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Independent Component Analysis and (Simultaneous)
Third-Order Tensor Diagonalization

Lieven De Lathauwer, Bart De Moor, Senior Member, IEEE, and Joos Vandewalle, Fellow, IEEE

Abstract—Comon’s well-known scheme for independent com-
ponent analysis (ICA) is based on the maximal diagonalization, in
a least-squares sense, of a higher-order cumulant tensor. In a pre-
vious papr, we proved that for fourth-order cumulants, the compu-
tation of an elementary Jacobi rotation is equivalent to the compu-
tation of the best rank-1 approximation of a fourth-order tensor.
In this paper, we show that for third-order tensors, the computa-
tion of an elementary Jacobi-rotation is again equivalent to a best
rank-1 approximation; however, here, it is a matrix that has to be
approximated. This favorable computational load makes it attrac-
tive to do “something third-order-like” for fourth-order cumulant
tensors as well. We show that simultaneous optimal diagonaliza-
tion of “third-order tensor slices” of the fourth-order cumulant is
a suitable strategy. This “simultaneous third-order tensor diago-
nalization” approach (STOTD) is similar in spirit to the efficient
JADE-algorithm.

Index Terms—Eigenvalue decomposition, higher order statistics,
independent component analysis, multilinear algebra, principal
component analysis.

I. INTRODUCTION

L ET us use the following notation for the basicindepen-
dent component analysis(ICA) or blind source separation

(BSS) model:

(1)

in which the observation vector , the noise vector
, and the source vector are zero-

mean stochastic vectors, with ; the mixing matrix
is assumed to be regular; is the signal part of

the observations. The goal is to exploit the assumed mutual sta-
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tistical independence of the source components to estimate the
mixing matrix and/or the source signals from realizations of.

Our algorithm belongs to the class of prewhitening-based
ICA algorithms. An eigenvalue decomposition (EVD) of the
observed covariance matrix, or a singular value decomposition
(SVD) of the data matrix, allows estimation of the number of
sources and decorrelation of them; the remaining rotational de-
gree of freedom is fixed by resorting to the higher order statistics
(HOS) of the observations. Formally, if , with
and orthogonal (unitary) and diagonal, is a singular value
decomposition (SVD) of the mixing matrix estimate, thenand

are estimated in the prewhitening stage, andis estimated
in a higher order stage. is estimated on the basis of the hy-
pothesized standardized data model

(2)

in which and , with indicating
the Moore–Penrose pseudo inverse andthe (complex conju-
gated) transpose.

Up to some perturbation caused by non-Gaussian noise
components, which are assumed to be small, the higher order
cumulant of the standardized random vector is a mul-
tilinear transformation of the higher order cumulant of the
sources , e.g., for the fourth-order cumulants of complex-
valued signals, assuming the complex conjugation pattern

, i.e.,

(3)

for all index entries, we have approximately

(4)
(From now on, we will denote such a multiplication by the
short-hand notation .) The
source cumulant is theoretically a diagonal tensor, i.e., the only
nonvanishing entries have identical indices. To mitigate the fact
that our assumptions are only approximately satisfied for the
sample cumulants, [6] proposed to diagonalize the estimated cu-
mulant of as far as possible, in a least-squares sense, i.e.,
is estimated as the orthogonal (unitary) matrix for which

(5)

is maximized, where is the corresponding source estimate.
is obtained by Jacobi iteration. It is estimated as a product
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of elementary Jacobi rotations, where each elementary rotation
diagonalizes, as far as possible, the subtensor
associated with the marginal cumulants of the estimates of two
different source components.

In Section II, we reconsider the case of third-order cumulants
and show that it leads to similar expressions as the ones obtained
in the derivation of the JADE-algorithm [1]. In Section III, we
generalize the results to ICA based on fourth-order cumulants
or on a combination of third- and fourth-order cumulants. After
deriving the concept, we investigate some properties of the new
technique and illustrate its performance by means of a number
of numerical experiments.

In [14], Moreau presents the idea of combining different cu-
mulant orders in a JADE- or STOTD-type scheme. It is based
on a preliminary version [8] of this paper; however, the current
paper is the first elaborated version. Moreau [14] and Stoll and
Moreau [15] are restricted to real-valued data, whereas in this
paper, we also consider the case of complex-valued data.

