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Abstract. The canonical decomposition of higher-order tensors is a key tool in multilinear
algebra. First we review the state of the art. Then we show that, under certain conditions, the
problem can be rephrased as the simultaneous diagonalization, by equivalence or congruence, of a
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decompositions are derived. In a next step, the problem can be translated into a simultaneous
generalized Schur decomposition, with orthogonal unknowns [A.-J. van der Veen and A. Paulraj,
IEEE Trans. Signal Process., 44 (1996), pp. 1136–1155]. A first-order perturbation analysis of
the simultaneous generalized Schur decomposition is carried out. We discuss some computational
techniques (including a new Jacobi algorithm) and illustrate their behavior by means of a number
of numerical experiments.
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1. Introduction. An increasing number of signal processing problems involves
the manipulation of quantities of which the elements are addressed by more than
two indices. In the literature these higher-order equivalents of vectors (first order)
and matrices (second order) are called higher-order tensors, multidimensional matri-
ces, or multiway arrays. For a lot of applications involving higher-order tensors, the
existing framework of vector and matrix algebra appears to be insufficient and/or
inappropriate. The algebra of higher-order tensors is called multilinear algebra.

Rank-related issues in multilinear algebra are thoroughly different from their ma-
trix counterparts. Let us first introduce some definitions. A rank-1 tensor is a tensor
that consists of the outer product of a number of vectors. For an Nth-order tensor A
and N vectors U (1), U (2), . . . , U (N), this means that ai1i2...iN = u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

for

all values of the indices, which will be concisely written as A = U (1) ◦U (2) ◦ · · · ◦U (N).
An n-mode vector of an (I1 × I2 × · · · × IN )-tensor A is an In-dimensional vector
obtained from A by varying the index in and keeping the other indices fixed. The
n-rank of a higher-order tensor is the obvious generalization of the column (row) rank
of matrices: it equals the dimension of the vector space spanned by the n-mode vec-
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tors. An important difference with the rank of matrices is that the different n-ranks
of a higher-order tensor are not necessarily the same. The n-rank will be denoted as
rankn(A) = Rn. Even when all the n-ranks are the same, they can still be different
from the rank of the tensor, denoted as rank(A) = R; A having rank R generally
means that it can be decomposed in a sum of R, but not less than R, rank-1 terms;
see, e.g., [34].

Example 1. Consider the (2 × 2 × 2)-tensor A defined by⎧⎨
⎩

a111 = a112 = 1,
a221 = a222 = 2,
a211 = a121 = a212 = a122 = 0.

The 1-mode vectors are the columns of the matrix(
1 0 1 0
0 2 0 2

)
.

Because of the symmetry, the set of 2-mode vectors is the same as the set of 1-mode
vectors. The 3-mode vectors are the columns of the matrix(

1 0 0 2
1 0 0 2

)
.

Hence, we have that R1 = R2 = 2 but R3 = 1.
Example 2. Consider the (2 × 2 × 2)-tensor A defined by{

a211 = a121 = a112 = 1,
a111 = a222 = a122 = a212 = a221 = 0.

The 1-rank, 2-rank, and 3-rank are equal to 2. The rank, however, equals 3, since

A = E2 ◦ E1 ◦ E1 + E1 ◦ E2 ◦ E1 + E1 ◦ E1 ◦ E2,

in which

E1 =

(
1
0

)
, E2 =

(
0
1

)

is a decomposition in a minimal linear combination of rank-1 tensors (a proof is given
in [17]).

The scalar product 〈A,B〉 of two tensors A,B ∈ R
I1×I2×...×IN is defined in a

straightforward way as 〈A,B〉 def
=

∑
i1

∑
i2
. . .

∑
iN

ai1i2...iN bi1i2...iN . The Frobenius-

norm of a tensor A ∈ R
I1×I2×...×IN is then defined as ‖A‖ def

=
√
〈A,A〉. Two tensors

are called orthogonal when their scalar product is zero.
In [19] we discussed a possible multilinear generalization of the singular value de-

composition (SVD). The different n-rank values can easily be read from this decom-
position. In [20] we examined some techniques to compute the least-squares approx-
imation of a given tensor by a tensor with prespecified n-ranks. On the other hand,
in [19] we emphasized that the decomposition that was being studied, is not necessar-
ily rank-revealing. This is a drawback of unitary (orthogonal) tensor decompositions
in general. In this paper we will study the decomposition of a given tensor as a linear
combination of a minimal number of possibly nonorthogonal, rank-1 terms. This type
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of decomposition is often called “canonical decomposition” (CANDECOMP) or “par-
allel factors” model (PARAFAC). It is a multilinear generalization of diagonalizing a
matrix by an equivalence or congruence transformation. However, it has thoroughly
different properties, e.g., as far as uniqueness is concerned.

Section 2 is a brief introduction to the subject, with a formal definition of the
CANDECOMP-concept and an overview of the main current computational tech-
niques. In this section we will also mark out the problem that we will consider in
this paper (we will make some specific assumptions concerning the linear indepen-
dence of the canonical components). In section 3 we discuss a preprocessing step that
allows us to reduce the dimensionality of the problem. In section 4 we establish a
computational link between the tensor decomposition and the simultaneous diagonal-
ization of a set of matrices by equivalence or congruence; this problem might also be
looked at as a simultaneous matrix eigenvalue decomposition (EVD). The fact that
the CANDECOMP usually involves nonorthogonal factor matrices is numerically dis-
advantageous. By reformulating the problem as a simultaneous generalized Schur
decomposition (SGSD), the unknowns are restricted to the manifold of orthogonal
matrices in section 5. In section 6 we discuss the advantage of working via a simulta-
neous matrix decomposition as opposed to working via a single EVD; this section also
contains a first-order perturbation analysis of the SGSD. Techniques for the actual
computation of the SGSD are considered in section 7. In section 8 it is explained how
the original CANDECOMP-components can be retrieved from the components of the
SGSD. In section 9 the different techniques are illustrated by means of a number of
numerical experiments.

This paper contains the following new contributions:
• In the literature one finds that, in theory, the CANDECOMP can be com-

puted by means of a matrix EVD (under the uniqueness assumptions specified
in section 2) [38, 43, 5, 42]. We show that one can actually interpret the ten-
sor decomposition as a simultaneous matrix decomposition. The simultaneous
matrix decomposition is numerically more robust than a single EVD.

• We show that the CANDECOMP can be reformulated as an orthogonal si-
multaneous matrix decomposition—the SGSD. The reformulation in terms of
orthogonal unknowns allows for the application of typical numerical proce-
dures that involve orthogonal matrices. The SGSD as such already appeared
in [48]. The difference is that in this paper it is applied to unsymmetric,
instead of symmetric, matrices. This generalization may raise some confu-
sion. It might, for instance, be tempting to consider also a simultaneous lower
triangularization, in addition to a simultaneous upper triangularization.

• We derive a Jacobi-algorithm for the computation of the SGSD. The formula
for the determination of the rotation angle is an explicit solution for the case
of rank-2 tensors.

• The way in which the canonical components are derived from the components
of the SGSD is more general and more robust than the procedure proposed
in [48].

• We derive necessary and sufficient conditions for the uniqueness of a number
of simultaneous matrix decompositions: (1) simultaneous diagonalization by
equivalence or congruence, (2) simultaneous EVD of nonsymmetric matrices,
(3) simultaneous Schur decomposition (SSD).

