ⊤e),

ΠX = (diag(A′e))−1A′,

π(1) = (A′e)⊤.

The formulas imply that ify = y(1), y(2) is stationary,
i.e. P (y(1)) = P (y(2)) or Pe = P⊤e, thenx = x(1), x(2)



is also stationary, i.e.π(1) = π(2) = π, with πΠX = π.
Indeed, fromPe = P⊤e or B⊤A′Be = B⊤(A′)⊤Be, we
find that A′e = (A′)⊤e if B has full row rank, i.e. if the
decomposition is minimal. Now we can calculate

π(1)ΠX = (A′e)⊤(diag(A′e))−1A′

= e⊤A′ = (A′e)⊤

= π(1).

IV. NONNEGATIVE MATRIX FACTORIZATION

In the previous section, we reduced the problem of finding
an underlying state process for two-point processes to the
problem of finding aminimal factorizationP = V AV ⊤,
where minimal means that the size ofA is as small as pos-
sible. In this section, we give multiplicative update formulas
to solve this problem approximately.

This problem is analogous to the standard Nonnegative
Matrix Factorization problem which was introduced in [1]
and which has a lot of applications in data mining. In the
standard nonnegative matrix factorization problem, one is
interested in decomposing a given matrixM ∈ R

m1×m2

into a productM = V H . The smallest inner dimension
for which such a factorization exists is called thepositive
rank (pos−rank) of the matrix M . One can show that
0 ≤ rank(M) ≤ pos−rank(M) ≤ min(m1, m2). There
exist matricesM for which only trivial decompositions exist,
M = IM and M = MI. In [5] such matrices are called
prime.

We call the minimal dimension ofA for which an exact
decompositionP = V AV ⊤ exists, theMarkov rank of the
matrix P . It is intuitively clear that

0 ≤ rank(P ) ≤ pos−rank(P )

≤ markov−rank(P ) ≤ min(m1, m2).

The exact nonnegative matrix factorization problem is very
hard in general. There is not even a method to determine
the minimal inner dimension (i.e. the positive rank ofM )
for which a positive factorization exists. Therefore, Lee and
Sueng proposed to chose an inner dimension and then solve
the problem approximatelyM ≈ V H by an optimization
based approach [4]. As cost function to quantify the quality
of approximations, they take either the squared Euclidean
distance

||A−B||2 =
∑

ij

(Aij −Bij)
2

or the Kullback-Leibler divergence (which is a measure of
the extent to whichB approximatesA)

D(A||B) =
∑

ij

(Aij log
Aij

Bij

−Aij + Bij).

For both cost functions, they derive multiplicative update
rules which monotonically improve the quality of the ap-
proximation. In [3], these update rules are interpreted as
alternating minimization procedures and stability properties
are investigated.

In the rest of this section, we will analogously derive
multiplicative update formulas for the factorization problem
P ≈ V AV ⊤. As in [4], the dimension of the matrixA
is chosen by the user. We derive only formulas with the
Kullback-Leibler divergence as cost function, as this distance
is most appropriate for the approximation of probability
measures. However, it is also possible to derive multiplicative
update formulas for the factorization problem in the Eu-
clidian distance. We will publish these formulas elsewhere.
Checking whether there exists an interpretation of the update
rules as an alternating minimization procedure, analogousto
[3], belongs to our future research plans.

Now we consider the problem
Problem 1: Minimize g(A, V ) = D(P ||V AV ⊤) for a

given size ofA with respect toA and V , subject to the
constraintsA, V ≥ 0.

The derivatives of the cost function with respect to the
elementsVk,i and Ai,j of the matricesA and V can be
calculated as

∂g

∂Aij

(A, V ) = −
∑

µ

∑

ν

VµiVνj

Pµν

(V AV ⊤)µν

+
∑

µ

∑

ν

VµiVνj ,

∂g

∂Vki

(A, V ) =
∑

λ

∑

ν

VνλAiλ + VνλAλi

−
∑

λ

∑

ν

VνλAiλ

Pkν

(V AV ⊤)kν

+ VνλAλi

Pνk

(V AV ⊤)νk

.

A simple rule for updatingA and V which reduces the
Kullback-Leibler distance can be written as

Aij ← Aij − µij

∂g

∂Aij

(A, V )

Vki ← Vki − νki

∂g

∂Vki

(A, V )

If all µij and νki are equal to the same small positive
number, this is equivalent to conventional gradient descent.
As long as this number is sufficiently small, the update re-
ducesD(P ||V AV ⊤). The problem with the gradient descent
method is that the choice of the step size is difficult. If the
step size is too small, we have slow convergence. On the
other hand, if the step size is too large, the matrices can
become negative or it is possible that the squared distance
does not decrease.