II. M AXIMAL DIAGONALIZATION OF A THIRD-ORDERTENSOR

In this section, we show that the computation of the Jacobi-ro-
tation that maximally diagonalizes a given (22 2) cumulant
tensor or a (2 2 2) tensor with the same symmetries (as in
Section III) is equivalent to the best rank-1 approximation of a
symmetric matrix. Both the real and complex case are studied.

Let us first consider thereal-valued case. The (2 2 2)
tensor to be diagonalized is called. It has the symmetries of
a cumulant of which the entries are given by ,
i.e., it is invariant under arbitrary permutations of its indices;
this property is called real super-symmetry. We define

in which is a Givens rotation matrix, imple-
menting an orthogonal basis transformation. We use the stan-
dard representation of Givens rotations

(6)

We construct a real symmetric (22)-matrix as follows:

(7)

(8)

(9)

in which the auxiliary variables are given by

(10)

(11)

(12)

(13)

Using these notations, we state the following.
Theorem 1: Assume a super-symmetric tensor ,

and consider the tensorand the matrix , which are defined
above. The squared norm of the diagonal ofis given by

(14)

in which .

Proof: The theorem can be proved with straightforward
calculus. The main subresults are given in Appendix A.

Hence, the optimal rotation can be found by computing the
dominant eigenvector of (i.e., the eigenvector corresponding
to the eigenvalue having the largest absolute value) and normal-
izing it to unit length. The actual elements of the optimal inner
Givens rotation can be obtained from the entries ofby using
the basic goniometric relations
and . It is clear that the function

is periodic in the rotation angle, with period , as
the sign of is of no importance. The sign of the dominant
eigenvector can be fixed to restrictto the set of inner rotations

.
Starting from a different kind of parametrization of the

Givens rotation matrix, Comon also found that in the real
third-order case, the computation of the optimal rotation is a
quadratic problem [5]. (For the real fourth-order case, the com-
putation amounts to the rooting of a polynomial of degree 4.)
However, this format shows less explicitly the analogy with the
JADE-algorithm; see also Section III. The nontrivial derivation
of the complex case, to be discussed below, is entirely new.

We also remark that generic real super-symmetric third-order
tensors, as opposed to matrices, cannot be completely diagonal-
ized. This can easily be verified by counting degrees of freedom;
any diagonalizable real super-symmetric (22 2) tensor
can by definition be written as , in
which is diagonal and a Givens rotation; hence, the manifold
of diagonalizable tensors is three dimensional (3-D), whereas
the full vector space of real super-symmetric (22 2) ten-
sors is four dimensional (4-D).

Now, let us consider thecomplex-valued case. We assume
that the complex (2 2 2) tensor does not change when
its second and third index are interchanged (like it is the case
for a cumulant defined by the element-wise equation

for some random vector ).
We define in which is a complex

Givens rotation matrix. For , we use the standard representa-
tion

(15)

We construct a real symmetric (33) matrix as follows:

(16)

(17)

(18)

(19)

(20)

(21)

in which and denote, respectively, the real and com-
plex part of a complex number, and where the auxiliary variables
are given by

(22)

(23)

(24)
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(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Using these notations, we state the following.
Theorem 2: Consider the complex-valued (22 2) tensor

, the tensor , and the matrix , defined above. The squared
norm of the diagonal of is given by

(36)

in which .
Proof: The theorem can be proved with straightforward

calculus. The main subresults are given in Appendix A.
It can easily be verified that the formulas for the complex case

reduce to those for the real case if we assume that and
that is real super-symmetric.

Like in the real case, the optimal rotation can be found by
computing the dominant eigenvector of and normalizing
it to unit length. The actual elements of the optimal inner
Givens rotation can be obtained from the entries ofby
using the basic relations and

. The
sign of the dominant eigenvector can be fixed to restrictto
the set of inner rotations .

tensors, with , can be maximally diago-
nalized by means of a Jacobi-type iteration. In our simulations,
we have always observed convergence to the global optimum
when the tensor can be exactly diagonalized. However, like for
the Jacobi-techniques of e.g., [1], [6], a formal proof of con-
vergence is lacking. When only approximate diagonalization is
possible, we usually observe global convergence, but there are
cases in which the global optimum is not found. This will be
illustrated in Section III-D, as well as for the technique of [1].