• We conduct a first-order perturbation analysis of the SGSD.
Before starting with the next section, we add a comment on the notation that is

used. To facilitate the distinction between scalars, vectors, matrices and higher-order
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tensors, the type of a given quantity will be reflected by its representation: scalars
are denoted by lower-case letters (a, b, . . . ; α, β, . . . ), vectors are written as capitals
(A, B, . . . ) (italic shaped), matrices correspond to bold-face capitals (A, B, . . . ) and
tensors are written as calligraphic letters (A, B, . . . ). This notation is consistently
used for lower-order parts of a given structure. For instance, the entry with row index
i and column index j in a matrix A, i.e., (A)ij , is symbolized by aij (also (A)i = ai
and (A)i1i2...iN = ai1i2...iN ); furthermore, the ith column vector of a matrix A is
denoted as Ai, i.e., A = [A1A2 . . .]. To enhance the overall readability, we have made
one exception to this rule: as we frequently use the characters i, j, r, and n in the
meaning of indices (counters), I, J , R, and N will be reserved to denote the index
upper bounds, unless stated otherwise.

2. The canonical decomposition. The CANDECOMP or PARAFAC model
is defined as follows.

Definition 2.1 (CANDECOMP). A canonical decomposition or parallel factors
decomposition of a tensor A ∈ R

I1×I2×···×IN is a decomposition of A as a linear
combination of a minimal number of rank-1 terms:

A =

R∑
r

λr U
(1)
r ◦ U (2)

r ◦ · · · ◦ U (N)
r .(2.1)

The decomposition is visualized for third-order tensors in Figure 2.1.
The terminology originates from psychometrics [10] and phonetics [26]. Later

on, the decomposition model was also applied in chemometrics [1]. Recently, the
decomposition drew the attention of researchers in signal processing [14, 16, 45, 46].
A good tutorial of the current state of the art in psychometrics and chemometrics is
[3].

A
= + . . . ++

U
(1)
1

λ1 λ2 λR

U
(1)
2 U

(1)
R

U
(2)
1 U

(2)
2 U

(2)
R

U
(3)
1 U

(3)
2 U

(3)
R

Fig. 2.1. Visualization of the CANDECOMP for a third-order tensor.

The decomposition can be considered as the tensorial generalization of the di-
agonalization of matrices by equivalence transformation (unsymmetric case) or by
congruence transformation (symmetric case). However, its properties are thoroughly
different from its second-order counterparts.

A first striking difference with the matrix case is that the rank of a real-valued
tensor in the field of complex numbers is not necessarily equal to the rank of the same
tensor in the field of real numbers [35]. Second, even if nonorthogonal rank-1 terms
are allowed, the minimal number of terms is not bounded by min{I1, I2, . . . , IN} in
general (cf. Example 2); it is usually larger and depends also on the tensor order. The
determination of the maximal attainable rank value over the set of (I1×I2×· · ·×IN )-
tensors is still an open problem in the literature. In [14] an overview of some partial re-
sults, obtained for super-symmetric tensors in the context of invariant theory, is given.
(A real-valued tensor is called super-symmetric when it is invariant under arbitrary
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index permutations.) The paper includes a tensor-independent rank upper-bound, an
algorithm to compute maximal generic ranks and a complete discussion of the case of
super-symmetric (2 × 2 × · · · × 2)-tensors.

The uniqueness properties of the CANDECOMP are also very different from (and
much more complicated than) their matrix equivalents. The theorems of [14] allow one
to determine the dimensionality of the set of valid decompositions for generic super-
symmetric tensors. The deepest result concerning uniqueness of the decomposition for
third-order real-valued tensors is derived from a combinatorial algebraic perspective
in [34]. The complex counterpart is concisely proved in [45]. The result is generalized
to arbitrary tensor orders in [47]. In [6] complex fourth-order cumulant tensors are
addressed. Here we will restrict ourselves to some remarks of a more general nature,
that are of direct importance to this paper. From the CANDECOMP-definition it is
clear that the decomposition is insensitive to

• a permutation of the rank-1 terms,

• a scaling of the vectors U
(n)
r , combined with the inverse scaling of the coeffi-

cients λr.
Apart from these trivial indeterminacies, uniqueness of the CANDECOMP has been
established under mild conditions of linear independence (see further for a precise
formulation of the conditions imposed in this paper). Contrarily, the decomposition
of a matrix A in a sum of rank(A) rank-1 terms is usually made unique by impos-
ing stronger (e.g., orthogonality) constraints. In addition, for an essentially unique
CANDECOMP the number of terms R can exceed min{I1, I2, . . . , IN}.

Example 3. Consider the (2 × 2 × 2)-tensor A defined by{
a111 = a121 = −a212 = −a222 = 3,
a221 = a112 = −a211 = −a122 = 1.

The CANDECOMP of this tensor is given by

A = X1 ◦ Y1 ◦ Z1 + X2 ◦ Y2 ◦ Z2,(2.2)

in which

X1 = Z2 =

(
1
1

)
, Z1 = X2 =

(
1
−1

)
, Y1 =

(
1
2

)
, Y2 =

(
2
1

)
.

Apart from the trivial indeterminacies described above, this decomposition is unique,
as will become clear in section 4. The reason is that the matrices X = (X1 X2),
Y = (Y1 Y2), and Z = (Z1 Z2) are each nonsingular.

On the other hand, consider the first “matrix slice” of A (cf. Figure 4.1):

A1 =

(
a111 a121

a211 a221

)
=

(
3 3
−1 1

)
.

Due to (2.2), we have that

A1 = X1Y
T
1 + X2Y

T
2 = X · YT ,

but this decomposition is not unique. As a matter of fact, one can write

A1 = (XF) · (YF−T )T = X̃ · ỸT ,
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for any nonsingular (2×2) matrix F. One way to make this decomposition essentially
unique, is to claim that the columns of X̃ and Ỹ are orthogonal. The solution is then
given by the SVD of A1.

It is a common practice to look for the CANDECOMP-components by straight-
forward minimization of the quadratic cost function

f(Â) = ‖A − Â‖2(2.3)

over all rank-R tensors Â, which we will parametrize as

Â =

R∑
r

λ̂r Û
(1)
r ◦ Û (2)

r ◦ · · · ◦ Û (N)
r .(2.4)

It is possible to resort to an alternating least-squares (ALS) algorithm, in which the
vector estimates are updated mode per mode [10]. The idea is as follows. Let us
define

Û(n) def
= [Û

(n)
1 Û

(n)
2 . . . Û

(n)
R ],

Λ̂
def
= diag{(λ̂1, λ̂2, . . . , λ̂R)},

in which diag{·} is a diagonal matrix, containing the entries of its argument on the

diagonal. If we now imagine that the matrices Û(m), m �= n, are fixed, then (2.3) is

merely a quadratic expression in the components of the matrix Û(n) · Λ̂; the estima-
tion of these components is a classical linear least-squares problem. An ALS iteration
consists of repeating this procedure for different mode numbers: in each step the esti-
mate of one of the matrices U(1),U(2), . . . ,U(N) is optimized, while the other matrix
estimates are kept constant. Overflow and underflow can be avoided by normalizing

the estimates of the columns U
(n)
r (1 � r � R; 1 � n � N) to unit-length.

For R = 1, the ALS algorithm can be interpreted as a generalization of the power
method for the computation of the best rank-1 approximation of a matrix [20]. For
R > 1, however, the canonical components can in principle not be obtained by means
of a deflation algorithm. The reason is that the stationary points of the higher-order
power iteration generally do not correspond to one of the terms in (2.4), and that
the residue is in general not of rank R − 1 [32]. This even holds when the rank-
1 terms are mutually orthogonal [33]. Only when each of the matrices {U(n)} is
column-wise orthonormal, the deflation approach will work, but in this special case,
the components can be obtained by means of a matrix SVD [19].