Analogous to the method proposed in [4], we propose to
take the steps sizes equal to

µij =
Aij

∑

µ

∑

ν VµiVνj

,

νki =
Vki

∑

λ

∑

ν VνλAiλ + VνλAλi

,



which gives

Aij ← Aij

∑

µ

∑

ν VµiVνj
Pµν

(V AV ⊤)µν
∑

µ

∑

ν VµiVνj

,

Vki ← Vki

∑

λ

∑

ν VνλAiλ
Pkν

(V AV ⊤)kν
+ VνλAλi

Pνk

(V AV ⊤)νk
∑

λ

∑

ν VνλAiλ + VνλAλi

.

By this choice of step size which is dependent of the
optimization variables, we do not have a gradient descent
algorithm anymore, but instead we have update formulas
where each step consists of multiplication with a factor. In
particular, it is straightforward to notice that this factor is
equal to unity ifP = V AV ⊤, so perfect reconstruction is
a fixed point of the algorithm. Notice also that this factor
is always nonnegative, so if one takes nonnegative initial
values forA andV , then the updated values will always be
nonnegative. In addition, it can be proven that these iterative
update formulas converge to a local minimum of the cost
function. The proof will be presented elsewhere.

It is interesting to further investigate the factorization
problem in the Kullback-Leibler divergence with Markov
rank equal to 1. In that case, we look for a vectorv and
a scalara such thatP ≈ vav⊤. This is equivalent with
solving mina,v D(P ||vav⊤) or

min
a,v

−
∑

µν

Pµν log([vav⊤]µν) +
∑

µν

[vav⊤]µν .

The solution can be found by setting the derivatives equal to
0:

∂D(P ||vav⊤)

∂vk

= −
∑

ν

Pkν + Pνk

vk

+ 2
∑

ν

avν = 0

∂D(P ||vav⊤)

∂a
= −

∑

µν

Pµν

a
+

∑

µν

vµvν = 0.

Because
∑

µν Pµν = 1, we find that

a = (
∑

ν

vν)2,

vk =

∑

ν(Pkν + Pνk)

2a
∑

ν vν

.

We can always normalize the solution such thata = 1. We
then find

vk =

∑

ν(Pkν + Pνk)

2
.

This result is interesting. It says that a matrixP can be
approximated byP ≈ vv⊤ in an optimal way (w.r.t the
Kullback-Leibler divergence) by takingv equal to the mean
of the row and column sum ofP , i.e.v = 1

2 (Pe+P⊤e). This
means that the probability of observingyk at time instant 1
andyl at time instant 2 is approximated as the product of the
mean probability of observingyk times the mean probability
of observingyl, i.e.

P(ykyl) ≈
P (y(1) = yk) + P (y(2) = yk)

2

P (y(1) = yl) + P (y(2) = yl)

2
.

In case y = y(1), y(2) is stationary, thenP (y(1) =
yk, y(2) = yl) is approximated asP (y(1) = yk)P (y(2) =
yl), which is equal to the product of the marginal distribu-
tions.

V. A HEURISTIC APPROACH TO NONNEGATIVE
MATRIX FACTORIZATION

In this section we propose a heuristic approach for the
calculation of the decompositionP = B⊤ diag(π(1))ΠXB

without making use of the iterative update formulas. In this
approach we start with a full Markov rank decomposition i.e.
a decomposition where the size ofΠX is maximal and then
merge rows and columns ofΠX andB in an appropriate way
until the decomposition has the required inner dimension.

The method starts with the trivial full Markov rank de-
composition of the matrixP i.e.

P = (B|Y|)⊤ diag(π(1)|Y|)Π
|Y|
X

B|Y|,

where

B|Y| = I,

π(1)|Y| = Pe,

Π
|Y|
X

= (diag(Pe))−1P,

whereI denotes the unit matrix.
We now propose a heuristic procedure to find an ap-

proximate decomposition of Markov rankn − 1, given an
(approximate) decomposition of Markov rank equal ton (at
the beginning of the algorithm, the approximation is exact
andn = |Y|),

• Supposeπ(1)n
i is the smallest andπ(1)n

j is the sec-
ond smallest element of the vectorπ(1)n. The vector
π(1)n−1 is then calculated by replacing thei-th element
of π(1)n by π(1)n

i + π(1)n
j and omitting thej-th

element.
• The matrixΠn−1

X
can be calculated from the matrixΠn

X

by

1) replacing thei-th column ofΠn
X

by the sum of the
i-th and thej-th column, and omitting thej-th
column. Call the resulting matrixM .

2) replacing thei-th row of M by π(1)n
i

π(1)n
i
+π(1)n

j

Mi,:+
π(1)n

j

π(1)n
i
+π(1)n

j
Mj,:, and omitting thej-th row of M .

• The matrix Bn−1 can be found by replacing thei-th
row of Bn by π(1)n

i

π(1)n
i
+(π(1)n

j

Bn
i,: +

π(1)n
j

π(1)n
i
+π(1)n

j

Bn
j,:, and

omitting thej-th row of Bn.