The results of this section can be readily applied to estimate
the factor in the ICA problem, which was sketched in the
introduction, provided at most one of the third-order cumulants
of the sources is zero.

III. ICA BY SIMULTANEOUS THIRD-ORDER TENSOR

DIAGONALIZATION

In this section, we show that the results of the previous sec-
tion, involving third-order tensors, can still be useful for ICA in
which the higher order stage is based on fourth-order cumulants.
This leads to a new technique, which will be referred to as “ICA
by simultaneous third-order tensor diagonalization” (STOTD).
In the first subsection, we explain the basics of this method. Sec-

tion III-B contains the algorithmic details. In Section III-C, we
discuss some properties of the technique. Finally, Section III-D
illustrates the performance with some simulations. An outline
of the algorithm is presented as Algorithm 1.

Algorithm 1

ICA by means of STOTD

Given: samples of , as

in (1). Let be an SVD of the

mixing matrix estimate.

1. Determine from a prewhitening.

2. Call the sample cumulant of the

whitened observations. Associate with a

linear mapping from to

[see (37)]. Determine a basis

of the rangeR (Section III-A).

3. Initialize and .

Sweep the pairs , according

to a fixed ordering. Iterate until convergence

( for all rotation pairs). For each pair:

a) Call the (2 2 2)-subtensor of

, corresponding to sourcesand .

Construct symmetric matrix in

accordance with (7)–(9) and (43)–(46) (real case),

or symmetric matrix in accordance with

(16)–(21) and (47)–(56) (complex case).

b) Determine , with

and , as the dominant eigenvector of.

c) Construct from , in accordance with

Theorem 1 and (6) (real case), or in accordance

with Theorem 2 and (15) (complex case).

d) Update

.

e) Accumulate .

A. Basic Idea

Consider the fourth-order cumulant tensor of the stan-
dardized random vector in the higher order ICA stage, as in
(4). Let us associate with a linear transformation of to
the vector space of third-order tensors in the following
way

(37)

for all index values. This linear mapping has a very special struc-
ture if we neglect the additive noise term in the ICA-model. In
terms of (4), the SVD of the mapping is given by

(38)

in which we have the following.

• The singular values are given by sign
, where symbolizes the kurtosis of theth source.

• The corresponding right singular vectors are the
columns of , represented by , and
complex conjugated by convention.
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• The corresponding “left singular tensors”
are given by

(39)

Therefore, the SVD of the linear mapping is strongly related to
the standardized mixing matrix. Moreover, we remark that all
the third-order tensors in the range space ofcan be written
as a linear combination of the left singular tensors such that they
can be diagonalized by .

When noise is present and/or when the statistics ofare only
available with limited accuracy, the derivation above is only
approximately valid. We propose to estimateas the unitary
(orthogonal) matrix that simultaneously diagonalizes as far as
possible (in least-squares sense) a set of third-order tensors that
form a basis for the range of . Formally, if the set to be diago-
nalized is given by is estimated as the unitary
(orthogonal) matrix that maximizes the function

(40)

where equals the tensor after multiplication with :

(41)

By simultaneously diagonalizing a full basis of the range of
, the information contained in all the entries of can be

exploited. An orthogonal basis for the range of the linear map-
ping can be obtained from the SVD in (38), together with a first
estimate of . Therefore, for the set to be jointly diagonalized,
one could take the set of left singular tensors . On
the other hand, the first terms in (38) have a larger contribu-
tion to than the last ones (we assume that the singular values
are listed in decreasing order). To take into account the relative
importance of the different terms, it makes sense to jointly di-
agonalize the set instead. This corresponds to
the optimization of the weighted function

(42)

One could also “roughly” resort to an ordinary basis that is ob-
tained by simple transformation under of linearly indepen-
dent vectors, e.g., transformation of the canonical unit vectors
corresponds to choosing the “third-order tensor slices” ,
which are obtained by keeping the indexin fixed.