Because the cost function is monotonically decreasing, one expects that the ALS
algorithm converges to a (local) minimum of f(Â). If the CANDECOMP-model
is only approximately valid, the risk of finding a spurious local optimum can be
diminished by repeating the optimization for a number of randomly chosen initial
values. The decision on whether the global optimum has been found or not usually
relies on heuristics. The process of iterating over different starting values can be
time-consuming. In addition, if the directions of some of the n-mode vectors in
the CANDECOMP-model (1 � n � N) are close, then it seems unlikely that this
configuration is found from a random start [14]. Some alternative initializations are
discussed in [11]. The rank itself is usually determined by repeating the procedure
for different values of R, and comparing the results. An alternative, also based on
heuristics, is the evaluation of split-half experiments [27].
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ALS iterations can be very slow. In addition, it is sometimes observed that the
algorithm moves through a “swamp”: the algorithm seems to converge, but then the
convergence speed drastically decreases and remains small for several iteration steps,
after which it may suddenly increase again. The nature of swamps and how they
can be avoided forms a topic of ongoing research [41, 36]. To cope with the slow
convergence, a number of acceleration methods have been proposed [26, 28, 31]. One
could make use of a prediction technique, in which estimates of previous iteration
steps are extrapolated to forecast new estimates [3].

In [40] a Gauss–Newton method is described, in which all the CANDECOMP-
factors are updated simultaneously; in addition, the inherent indeterminacy of the
decomposition has been fixed by adding a quadratic regularization constraint on the
component entries.

On the other hand, setting the gradient of f to zero and solving the resulting
set of equations, is computationally hard as well: a set of R(I1 + I2 + . . . IN ) −
R(N − 1) polynomial equations of degree 2N − 1, in R(I1 + I2 + . . . IN ) −R(N − 1)
independent unknowns, has to be solved (to determine this dimensionality, imagine
that the indeterminacy has been overcome by incorporating the factor λr (1 � r � R)
in one of the vectors of the rth outer product, and by fixing one nonzero entry in the
other vectors).

An interesting alternative procedure, which works under a number of assumptions
among which the most restrictive is that R � min{I1, I2}, has been proposed in [38].
Similar results have been proposed in [43, 5, 42]. It was explained that, if (2.1) is
exactly valid, the decomposition can be found by a simple matrix EVD. When A is
only known with limited accuracy, a least-squares matching of both sides of (2.1) can
now be initialized with the EVD result. This technique forms the starting point for
the developments in section 4.

Some promising computation schemes, at this moment only formulated in terms
of (super-symmetric) cumulant tensors, have been developed as means to solve the
problem of higher-order-only independent component analysis. In [7] Cardoso shows
that under mild conditions the matrices in the intersection of the range of the cumulant
tensor and the manifold of rank-1 matrices take the form of an outer product of a
steering vector with itself; consequently MUSIC-like [44] algorithms are devised. In [6]
the same author investigates the link between symmetry of the cumulant tensor and
the rank-1 property of its components. The problem is subsequently reformulated in
terms of a matrix EVD.

The decomposition of a dataset as a sum of rank-1 terms is sometimes called
the factor analysis problem. With the decomposition, one aims at relating the dif-
ferent rank-1 terms to the different “physical mechanisms” that have contributed to
the dataset. We repeat that factor analysis of matrices is, as such, essentially un-
derdetermined. The extra conditions (maximal variance, orthonormality, etc.) that
are usually imposed to guarantee uniqueness, are often physically irrelevant. In a
wide range of parameters, this is not the case for the higher-order decomposition; the
weaker conditions of linear independence to ensure uniqueness often have a physical
meaning. This makes the CANDECOMP of higher-order tensors to an important
signal processing tool.

In this paper, we will study the special but important case of an (I1 × I2 × I3)-
tensor A with rank R � min{I1, I2} and 3-rank R3 � 2. (If R3 = 1, then the
different matrices obtained from A by fixing the index i3 are proportional, and the
CANDECOMP reduces to the diagonalization of one of these matrices by congruence
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or equivalence.) We assume that

(i) the set {U (1)
r }(1�r�R) is linearly independent (i.e., no vector can be written

as a linear combination of the other vectors),

(ii) the set {U (2)
r }(1�r�R) is linearly independent,

(iii) the set {U (3)
r }(1�r�R) does not contain collinear vectors (i.e., no vector is a

scalar multiple of an other vector).

Roughly speaking, we address the case in which the number of rank-1 terms is
bounded by the second largest dimension of A (like in classical matrix decomposi-
tions). Conditions (i)–(iii) are generically satisfied, i.e., only in a set of Lebesgue
measure zero they do not hold. In typical applications one has the prior knowledge
that these assumptions are valid. Classical (not overcomplete) independent compo-
nent analysis can be formulated in terms of this model [13, 49]. Conditions (i)–(iii) are
required for the uniqueness of the solution. All the examples in the tutorial [3] belong
to our class of interest. In chemometrical applications such as the ones described in
[42], the conditions do not pose any problem. For instance, I1 and I2 correspond to
the length of emission-excitation spectra and R is the number of chemical components.

If the rank of A is higher than Rmax = min{I1, I2}, then our method will still
try to fit a rank-Rmax model to the data. Contrary to the matrix case, this does not
simply correspond to discarding the rank-1 terms that have the smallest norm.

It can be verified that conditions (i)–(iii) are sufficient to make the CANDECOMP
essentially unique [38] (see also sections 4 and 6). The exposition is restricted to real-
valued third-order tensors for notational convenience. The generalization to higher
tensor orders is straightforward. The method then applies to tensors of which the
rank R � min{I1, I2} and at least one of the n-ranks Rn, for n � 3, satisfies Rn � 2.
Conditions (i)–(iii) should be rephrased as the following:

(i) the set {U (1)
r }(1�r�R) is linearly independent,

(ii) the set {U (2)
r }(1�r�R) is linearly independent,

(iii) and at least one of the sets {U (n)
r }(1�r�R) for n � 3 does not contain

collinear vectors.

Apart from section 7.2, the generalization to complex-valued tensors is also
straightforward. An outline of the exposition is presented as Algorithm 1. In this
algorithm we assume that a value of R is given or that the rank has been estimated
as rank1(A) = rank2(A) (see next section).

3. Dimensionality reduction. Under the assumptions specified in the pre-
vious section, we have that R1 = rank1(A) = R = rank2(A) = R2 and that
R3 = rank3(A) = rank(U(3)). To understand this, remark that (2.1) implies that
the n-mode vectors of A are the columns of the matrix

A(n) = U(n) · Λ · (U(m) � U(l))T ,

in which � is the Kathri–Rao or columnwise Kronecker product and (n,m, l) is an
arbitrary permutation of (1, 2, 3). Hence, conditions (i)–(iii) imply that the dimension
of the n-mode vector space, which equals the rank of A(n), is equal to rank(U(n)).

If R < max{I1, I2}, or R3 < I3, then an a priori dimensionality reduction of
A ∈ R

I1×I2×I3 to a tensor B ∈ R
R×R×R3 decreases the computational load of the

actual determination of the CANDECOMP (step 1 in Algorithm 1). Before starting
the actual exposition, we briefly address this issue. Suppose that A and B are related
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Algorithm 1

CANDECOMP by SGSD

In: A ∈ R
I1×I2×I3 , R.

Out: {U (1)
r }(1�r�R), {U (2)

r }(1�r�R), {U (3)
r }(1�r�R), {λr}(1�r�R) such that A �∑R

r λr U
(1)
r ◦ U (2)

r ◦ U (3)
r .

(1. Perform an initial best rank-(R,R,R3) approximation of A: maximize

g(X(1),X(2),X(3)) = ‖A ×1 X(1)T ×2 X(2)T ×3 X(3)T ‖2 over column-
wise orthonormal X(1) ∈ R

I1×R, X(2) ∈ R
I2×R and X(3) ∈ R

I3×R3 ;

max(g(X(1),X(2),X(3))) = g(X
(1)
max,X

(2)
max,X

(3)
max). B = A ×1 X

(1)T

max ×2

X
(2)T

max ×3 X
(3)T

max . Continue for B with steps 2, 3, 4, (5) below. Â =

B̂ ×1 X
(1)
max ×2 X

(2)
max ×3 X

(3)
max. (section 3.) (Perform step 5 for Â.))