One can choose to stop the algorithm when a pre-decribed
order is reached or when the smallest element of the vector
π(1)n is larger than a certain threshold.

We now give some intuition into this heuristic approach.
One step of the heuristic algorithm goes from a hidden
Markov model with n states to a hidden Markov model
with n − 1 states by merging the two statesi and j with
the smallest initial probabilities. The output probabilities
of the new state are equal to the weighted mean output
probabilities of the statesi andj where the weighting factors



are the relative initial probabilities of the merged states. The
probability to go from an arbitrary stateh to the merged state
is equal to the probability to go from stateh to statei plus
the probability to go from stateh to statej. The probability
to go from the merged state to another stateg is equal to the
weighted sum of the probability to go from statei to stateg
and the probability to go from statej to stateg, where the
weighting factors are the relative initial probabilities of the
merged states. Finally, the probability to go from the merged
state to itself is equal to the weighted sum of the probability
to go from statei to statei or statej, and the probability
to go from statej to statei or statej, where the weighting
factors are again equal to the relative initial probabilities of
the merged states.

If the process is stationary, the initial state distribution is
equal to the equilibrium distribution. In that case the heuristic
method is expected to perform best, as it merges states with
the smallest equilibrium distribution instead of the smallest
initial distribution.

We now prove that, if we start with a probability matrix
P and continue the proposed heuristic approach until there
is only one state anymore, we find thatP is approximated
by the vector containing the row sum ofP (i.e. the measure
P (y(1))) multiplied with the transpose of the same vector.
This means that we findP = (B1)⊤ diag(π1

t−1)Π
1
X
B1, with

B1 = (Pe)⊤,

π1
t−1 = 1,

Π1
X

= 1.

We prove this fact for the case whereP ∈ R
3×3. The general

proof is analogous. In the3× 3 case, we start form

P =

2

4

1
1

1

3

5

2

4

π1

π2

π3

3

5 Π3
X

2

4

1
1

1

3

5 ,

where we usedπi as a shorthand notation forπ(1)i. We
suppose thatπ1 ≥ π2 ≥ π3, such that we find after one step

P ≈

2

4

1
π1

π2+π3
π2

π2+π3

3

5

»

π1

π2 + π3

–

Π2
X

»

1
π2

π2+π3

π3
π2+π3

–

,

and after two steps, we find

P ≈

2

4

π1

π2

π3

3

5 [π1 + π2 + π3] Π
1
X

ˆ

π1 π2 π3

˜

,

where one can easily see thatΠ1
X

= 1, which proves the
statement forP ∈ R

3×3.
If the underlying hidden Markov model is stationary, then

the row sums of the matrixP are equal to the column sums,
i.e. Pe = P⊤e, which means that the heuristic algorithm
applied on the probability matrixP converges to the product
of the marginal distributions.

VI. SIMULATION EXAMPLE

In this simulation example we consider an output process
with Y = {a, b, . . . , j}, and suppose that the string probabil-
ities of all strings of length 2 are given and the problem is to

find an underlying two-point state process and a probabilistic
mapping from the state process to the output process.

We suppose there is an ordering(y1 = a,y2 =
b, . . . ,y10 = j) on the output setY. Now the string
probabilities can be stacked in the matrixP as described
in Section III, i.e.Pkl = P(ykyl).

In this exampleP is given by

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

396 193 149 116 113 94 98 161 128 454
182 128 87 85 77 67 70 120 84 191
150 87 69 60 58 52 53 77 63 150
111 84 60 61 55 51 52 80 57 112
112 75 58 55 51 47 48 70 54 105
92 67 50 51 46 45 45 63 47 93
97 69 52 52 47 46 46 65 49 96
149 118 78 80 72 63 65 114 78 148
126 81 64 58 55 49 51 75 60 113
488 189 152 105 100 86 90 141 111 415

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

10
−4

.

This matrix P was generated asP = B⊤ diag(π)ΠXB

whereB =
[

β(a) β(b) β(c) . . . β(j)
]

, ΠX and π

come from a stationary Moore HMM(X, Y, ΠX, β, π) with
X = {1, 2, . . . , 5} and

ΠX =













0.80 0.00 0.10 0.10 0.00
0.20 0.20 0.20 0.20 0.20
0.40 0.10 0.30 0.20 0.00
0.15 0.05 0.10 0.35 0.35
0.05 0.05 0.05 0.55 0.30













,

π =
[

0.4850 0.0375 0.1218 0.2300 0.1257
]

,

B⊤ =

































0.10 0.15 0.30 0.05 0.70
0.10 0.00 0.30 0.05 0.10
0.10 0.25 0.00 0.05 0.10
0.10 0.00 0.10 0.05 0.00
0.10 0.20 0.00 0.05 0.00
0.10 0.00 0.00 0.05 0.00
0.10 0.05 0.00 0.05 0.00
0.10 0.00 0.30 0.05 0.00
0.10 0.35 0.00 0.05 0.00
0.10 0.00 0.00 0.55 0.10

































.