B. Computation

Like for the optimal diagonalization of a single third-order
tensor, the optimal simultaneous diagonalization of a set of
third-order tensors will be computed by Jacobi-iteration. In
each step the set of(2 2 2)-tensors associated with the el-
ementary rotation, will be diagonalized as far as possible. This
set will be represented by . By Jacobi-rotation
these tensors are transformed into the set .

The function that will be maximized is the sum of the squared
norms of the diagonals of the tensors . Theorems 1 and 2
show that the optimal rotation can still be estimated via the dom-
inant eigenvector of a real symmetric (22)-matrix (real case)

or a real symmetric (3 3)-matrix (complex case); however, the
matrix itself is computed as a sum of contributions of the indi-
vidual tensors.

As far asreal-valued tensorsare concerned, this boils down
to replacing the definitions of to in (10)–(13) by the fol-
lowing summations:

(43)

(44)

(45)

(46)

In the complex case, the definitions of to in (22)–(31)
have to be modified to

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Remark 1: Although this result might seem contraintuitive,
it turns out now that simultaneous diagonalization of a set of
third-order tensors, exhibiting the symmetries specified above,
leads to a similar expression as the simultaneous diagonalization
of a set of Hermitean (symmetric) matrices; cf. [1].

In the same way, one can base the higher order step of the
algorithm on third-ánd fourth-order cumulants. Therefore, one
can add (a weighted version) of the third-order cumulant to the
set of third-order tensors that has to be diagonalized. One should
then simply consider a matrix ((7)–(9) or (16)–(21)) that con-
sists of a weighted sum of contributions related to the third- and
the fourth-order cumulant. In this way, it becomes possible to
separate sources that are nonkurtic, provided their skewness is
different from zero, and vice versa. This idea was proposed in
[14], where it was called “extended STOTD” (eSTOTD); this
paper was based on the preliminary paper [8].
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C. Properties

In this subsection, we will study two interesting properties of
the STOTD technique. First, we will show that the technique can
be cast in the framework of contrast optimization. Second, we
will demonstrate that the STOTD estimator is invariant w.r.t. left
multiplication of the mixing matrix by a square regular matrix.

1) Contrast Optimization:In several ICA techniques, the
mixing matrix is estimated through the optimization of a
so-calledcontrast function(cf. definition proposed in [4] and
[6]; this definition was generalized in [13]).

Definition 1 (Contrast): A contrast over a set of matrices
is a mapping from the set of probability densities

or to that satisfies the following requirements.

1) does not change if the components ofare per-
muted or scaled

(57)

in which is a diagonal matrix and a permutation
matrix.

2) If has mutually independent components, then
for every matrix .

3) If has mutually independent components, then
only if , where is a

diagonal matrix and a permutation matrix.
The first condition reflects that contrast optimization should

show the same indeterminacies as ICA itself. The basis of con-
trast optimization is established by condition 2; uniqueness is
obtained by the third condition. Property 3 is referred to as the
discrimination propertyof the contrast function.

The notation is often abbreviated as .
We now show the folowing theorem.
Theorem 3 (Contrast):Let be the fourth-order cumulant

of a white stochastic vector with values in . The
function

(58)

is a contrast function over the manifold of unitary (orthogonal)
matrices. It is discriminating for the set of random vectors of
which at most one component has zero kurtosis.

Proof: The proof is given in Appendix A.
In [15], a class of contrasts is proposed that encompasses con-

trast (58). The paper by Stoll and Moreau [15] was based on the
preliminary paper [8].

2) Invariance: Invariance of an ICA estimator means that
in the absence of noise, its estimates are transformed in the
same way as the mixing matrix when multiplied from the left
with a regular matrix . The interference-to-signal ratio (ISR)
obtained by invariant ICA estimators does not depend on the
mixing matrix; it can even be computed using the unmixed
dataset (still under the no-noise assumption). This property is
called uniform performance of invariant estimators [2].

For details on the general theory of invariance, see [11, ch. 6].
For aspects of invariance related to ICA, see [3]. We now state
that the STOTD-technique is an invariant ICA estimator.