2. Associate to A a linear mapping fA from R
I3 to R

I1×I2 (see (4.1)).
Determine {Vk}(1�k�K) such that the range of fA is spanned by
V1,V2, . . . ,VK .

3. Compute orthogonal Q,Z and (approximately) upper triangular
{Rk}(1�k�K) from the SGSD of (5.1)–(5.3):

- extended QZ-iteration (section 7.1, [48]), or
- Jacobi-type iteration (section 7.2, [17, 18]).

4. Compute U(1) and U(2) from {Rk}(1�k�K) and {Vk}(1�k�K) (and Q ,

Z). Compute U(3) from U(1), U(2) and A. (Detailed outline in section 8.)
(5. Minimize f(Â) = ‖A − Â‖2 (section 2).)

by

ai1i2i3 =
∑

r1r2r3

x
(1)
i1r1

x
(2)
i2r2

x
(3)
i3r3

br1r2r3(3.1)

for all index values, where X(1) ∈ R
I1×R, X(2) ∈ R

I2×R and X(3) ∈ R
I3×R3 , which we

will write concisely as

A = B ×1 X(1) ×2 X(2) ×3 X(3).(3.2)

If X(1), X(2), X(3) each have mutually orthonormal columns, then the optimal rank-R
approximation B̂ of B and the optimal rank-R approximation Â of A are related in
the same way:

Â = B̂ ×1 X(1) ×2 X(2) ×3 X(3),(3.3)

since “n-mode multiplication” with the columnwise orthonormal matrices X(1), X(2),
X(3) does not change the cost function f (2.3). If the CANDECOMP-model is exactly
satisfied, then any orthonormal basis of the mode-1, mode-2, and mode-3 vectors of
A gives a suitable X(1), X(2), X(3), respectively. In practice, however, R = R1 = R2

and R3 will be estimated as the number of significant mode-1 / mode-2 and mode-3
singular values of A (see [19]). An optimal rank-(R,R,R3) approximation of A, before
computing the optimal rank-R approximation, can then be realized. For techniques
we refer to [20].

4. CANDECOMP and simultaneous EVD. Without loss of generality we
assume that I1 = I2 = R (if I1 > R or I2 > R, we can always do a dimensionality
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reduction, as explained in the previous section). We start the derivation of our com-
putation scheme with associating to A a linear transformation of the vector space R

I3

to the matrix space R
I1×I2 , in the following way:

V = fA(W ) = A×3 W ⇐⇒ vi1i2 =
∑
i3

ai1i2i3wi3 ,(4.1)

for all index values. Substitution of (4.1) in (2.1) shows that the image of W can
easily be expressed in terms of the CANDECOMP-components:

V = U(1) · D · U(2)T ,(4.2)

in which we have used the following notations:

U(n) def
= [U

(n)
1 U

(n)
2 . . . U

(n)
In

],(4.3)

D
def
= diag{(λ1, λ2, . . . , λR)} · diag{U(3)TW}.(4.4)

Any matrix in the range of the mapping fA can be diagonalized by equivalence with
the matrices U(1) and U(2). (If A does not change under permutation of its first two
indices, then any matrix in the range can be diagonalized by congruence with the
matrix U(1) = U(2).) If the range is spanned by the matrices V1, V2, . . . , VK , then
we should solve the following simultaneous decomposition:

V1 = U(1) · D1 · U(2)T ,(4.5)

V2 = U(1) · D2 · U(2)T ,(4.6)

...

VK = U(1) · DK · U(2)T ,(4.7)

in which D1,D2, . . . ,DK are diagonal. A possible choice of {Vk}(1�k�K) consists of
the “matrix slices” {Ai}(1�i�I3), obtained by fixing the index i3 to i (see Figure 4.1);
the corresponding vectors {Wi}(1�i�I3) are the canonical unit vectors. An other
possible choice consists of the K dominant left singular matrices of the mapping in
(4.1). In both cases, the cost function

f̃(Û(1), Û(2), {D̂k}) =
∑
k

‖Vk − Û(1) · D̂k · Û(2)T ‖2

corresponds to the CANDECOMP cost function (2.3). The latter choice follows nat-
urally from the analysis in section 3 [20].

For later use, we define

Ũ(3) =

⎛
⎜⎜⎜⎝

(D1)11 (D1)22 . . . (D1)RR

(D2)11 (D2)22 . . . (D2)RR

...
...

...
(DK)11 (DK)22 . . . (DK)RR

⎞
⎟⎟⎟⎠(4.8)

= [W1W2 . . .WK ]
T · U(3) · diag{(λ1, λ2, . . . , λR)}.(4.9)

If the CANDECOMP-model is exactly satisfied, then its terms can be computed
from two of the equations in (4.5)–(4.7). Let us assume that the matrix V1 has
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A

A1

A2

AI3

= + . . . ++

U
(1)
1

λ1 λ2 λR

U
(1)
2 U

(1)
R

U
(2)
1 U

(2)
2 U

(2)
R

U
(3)
1 U

(3)
2 U

(3)
R

Fig. 4.1. Definition of matrix slices for the computation of the CANDECOMP by simultaneous
diagonalization.

full rank (this is the case for a generic choice of W1). Combination of the first two
equations then leads to the following EVD:

V2 · V−1
1 = U(1) · (D2 · D−1

1 ) · U(1)−1
.(4.10)

Remember that we assumed in section 2 that U(3) does not contain collinear columns.
As a consequence, the pair ((D1)ii(D2)ii)=λi(W

T
1 U

(3)
i WT

2 U
(3)
i ) and ((D1)jj(D2)jj)=

λj(W
T
1 U

(3)
j WT

2 U
(3)
j ) is generically not proportional, for all i �= j. Hence the diagonal

elements of D2 ·D−1
1 are mutually different and the EVD (4.10) reveals the columns

of U(1), up to an irrelevant scaling and/or permutation. Once U(1) is known, U(2)

can be obtained, up to a scaling of its columns, as follows. From (4.5)–(4.7) we have

VT
1 · U(1)−T

= U(2) · D1,(4.11)

VT
2 · U(1)−T

= U(2) · D2,(4.12)

...

VT
K · U(1)−T

= U(2) · DK .(4.13)

Hence, if we denote the rth column of VT
k ·U(1)−T

as Bkr, then U
(2)
r can be estimated

as the dominant left singular vector of [B1rB2r . . . BKr]. Finally, the matrix U(3) ·
diag{(λ1, λ2, . . . , λR)} is found by solving the CANDECOMP-model as a linear set of
equations, for given matrices U(1) and U(2). (Note that the assumptions that we have
made for identifiability in section 2 indeed allow to obtain the CANDECOMP in an
essentially unique way.) If the CANDECOMP-model is only approximately satisfied,
then the estimates can be used to initialize an additional optimization algorithm for
the minimization of cost function (2.3) (cf. step 5 in Algorithm 1). This EVD-
approach is a variant of the techniques described in [38, 43, 5, 42].

It is intuitively clear, however, that it is preferable to exploit all the available
information by taking into account all the equations in (4.5)–(4.7). This leads to a
simultaneous EVD:

V2 · V−1
1 = U(1) · (D2 · D−1

1 ) · U(1)−1
,(4.14)

V3 · V−1
1 = U(1) · (D3 · D−1

1 ) · U(1)−1
,(4.15)

...

VK · V−1
1 = U(1) · (DK · D−1

1 ) · U(1)−1
.(4.16)

We will further discuss the advantages in section 6.
In this paper, we propose a reliable technique to deal with (4.5)–(4.7) simultane-

ously (steps 2–4 in Algorithm 1).
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5. CANDECOMP and SGSD. The fact that the unknown matrices U(1) and
U(2) are basically arbitrary nonsingular matrices, makes them hard to deal with in
a proper numerical way. In this section, we will reformulate the problem in terms
of orthogonal unknowns. Therefore, we can make an appeal to the technique estab-
lished in [48], where the symmetric equivalent of (4.5)–(4.7) was encountered in the
derivation of an analytical constant modulus algorithm.