In fact this model is unknown, but we give it here to check
the performance of the algorithms.

We use the iterative update algorithm of Section IV
to compute optimal approximations with respect to the
Kullback-Leibler divergence with Markov rank equal to
1, 2, . . . , 10. As initial values for the iterative algorithm we
use random nonnegative matrices. As stopping rule, we use
the Kullback-Leibler divergence between the approximation
at iteration stepi and the approximation at stepi + 1. The
algorithm stops if this distance is smaller than10−8. In Table
I we show the number of steps until convergence for the
different Markov ranks. Finally, we compute approximations
with the heuristic approach of Section V, also of Markov
rank equal to1, 2, . . . , 10.

On Figure 1, we plot the Kullback-Leibler divergence
between the original matrixP and its optimal approximation
with respect to the Kullback-Leibler divergence as a function
of the Markov rank. At the same figure we plot the Kullback-
Leibler divergence between the original matrix and the
heuristic approximation also for all possible Markov ranks.



TABLE I

NUMBER OF ITERATIONS FOR THE MULTIPLICATIVE UPDATE METHOD

MINIMIZING THE KULLBACK -LEIBLER DIVERGENCE.

Order 1 Order 2 Order 3 Order 4 Order 5
Number of iterations 1687 1055 3004 2694 1804

Order 6 Order 7 Order 8 Order 9 Order 10
Number of iterations 1817 962 151 191 3
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Fig. 1. Kullback-Leibler divergence between the true matrix P and its
optimal (w.r.t the Kullback-Leibler divergence) approximation of Markov
rank 1, 2, . . . , 10 computed with the iterative algorithm of Section IV (-.-
.) and between the true matrixP and its approximation of Markov rank
1, 2, . . . , 10 computed with the heuristic algorithm of Section V (- - -).

Notice that the iterative method performs much better than
the heuristic approach. The distance is almost equal to0 for
Markov ranks5 to 10. This makes sense as the matrixP was
generated using an underlying hidden Markov model of order
5. Notice also that the Kullback-Leibler divergence between
P and its optimal rank 1 approximation (w.r.t the Kullback-
Leibler divergence) is equal to the Kullback-Leibler diver-
gence betweenP and the heuristic approximation of rank
1. This is no coincidence, as we have have proven that
the rank 1 approximation ofP found with the Kullback-
Leibler minimization method is equal to the product of the
marginals ofP in case the underlying hidden Markov model
is stationary and the same holds for the heuristic approach.

To show further the quality of the approximations, we
give in Table II the true output probabilities of a selection
(due to space limitations) of length-2 strings and compare
them with the probabilities found with the Kullback-Leibler
minimalisation method of order5, 4, . . .1. We conclude that
the approximation of the matrixP as V AV ⊤ works well
which allows to conclude that the modeling of two-point

string probabilities with a hidden Markov model works
well.

TABLE II

STRING PROBABILITIES FOR STRINGS OF LENGTH2.

Sequence Exact Order 5 Order 4 Order 3 Order 2 Order 1
aa 0.0396 0.0396 0.0397 0.0430 0.0430 0.0362
ab 0.0193 0.0193 0.0190 0.0191 0.0191 0.0207
ac 0.0149 0.0149 0.0150 0.0152 0.0152 0.0156
ad 0.0116 0.0116 0.0116 0.0114 0.0114 0.0137
ae 0.0113 0.0113 0.0114 0.0110 0.0110 0.0128
af 0.0094 0.0094 0.0095 0.0094 0.0094 0.0114
ag 0.0098 0.0099 0.0100 0.0098 0.0098 0.0118
ah 0.0161 0.0161 0.0158 0.0153 0.0153 0.0184
ai 0.0128 0.0127 0.0128 0.0122 0.0122 0.0139
aj 0.0454 0.0454 0.0453 0.0437 0.0437 0.0357

VII. CONCLUSION

In this paper we considered the problem of finding an
underlying two-point Markov state process for a given two-
point finite valued process, such that the output at a certain
time instant is a probabilistic function of the state at thattime
instant. It was shown that the problem is equivalent to the
algebraic problem of decomposing a nonnegative matrixP

as the productV AV ⊤ with A nonnegative and of minimal
dimension andV nonnegative. Both multiplicative update
formulas and a heuristic approach, were proposed for the
solution of this decomposition problem. This article is only
a first step in the problem of finding a realization of a hidden
Markov model from given string probabilities. The extension
of the proposed methods to a time axis(1, 2, . . . , T ) or N is
part of our future research.
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