Theorem 4 (Invariant Estimator):The two-stage ICA-proce-
dure, based on prewhitening and simultaneous diagonalization

of the third-order tensor slices of the standardized fourth-order
cumulant tensor, is an invariant estimator of the mixing matrix.

Proof: The proof is given in Appendix A.

D. Simulations

We illustrate the performance of the STOTD technique by
means of three Monte Carlo experiments, in which we average
over 500 simulations. In each of the figures, the solid lines are
obtained by STOTD. The dashed lines, which are drawn for
comparison, are obtained by means of the JADE algorithm [1].

In a first experiment, we consider a setup of two observation
channels, listening to two sources, in which the signals are real
valued. Three different types of zero-mean unit-variance source
distributions are used:

a) binary distribution, with
;

b) uniform distribution over the interval ;
c) double-sided exponential distribution

.
The three possible configurations (binary/uniform, binary/
double-sided exponential, and uniform/double-sided exponen-
tial) are considered. Since the three distributions are even, the
higher order stage of the algorithm is based on the fourth-order
cumulant. In each simulation, a new mixing matrix is generated
by taking its elements from a zero-mean Gaussian distribution.
The columns of the mixing matrix are subsequently scaled to
unit length. In this first experiment, the additive noise term
is neglected.

We consider the following two indices of performance. First,
ISR quantifies the average contamina-
tion by the th source of theth source estimate and can be con-
sidered to be an (approximate) ISR. Secondly, we consider the

root mean square error (RMSE) in which both
matrices are normalized in the same way. For, we assume
unit-variance sources, and for , we assume the corresponding
optimal columnorderingand scaling. Theseperformanceparam-
eters are plotted as a function of the length of the datasets.

In Fig. 1, we plot the mean ISR for the three source configu-
rations. The dotted line is the theoretical low-noise upper-bound
of performance given by [2, eq. (30)]

ISR ISR (59)

in which is the standard deviation of spatially and tempo-
rally white Gaussian noise.

In Fig. 2, we plot the RMSE. The dash-dotted and dotted lines
give the two upper bounds of performance derived in [10]. The
dash-dotted lines image the performance that could ultimately
be obtained given the error introduced in the prewhitening step;
the dotted lines show the ultimate performance when only taking
into account the estimation error on the singular values of the
mixing matrix.

The second experiment is inspired by the simulations
described in [1]. We consider two zero-mean complex-valued
source signals drawn from a uniform distribution over the
circle with unit radius. Both signals impinge on a linear
equispaced array of 10 unit-gain omnidirectional sensors in the
far field of the emitters. The theoretical values of the elements
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Fig. 1. Mean ISR in the first simulation of Section III-D, as a function
of the length of the datasetT . Configurations of the source distributions.
(a) Binary. (b) Uniform. (c) Double-sided exponential. Solid: The mixing
matrix is estimated by means of the STOTD technique. Dashed: The mixing
matrix is estimated by means of the JADE technique. Dotted: Upper bound of
performance.

Fig. 2. RMSE in the first simulation of Section III-D, as a function of the
length of the datasetT . Configurations of the source distributions. (a) Binary.
(b) Uniform. (c) Double-sided exponential. Solid: The mixing matrix is
estimated by means of the STOTD technique. Dashed: The mixing matrix is
estimated by means of the JADE technique. Dash-dotted: The upper bound of
performance given by [10, eq. (20)]. Dotted: The upper bound of performance
given by [10, eq. (21)].

of the mixing matrix are given by , where
equals the electrical angle of source. The noise is Gaussian,
with power . In each experiment, the data length ,
and the angle . Since the source distributions are point
symmetric around the origin, the higher order stage of the
algorithm is based on the fourth-order cumulant.