Introducing a QR-factorization U(1) = QT R′ and an RQ-decomposition U(2)T =
R′′ ZT leads to a set of matrix equations that we will call a simultaneous generalized
Schur decomposition (a set of two of the equations below is called “Generalized Schur
Decomposition” [24]):

Q · V1 · Z = R1 = R′ · D1 · R′′,(5.1)

Q · V2 · Z = R2 = R′ · D2 · R′′,(5.2)

...

Q · VK · Z = RK = R′ · DK · R′′,(5.3)

in which Q,Z ∈ R
R×R are orthogonal and R′,R′′,R1,R2, . . . ,RK ∈ R

R×R are upper
triangular. If the CANDECOMP model is exactly satisfied, the new problem consists
of the determination of Q and Z such that R1,R2, . . . ,RK are each upper triangular.
In practice, this is only possible in an approximate sense. For instance, one could
maximize the function g, given by

g(Q,Z) = ‖Q · V1 · Z‖2
UF + ‖Q · V2 · Z‖2

UF + · · · + ‖Q · VK · Z‖2
UF ,(5.4)

in which ‖ · ‖UF denotes the Frobenius-norm of the upper triangular part of a matrix.
So we will determine Q and Z as the orthogonal matrices that make R1,R2, . . . ,RK

simultaneously as upper triangular as possible. Equivalently, one may minimize

h(Q,Z) = ‖Q · V1 · Z‖2
LFs + ‖Q · V2 · Z‖2

LFs + · · · + ‖Q · VK · Z‖2
LFs(5.5)

=
∑
k

‖Vk‖2 − g(Q,Z),(5.6)

in which ‖ · ‖LFs denotes the Frobenius-norm of the strictly lower triangular part of
a matrix. The decomposition is visualized in Figure 5.1.

In section 7 we will discuss two algorithms for the computation of the SGSD. In
section 8 we will explain how U(1) and U(2) can be calculated once Q and Z have
been estimated.

Remark 4. At first sight the unsymmetric case allows for the derivation of an
additional set of equations if we substitute a QL-factorization U(1) = Q̃T L′ and an

LQ-decomposition U(2)T = L′′ Z̃T in (4.5)–(4.7) (L′ and L′′ are lower triangular).
This leads to a simultaneous lower triangularization of the matrices V1,V2, . . . ,VK .
Both approaches are in fact equivalent because they simply correspond to a differ-
ent permutation of the columns of U(1) and U(2), which cannot be determined in
advance. Since the aim of the algorithms that will be discussed in section 7 is only
to find matrices Q and Z that correspond to an arbitrary column permutation (not
necessarily the one that happens to globally minimize the cost function h in the pres-
ence of noise), both formulations may in practice lead to results that are close but
not exactly equal.

Remark 5. In [49] an alternative scheme, in which one directly works with the
components of (4.5)–(4.7), instead of going via a SGSD, was formulated for the sym-
metric case, i.e., U(1) = U(2) = U. Before continuing with the actual exposition, let
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...

VK

V1

=

=

=

Q

Q

Q

Z

Z

Z

V2

Fig. 5.1. Visualization of a SGSD.

us briefly address this approach. It is an ALS strategy, with the particular problem
that for two of the modes the components are equal. The technique is called the
“AC–DC” algorithm, standing for “alternating columns–diagonal centers”. Let us
associate with (4.5)–(4.7) the following weighted cost function:

c(U,D1,D2, . . . ,DK) =

K∑
k=1

wk‖Vk − U · Dk · UT ‖2.(5.7)

Note that for wk = 1 (1 � k � K) and {Vk}(1�k�K) equal to the matrix slices
{Ai}(1�i�I3) defined in Figure 4.1, this cost function corresponds to the obvious
CANDECOMP cost (2.3). In the technique one alternates between updates of
{Dk}(1�k�K), given U (DC-phase) and updates of U, given {Dk}(1�k�K) (AC-phase).
It is clear that a DC-step amounts to a linear least-squares problem. In [49] it is shown
that the conditional update of a column of U amounts to the best rank-1 approxima-
tion of a symmetric (I × I)-matrix (I = I1 = I2). An AC-phase then consists of one,
or more, updates of the different columns of U.

6. Single vs. simultaneous decomposition and perturbation analysis.
Before introducing some algorithms for the computation of the SGSD, we will discuss
in this section some advantages of the simultaneous decomposition approach over the
computation of a single EVD (cf. [38, 43, 5, 42]). In this context, we will also provide
a first-order perturbation analysis of the SGSD.

6.1. Uniqueness. First, let us reconsider (4.14)–(4.16). One could solve these
EVDs separately, and retain the solution that leads to the best CANDECOMP-
estimate. However, it is safer from a numerical point of view to solve (4.14)–(4.16)
simultaneously, in some optimal sense, especially when the perturbation of the matri-
ces {Vk}(1�k�K) (with respect to their ideal values in an exact CANDECOMP) may
have caused eigenvalues to cross each other. This is illustrated in the next example;
a symmetric version of the example can be found in [4].
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Example 6. Consider the following matrix pair:

M1 =

⎛
⎜⎜⎝

1 − ε 0 0 0
0 1 + ε 0 0
0 0 2 1
0 0 0 3

⎞
⎟⎟⎠ , M2 =

⎛
⎜⎜⎝

2 1 0 0
0 3 0 0
0 0 1 − ε 0
0 0 0 1 + ε

⎞
⎟⎟⎠ ,

in which ε ∈ R is small. For ε = 0, the two matrices have a common eigenmatrix:

E =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

If ε �= 0, E still nearly diagonalizes V1 and V2:

M1 · E = E · diag{[1 1 2 3]} + O(ε), M2 · E = E · diag{[2 3 1 1]} + O(ε).

On the other hand, for ε �= 0, the distinct eigenmatrices E1 and E2, of V1 and V2,
respectively, are not suitable for diagonalization of the other matrix:

M1 · E2 = E2 · diag{[1 1 2 3]} + O(1), M2 · E1 = E1 · diag{[2 3 1 1]} + O(1).

For a simultaneous EVD we have the following uniqueness theorem.
Theorem 6.1. For given matrices M1, M2, . . . , ML ∈ R

R×R, the simultaneous
decomposition

M1 = U · D1 · U−1,(6.1)

M2 = U · D2 · U−1,(6.2)

...

ML = U · DL · U−1,(6.3)

with U ∈ R
R×R nonsingular and D1, D2, . . . , DL ∈ R

R×R diagonal, is unique up to
a permutation and a scaling of the columns of U if and only if all the columns of the
matrix

D =

⎛
⎜⎜⎜⎝

(D1)11 (D1)22 . . . (D1)RR

(D2)11 (D2)22 . . . (D2)RR

...
(DL)11 (DL)22 . . . (DL)RR

⎞
⎟⎟⎟⎠

are distinct.
Proof. Consider Y = DT ·X, for X ∈ R

L. The ith and jth entry of Y are distinct
if X is not perpendicular to Di −Dj . Because Di �= Dj , the kernel of DT

i −DT
j is a

subspace of dimension L − 1. Let K be the union of the kernels for all i �= j and let
X̃ ∈ R

L \ K. The EVD of
∑

l x̃lMl is given by

∑
l

x̃lMl = U ·
(∑

l

x̃lDl

)
· U−1 = U · diag{DT · X̃} · U−1.

Because all eigenvalues are distinct, the eigenmatrix U is unique up to a permutation
and a scaling of its columns. On the other hand, if columns of D are equal, it
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is not possible to discriminate between different eigenvectors in the corresponding
eigenspace.

The equivalent for unitary diagonalization is given in [2].

Because of the link between (4.5)–(4.7) and (4.14)–(4.16), the CANDECOMP is
essentially unique when U(1) and U(2) are nonsingular and U(3) does not contain
collinear columns, as put forward in section 2.

Theorem 6.1 shows that a simultaneous EVD is much more robust than a single
EVD. It is well known that, when eigenvalues are close, the eigenvectors in a single
EVD may be strongly affected by small perturbations [30]. The reason is that for co-
inciding eigenvalues only the corresponding eigenspace is defined; different directions
in this subspace will emerge as eigenvectors for different infinitesimal perturbations.
When this happens for one or more of the matrices in a simultaneous EVD, the other
matrices may still allow to identify the actual eigenvectors. We may conclude that,
under the conditions of section 2, the CANDECOMP is likely to be stable.

Different permutations of the canonical components will correspond to entirely
different matrices Q and Z in the SGSD (5.1)–(5.3). However, these in turn lead to
different matrices R and R′′ such that, eventually, U(1) and U(2) are still subject
to the same indeterminacies. In other words, the uniqueness condition has not been
weakened by formulating the problem in terms of orthogonal unknowns Q, Z.

It is worth mentioning that, for arbitrary matrices V1, V2, . . . , VK (not satisfying
our CANDECOMP model), the uniqueness conditions of a S(G)SD are much more
severe. In general, only one sequence of (generalized) Schur vectors is possible. For
convenience, we will illustrate this only for the SSD (which, in our application, would
arise from substitution of the QR-factorization of U(1) in (4.14)–(4.16)). We have the
following theorem.

Theorem 6.2. Let the matrices M1, M2, . . . , ML ∈ R
R×R satisfy the SSD

M1 = Q · R1 · QT ,(6.4)

M2 = Q · R2 · QT ,(6.5)

...

ML = Q · RL · QT ,(6.6)

with Q = [Q1Q2 . . . QR] ∈ R
R×R orthogonal and R1, R2, . . . , RL ∈ R

R×R upper
triangular. An equivalent simultaneous decomposition, in terms of Q̃ and {R̃l}1�l�L,

in which the diagonal of (R̃l) subsequently contains (Rl)11, (Rl)22, . . . , (Rl)I−1,I−1,
(Rl)JJ , (Rl)I+1,I+1, . . . ,(Rl)J−1,J−1, (Rl)II , (Rl)J+1,J+1, . . . , (Rl)KK (1 � l � L),
exists if and only if the following matrix is rank deficient:⎛

⎜⎜⎜⎝
M1 − (R1)JJ I [Q1 . . . QI−1] 0 · · · 0
M2 − (R2)JJ I 0 [Q1 . . . QI−1] · · · 0

...
...

...
. . .

...
ML − (RL)JJ I 0 0 · · · [Q1 . . . QI−1]

⎞
⎟⎟⎟⎠ .(6.7)

Proof. Let us first answer the simple question of which diagonal entry could be
permuted to position (1, 1). There is a common eigenvector, other than Q1, if and
only if there exists a J > 1 such that all the equations

(Ml − (Rl)JJ I)X = 0, 1 � l � L,
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have a common solution. This is the condition specified by the theorem for I = 1.
One can verify that the upper triangular structure can be maintained for new matrices
R̃1, R̃2, . . . , R̃L and Q̃ when the entries at position (J, J) are permuted to position
(1, 1) and the old entries at positions (1, 1), (2, 2), . . . , (J − 1, J − 1) are shifted one
place down on the diagonal. (The strictly upper diagonal entries of rows 1 to J have
to be recomputed.)

In general, the entries at position (J, J) can be brought in Ith position if and only
if there exists a vector X �= 0 and scalars bli, 1 � l � L, 1 � i � I − 1, such that

(Ml − (Rl)JJ I)X =

I−1∑
i=1

bli Qi, 1 � l � L.

This is a set of homogeneous linear equations of which the unknowns are the coeffi-
cients of X and the scalars {bli}. The coefficient matrix is given by (6.7).

Moreover, for noisy data, different permutations of the canonical components will
lead to matrices Q, Z that yield different values of the cost function h defined in (5.6).

6.2. First-order perturbation analysis. To increase our understanding of the
stability of the SGSD, let us now conduct a first-order perturbation analysis.

Theorem 6.3. Consider the function g(Q,Z) in (5.4) and let the matrices
R1,R2, . . . ,RK be defined by (5.1)–(5.3). The gradients of g, with respect to Q and
Z, over the manifold of orthogonal matrices, are given by

∇Qg = 2 skew

(∑
k

upp(Rk)R
T
k

)
· Q,(6.8)

∇Zg = 2Z · skew

(∑
k

RT
k upp(Rk)

)
,(6.9)

in which skew(·) is the skew-symmetric and upp(·) the upper triangular part of a
matrix.

Proof. We will prove this result by resorting to the framework established in
[15, 22]. The gradient of g with respect to Q can be determined by assuming that Q
has a velocity Q̇ on the manifold of orthogonal matrices and expressing the evolution
of g:

ġ = 〈∇Q g, Q̇〉(6.10)

(see, e.g., [15, p. 48]; the formula corresponds to a chain rule for the derivation).
First we express the function g as

g(Q,Z) =
K∑

k=1

〈Q · Vk · Z,upp(Q · Vk · Z)〉.

Assuming that Q is time dependent, the derivative with respect to the time coordinate
is given by (taking into account that upp(·) is a linear operation)

ġ =

K∑
k=1

[〈Q̇ · Vk · Z,upp(Q · Vk · Z)〉 + 〈Q · Vk · Z,upp(Q̇ · Vk · Z)〉]

= 2

K∑
k=1

〈Q̇ · Vk · Z,upp(Q · Vk · Z)〉.
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With a property of the scalar product, we obtain

ġ = 2

K∑
k=1

〈Q̇,upp(Q · Vk · Z) · ZT · VT
k 〉.

The right term is proportional to the gradient of g over R
R×R. To ensure that Q

stays on the manifold of orthogonal matrices, we claim additionally that

Q̇ = Ω · Q,

in which Ω ∈ R
R×R is skew-symmetric [22, p. 307]. Now the inner product can be

written in the form of (6.10):

ġ = 2

K∑
k=1

〈Ω,upp(Q · Vk · Z) · ZT · VT
k · QT 〉

=

〈
Ω, 2

K∑
k=1

skew{upp(Q · Vk · Z) · ZT · VT
k · QT }

〉

=

〈
Ω · Q, 2

K∑
k=1

skew{upp(Q · Vk · Z) · ZT · VT
k · QT } · Q

〉
,

which proves (6.8). The gradient with respect to Z can be found in an analogous
way.

Theorem 6.4. Consider a first-order perturbation of the matrices in the SGSD
(5.1)–(5.3): Vk(ε) = Vk(0) + εBk (1 � k � K). As a first-order approximation, the
maximum of g(Q,Z) is then obtained for

Q(ε) = (I + εΛ + o(ε)) · Q(0),

Z(ε) = Z(0) · (I + εΩ + o(ε)),

in which Λ,Ω ∈ R
R×R are skew-symmetric matrices that satisfy the following set of

linear equations: ∑
k

lows(RkΩ + Ek + ΛRk) · RT
k = 0,(6.11)

∑
k

RT
k · lows(RkΩ + Ek + ΛRk) = 0,(6.12)

where lows(·) is the strictly lower triangular part of a matrix and

Ek = Q(0) · Bk · Z(0), 1 � k � K.