In Fig. 3, we plot the mean ISR. The top figure shows the
effect of a varying signal-to-noise ratio (SNR) for three different
mixing configurations and (note that in the
latter case, the steering vectors are mutually orthogonal). The
bottom figure shows the effect of the difference in direction-of-

Fig. 3. Mean ISR in the second simulation of Section III-D. Solid: The
mixing matrix is estimated by means of the STOTD technique. Dashed: The
mixing matrix is estimated by means of the JADE technique. Dotted: Low-
noise upper-bound of performance.Top: Effect of the SNR on the quality of
separation.� = 0. Bottom: Effect of the difference in DOA(� = 0) on the
quality of separation.

arrival (DOA) for three different noise levels dB,
dB, and 5 dB. The dotted line is the theoretical upper bound

of performance of [2, eq. 30].
Fig. 4 is the analogous plot for the RMSE of the reconstruc-

tion of the mixing matrix.
Thus far, the results obtained by STOTD turn out to be nearly

the sameas the results of the JADE algorithm.Thecomputational
load of JADE and STOTD are comparable as well. In the real
case, the computation of the optimal vectorleads to the rooting
of a quadratic polynomial in both methods. In the complex case,
both methods lead to the rooting of a polynomial of degree 3. The
only difference consists of the fact that in the JADE algorithm,
one usually restricts the number of matrix slices that are pro-
cessed to by computing the -dimensional dominant subspace
ofaHermitean (symmetric) matrix; theothereigenvec-
tors are considered to be noise contributions. In the STOTD tech-
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Fig. 4. RMSE between the true mixing matrix and its estimate in the second
simulation of Section III-D. Solid: The mixing matrix is estimated by means of
the STOTD technique. Dashed: The mixing matrix is estimated by means of the
JADE technique. Dash-dotted: The upper-bound of performance given by [10,
eq. (20)]. Dotted: The upper-bound of performance given by [10, eq. (21)].Top:
Effect of the SNR on the quality of the reconstruction.� = 0. Bottom: Effect
of the difference in DOA(� = 0) on the quality of the reconstruction.

nique, such a reduction step is not required (although the “fuzzy”
reduction of (42) may still make sense).

The third experiment is similar to the second, except that there
are three sources instead of two. The electrical angle of the third
source is asssumed to be . The iteration stops when
for all the Jacobi rotation matrices computed in the same sweep,
the off-diagonal entries are smaller than in absolute value.
The obtained accuracy is measured in terms of the index [12]

(60)

Fig. 5. Mean index (top) and number of sweeps (bottom) as a function of
the SNR in the third simulation of Section III-D. Solid: The mixing matrix is
estimated by means of the STOTD technique. Dashed: The mixing matrix is
estimated by means of the JADE technique.� = 0. “�”-marks:� = 0:02.
“�”-marks:� = 0:05. “+”-marks:� = 0:1.

in which . This index is zero if equals up to
a column scaling and permutation, and a small value indicates
that the estimate is close.

In Figs. 5 and 6, we plot the index value and the required
number of sweeps averaged over 500 Monte Carlo runs. We
note that the accuracy obtained with the STOTD technique is
generally a bit higher than with the JADE technique, especially
for problems that are a bit more challenging; however, the
JADE iterations stopped after a somewhat smaller number of
sweeps. On the average, the convergence is fast. We remark
that generally more sweeps may be needed when the problem
becomes more difficult. We checked whether the higher ac-
curacy of STOTD was due to the stop criterion, i.e., whether
JADE would not yield the same accuracy if more iterations
were allowed. This turned out not to be the case. When in each
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Fig. 6. Mean index (top) and number of sweeps (bottom) as a function of�

in the third simulation of Section III-D.� = 0. Solid: The mixing matrix
is estimated by means of the STOTD technique. Dashed: The mixing matrix
is estimated by means of the JADE technique. “�”-marks: � = �15 dB.
“�”-marks:� = �5 dB.

run five extra JADE sweeps were carried out, the maximal
improvement of index (60), which was considered over all
runs, was smaller than 3%.

If we analyze the simulation results in detail, then we see that
there are runs in which STOTD was able to find a good solution,
whereas JADE was not, and vice versa. For instance, the max-
imum number of iterations required by STOTD (47) was for a
run where and dB; the obtained index value
was 0.45, whereas JADE obtained a value of 0.003 in seven
sweeps. On the other hand, under the same conditions, there was
a run where JADE needed 32 iterations to obtain an index value
of 0.42, whereas STOTD converged to a value of 0.002 in three
sweeps.