Proof. Again, we will work in the framework of [15, 22]. Let us start from (5.1)–
(5.3). If the matrices Ak have a velocity Ȧk = Bk, then Q evolves in such a way that
the identity ∇Qg ≡ 0 holds. Taking the form of the gradient (6.8) into account, we
should have that

skew

(∑
k

upp(Rk)R
T
k

)
≡ 0.(6.13)
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Taking the derivative with respect to the time coordinate yields

skew

(∑
k

upp(Q̇ · Ak · Z + Q · Ȧk · Z + Q · Ak · Ż)RT
k

+upp(Rk)(Ż
T · AT

k · QT + ZT · ȦT
k · QT + ZT · AT

k · Q̇T )

)
= 0.

To ensure that Q and Z stay on the manifold of orthogonal matrices, we claim that

Q̇ = Ω · Q,

Ż = Z · Λ,

in which Ω,Λ ∈ R
R×R are skew-symmetric. If (5.1)–(5.3) are exactly satisfied, then

upp(Rk) = Rk. Substitution of Ek = Q · Bk · Z then yields

skew

(∑
k

Rk · Ω · RT
k − upp(Rk · Ω) · RT

k + Ek · RT
k − upp(Ek) · RT

k

+Λ · Rk · RT
k − upp(Λ · Rk) · RT

k

)
= 0

or

skew

(∑
k

lows(RkΩ + Ek + ΛRk)R
T
k

)
= 0.

We may drop “skew” because its argument is strictly lower triangular. Equation
(6.12) is obtained by starting from the identity ∇Zg ≡ 0.

Remark 7. For matrices Ak that do not allow for an exact upper triangularization,
the derivation can be taken over provided that upp(Rk) is not simplified to Rk.

Remark 8. Note that the expressions derived in this section may be used to
develop routines for the computation of the SGSD by means of an optimization over
the (product of two) manifold(s) of orthogonal matrices. We refer to [22].

By the summation in (6.11) and (6.12) the perturbation is to some extent “aver-
aged” over the different matrices Ak. When components of Q and Z are ill conditioned
for a subset of {Ak}, this may be compensated by the other matrices.

7. Algorithms for the SGSD.

7.1. Extended QZ-iteration. For the actual computation of the SGSD, an ex-
tended QZ-iteration was proposed in [48]. One alternates between updates of Q and
Z in such a way that the cost function h in (5.6) is approximately optimized. In each
step, the estimate of Q (given Z, or vice-versa) is obtained as a product of matrices
H1H2 . . .HR−1, that form the equivalent of Householder matrices for the computation
of a simple QR-decomposition [24]. For instance, as far as Q is concerned, H1 max-
imally reduces (in least-squares sense) the below-diagonal norm of the first columns
of the instantaneous estimates of R1,R2, . . . ,RK . After multiplication with H1, H2

minimizes the below-diagonal norm of the second columns, without further affecting
the first rows, and so on. H1 is determined through an SVD of an (R × K)-matrix
(actually only the left singular vector corresponding to the largest singular value, and
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its orthogonal complement, have to be computed), the determination of H2 involves
an SVD of an ((R− 1) ×K)-matrix, and so on.

Because of the high computational cost, it makes sense to initialize the algorithm
with matrices Q(0) and Z(0) defined by two of the equations (5.1)–(5.3). If these two
joint decompositions are well conditioned, then Q(0) and Z(0) may be close to the
optimum; if not, then the extended QZ-iteration may involve more work than just a
fine tuning of a good initialization.

The resulting scheme is observed to find a good estimate of the global optimum in
a limited number of steps, if the CANDECOMP-model is exactly satisfied. However,
even moderate perturbations can cause the algorithm to end up in good estimates of
the theoretical matrices Q and Z that do not globally minimize the cost function. It
is also possible that at some point in the iteration (e.g., initially, or after approximate
convergence), the algorithm starts to increase the value of h. The reason for this
behavior is that the way in which Q and Z are computed does not imply monotonic
convergence in terms of h: for instance, it is possible that the matrix H1 increases the
Frobenius-norm of the part of columns 2 to R − 1 below the diagonal. Nevertheless,
these aspects do not seem to pose major problems in practice: over several hundreds
of simulations, we have only once obtained a meaningless result.

7.2. Jacobi iteration. In [17, 18] we derived a Jacobi-type algorithm for the
computation of the SGSD. Here, Q and Z are found as a sequence of elementary
Jacobi-rotation matrices. In a step (i, j), Q and Z are multiplied by elementary
rotation matrices, affecting rows and columns i and j. These rotation matrices are
such that they maximize the function g in (5.4). It turns out that the determination
of a Jacobi-rotation pair basically amounts to rooting a polynomial of degree 8. One
sweeps over all the possible pairs (i, j), and then iterates over such sweeps.

The iteration can be initialized with matrices Q(0) and Z(0), obtained from the
generalized Schur decomposition corresponding to two of the equations in (5.1)–

(5.3) [24]. Assume that at iteration step l + 1, the estimates Q(l), Z(l), and R
(l)
1 , . . . ,

R
(l)
K are available. Let Gij ∈ R

R×R represent an elementary Givens rotation matrix
that affects rows i and j, i.e., Gij equals the identity matrix, except for the entries

(Gij)ii = (Gij)jj = cosα,

(Gij)ji = −(Gij)ij = sinα,

in which α is the rotation angle (assume that j > i). An update of Q(l) takes
the form of Q(l+1) = Gij · Q(l). Similarly, an update of Z(l) takes the form of

Z(l+1) = Z(l) ·G′
ij

T
, where the Givens rotation matrix G′

ij is defined in the same way

as Gij , in terms of an angle β. At the same time R
(l)
1 ,R

(l)
2 , . . . ,R

(l)
K are updated as

R
(l+1)
1 = Gij ·R(l)

1 ·G′
ij

T
, R

(l+1)
2 = Gij ·R(l)

2 ·G′
ij

T
, . . . , R

(l+1)
K = Gij ·RK

(l) ·G′
ij

T
.

At iteration step l, the maximization of the function g in (5.4) is equivalent to
the minimization of

h(α, β) =

K∑
k=1

[
(R

(l+1)
k )2ji +

j−1∑
r=i+1

((R
(l+1)
k )2ri + (R

(l+1)
k )2jr)

]
(7.1)

(the other entries do not affect the norm of the strictly lower diagonal parts). The
function h is given in explicit form by

h(α, β) =

K∑
k=1

5∑
n=1

hkn(α, β),(7.2)
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in which

hk1(α, β) = sin2 α

×[cos2 β (R
(l)
k )2ii + sin2 β (R

(l)
k )2ij − 2 sinβ cosβ (R

(l)
k )ii(R

(l)
k )ij ],(7.3)

hk2(α, β) = 2 sinα cosα
{

cos2 β (R
(l)
k )ii(R

(l)
k )ji + sin2 β (R

(l)
k )ij(R

(l)
k )jj

− sinβ cosβ [(R
(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]

}
,(7.4)

hk3(α, β) = cos2 α

×[cos2 β (R
(l)
k )2ji + sin2 β (R

(l)
k )2jj − 2 sinβ cosβ (R

(l)
k )ji(R

(l)
k )jj ],(7.5)

hk4(α, β) = (sin2 α + cos2 α)

×
j−1∑

r=i+1

[cos2 β (R
(l)
k )2ri + sin2 β (R

(l)
k )2rj − 2 sinβ cosβ (R

(l)
k )ri(R

(l)
k )rj ],(7.6)

hk5(α, β) = (sin2 β + cos2 β)

×
j−1∑

r=i+1

[cos2 α (R
(l)
k )2jr + sin2 α (R

(l)
k )2ir + 2 sinα cosα (R

(l)
k )ir(R

(l)
k )jr].(7.7)

Setting the partial derivatives of h, with respect to α and β, equal to zero, leads to a
set of biquadratic equations in tanα and tanβ:

b1(β) tan2 α + b2(β) tanα− b1(β) = 0,(7.8)

b3(β) tan2 α + b4(β) tanα + b5(β) = 0,(7.9)

in which bn(β) =
∑K

k=1 bkn(β), with

bk1(β) = tan2 β

{
(R

(l)
k )2ij − (R

(l)
k )2jj +

j−1∑
r=i+1

[(R
(l)
k )2ir − (R

(l)
k )2jr]