Apparently, in these two cases, one of the two methods did not
converge to the global optimum. As an indication of how often

Fig. 7. Number of runs in the third simulation of Section III-D, where the index
obtained with STOTD was more than 50 times the index obtained with JADE
(bars left from the value of� ) or vice versa (bars right from the value of� ).

this happens, we plot in Fig. 7 the number of runs in which the
index (60) obtained with the STOTD technique was more than
50 times the index obtained with the JADE technique, and vice
versa. In these runs, either STOTD or JADE was not globally
converging or at least the convergence speed became too slow.
In our experiment, this was significantly more often the case for
JADE than for STOTD.

We also mention that in [14] an experiment was conducted
in which STOTD and JADE were based on third- ánd fourth-
order cumulants and where it was concluded that the STOTD
results were better for sources with a positive kurtosis, whereas
the JADE results were better for sources with a negative
kurtosis.

IV. CONCLUSION

We have proved that the computation of an elementary Ja-
cobi rotation, in the optimal diagonalization of a third-order
cumulant, can be formulated as the best rank-1 approximation
of a real symmetric (2 2)-matrix (real case) or (3 3)-matrix
(complex case). This is still true for the optimal diagonalization
of a set of third-order cumulants; the matrix is obtained as a
sum of contributions of the individual tensors in the set. Com-
parison with formulas for simultaneous matrix diagonalization
leads to the result that simultaneous diagonalization of complex
(real) third-order tensors exhibiting the symmetry specified in
Section II is similar to the simultaneous diagonalization of Her-
mitean (symmetric) matrices.

We have shown that ICA can be realized by simultaneous
diagonalization of third-order tensors, spanning the range of the
standardized fourth-order cumulant. This algorithm is similar in
spirit to the JADE algorithm. We have interpreted the algorithm
in terms of contrast optimization and proved that it corresponds
to an invariant ICA estimator.
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APPENDIX A
PROOFS

Theorem 1:
Proof: The diagonal entries of have the form

The squared diagonal norm ofcan then be written as

In (14), this expression is given in a matrix format.
Theorem 2:

Proof: The diagonal entries of have the form

The squared diagonal norm ofcan then be written as

In (36), this expression is reorganized and presented in a matrix
format.

Theorem 3:
Proof: Define , in which has mutually in-

dependent components, andis unitary (orthogonal). We will
prove that and that the equality sign only holds
if , in which is a diagonal matrix of unit-norm ele-
ments, and is a permutation.

Since the components of are mutually independent, its
fourth-order cumulant is diagonal, and is the squared
Frobenius-norm of this cumulant (the squared Frobenius-norm
of a tensor is by definition the sum of the squares of all its
entries)

On the other hand, we remind that the cumulant ofis given
by

can be bounded by the squared Frobenius-norm ofto
prove that :

in which we used that the fact that multiplication with a unitary
matrix does not alter the Frobenius norm of a tensor.

Now, we prove that the equality sign only holds ifis of the
form specified above. Let us first assume that all the components
of are kurtic. , or implies that
the third-order cumulant slices of , which are represented by

, are strictly diagonal, e.g., the first tensor slice is given by

Now, assume that exactly of these terms do not vanish
(say ). According to
a property of higher order tensors (cf. [9, th. 7.3.3]), claiming
that is strictly diagonal means that the matrix

with representing theth column of , is in
the form

in which contains unit-norm elements on the di-
agonal, and is a permutation. However, this implies
that only one of the coefficients could
have been different from zero. Hence, we conclude that diago-
nality of involves that . In other words, the first
row of only contains one nonzero entry; this entry has unit
norm. Repeating the derivation for the other third-order cumu-
lant slices, and taking into account thatis unitary, shows that

contains exactly one unit-modulus entry in each column and
each row.

Finally, if, e.g., is nonkurtic, then the reasoning above can
be repeated for the random vector formed by the first com-
ponents of . The fact that the original has to be orthogonal
then induces the required form of the remaining column.

Theorem 4:
Proof: Call the estimate of the source vector with

estimated covariance and cumulant . The prewhitening
takes the form of , and the higher order step is based
on the optimization of . Hence, the algorithm
is based on the output of the separator, which is a sufficient
condition for invariance [3].
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