}

+2 tanβ [(R
(l)
k )ji(R

(l)
k )jj − (R

(l)
k )ii(R

(l)
k )ij ]

+

{
(R

(l)
k )2ii − (R

(l)
k )2ji +

j−1∑
r=i+1

[(R
(l)
k )2ir − (R

(l)
k )2jr]

}
,(7.10)

bk2(β) = tan2 β

[
(R

(l)
k )ij(R

(l)
k )jj +

j−1∑
r=i+1

(R
(l)
k )ir(R

(l)
k )jr

]

− tanβ [(R
(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]

+

[
(R

(l)
k )ii(R

(l)
k )ji +

j−1∑
r=i+1

(R
(l)
k )ir(R

(l)
k )jr

]
,(7.11)

bk3(β) = (tan2 β − 1)

[
(R

(l)
k )ii(R

(l)
k )ij +

j−1∑
r=i+1

(R
(l)
k )ri(R

(l)
k )jr

]

+ tanβ

{
(R

(l)
k )2ij − (R

(l)
k )2ii +

j−1∑
r=i+1

[(R
(l)
k )2rj − (R

(l)
k )2ri]

}
,(7.12)

bk4(β) = (tan2 β − 1) [(R
(l)
k )ij(R

(l)
k )ji + (R

(l)
k )ii(R

(l)
k )jj ]
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+2 tanβ [(R
(l)
k )ij(R

(l)
k )jj − (R

(l)
k )ii(R

(l)
k )ji],(7.13)

bk5(β) = (tan2 β − 1)

[
(R

(l)
k )ji(R

(l)
k )jj +

j−1∑
r=i+1

(R
(l)
k )ri(R

(l)
k )rj

]

+ tanβ

{
(R

(l)
k )2jj − (R

(l)
k )2ji +

j−1∑
r=i+1

[(R
(l)
k )2rj − (R

(l)
k )2ri]

}
.(7.14)

The global minimum of h(α, β) can be determined by computing the various solutions
of (7.8)–(7.9) and selecting the one corresponding to the smallest value in (7.2).

For the solution of the set of biquadratic equations, let us first consider the special
case where (7.8) is linear in tanα: b1(β) = 0. The only ways in which a root β0 of
b1 can lead to a solution of (7.8)–(7.9) are (a) tanα = 0 and additionally b5(β0) = 0
and (b) α is a solution of (7.9), for β = β0, which additionally satisfies b2(β0) = 0.

Now let us investigate the general case, i.e., b1(β) �= 0. Substitution of the square
roots of (7.8) in (7.9) (considered as quadratic expressions in the unknown tanα) then
leads to the following polynomial of degree 8 in tanβ:

b21(β)b23(β) + b21(β)b25(β) − b1(β)b2(β)b4(β)b5(β) + 2b21(β)b3(β)b5(β)

+ b22(β)b3(β)b5(β) − b21(β)b24(β) + b1(β)b2(β)b3(β)b4(β) = 0.(7.15)

For the roots of this polynomial, the corresponding value of tanα that gives a solution
to (7.8)–(7.9), can be found from

(b2(β)b3(β) − b1(β)b4(β)) tanα− b1(β)(b3(β) + b5(β)) = 0.(7.16)

The computational cost is in line with results obtained for other simultaneous
matrix decompositions. A Jacobi-rotation for a simultaneous real symmetric EVD
can be computed by rooting a polynomial of degree 2 [8, 9]. For an SSD (Q = Z),
polynomials are of degree 4 [25].

The Jacobi-result is an explicit solution for the CANDECOMP of rank-2 tensors.
Apart from this result, a Jacobi-sweep is more expensive than an extended QZ-step
if not min{R,K} 
 8.

If the simultaneous equivalence transformation of (4.5)–(4.7) is not exactly sat-
isfied, different permutations of the CANDECOMP components may cause the cor-
responding orthogonal factors Q and Z to yield values of the function g that are
somewhat different. There is no guarantee that the Jacobi-algorithm will converge
to the solution with that specific column ordering that leads to the global optimum.
Apart from the reordering of columns, there is no formal evidence that the two-sided
Jacobi-algorithm cannot get stuck in a local optimum; local or global convergence is
still an open problem for the computation of other simultaneous matrix decomposi-
tions as well [4, 8, 9, 12, 23, 48]. We have not observed convergence to a local optimum
in any of our simulations for the unsymmetric CANDECOMP-problem. For the case
where U(1) = U(2), a meaningless result has been obtained for one out of hundreds
of simulations. In this odd case, the problem could be overcome by reinitializing the
algorithm.

8. Estimation of the canonical components from the components of
the SGSD. In this section we will explain how the matrices U(1) and U(2) can be
estimated, once Q and Z are known. How U(3) may subsequently be estimated was
explained in section 4. This corresponds to step 4 in Algorithm 1. Computation of
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the SGSD is in general only equivalent to least-squares fitting of the CANDECOMP-
model if that model is exactly valid. The estimates obtained so far may then be used
to initialize an additional optimization algorithm for the minimization of cost function
(2.3), as also mentioned in section 4 (step 5 in Algorithm 1).

In [48] a procedure has been proposed that works under the assumption that the
columns of U(3) are linearly independent (and sufficiently well conditioned). Hence
this technique can be used only when K � R. The solution is obtained via the
computation of the pseudoinverse of a (K ×R) matrix and the estimation of the best
rank-1 approximation of R (R×R) matrices.

We will derive a new technique that works under the assumptions established
in section 2. This technique is also computationally less demanding. It essentially
requires solving R(R−1)/2 overdetermined sets of K linear equations in 2 unknowns.

We will estimate R′ and R′′ from (5.1)–(5.3) and then combine them with Q
and Z to obtain U(1) and U(2). If we assume that the main diagonals of R′ and R′′

contain only entries equal to 1 (we can make this assumption because the columns of
U(1) and U(2) can be determined only up to a scaling factor), then Dk = diag{Rk}
(1 � k � K), in which diag{·} now denotes the diagonal part of a matrix. The strictly
upper diagonal elements of R′ and R′′ can be estimated by subsequently solving in a
least-squares sense the equations related to the entries of {Rk}(1�k�K) at positions
(R− 1, R), (R− 2, R− 1), (R− 2, R), . . . , (1, 2), (1, 3), . . . , (1, R) in (5.1)–(5.3) with
respect to the unknowns r′R−1,R and r′′R−1,R, r′R−2,R−1 and r′′R−2,R−1, r′R−2,R, and
r′′R−2,R, . . . , r′1,2 and r′′1,2, r

′
1,3 and r′′1,3, . . . , r′1,R and r′′1,R, respectively. For instance,

with the entries at position (R− 1, R) corresponds the equation

⎛
⎜⎜⎜⎝

(R1)R,R (R1)R−1,R−1

(R2)R,R (R2)R−1,R−1

...
...

(RK)R,R (RK)R−1,R−1

⎞
⎟⎟⎟⎠

(
r′R−1,R

r′′R−1,R

)
=

⎛
⎜⎜⎜⎝

(R1)R−1,R

(R2)R−1,R

...
(RK)R−1,R

⎞
⎟⎟⎟⎠ .

Note that, according to the third working assumption made in section 2, the columns
of the matrix on the left-hand side of this equation should be linearly independent.

For the computation of U(3), remark that (4.5)–(4.7) correspond to a CANDE-
COMP of a tensor V ∈ R

R×R×K , with entries vijk = (Vk)ij , of which the component

matrices are U(1), U(2) and the matrix Ũ(3) defined in (4.8). Let V(R2×K) ∈ R
R2×K ,

with entries

(V(R2×K))(i−1)R+j,k = (Vk)ij ,

be a matrix representation of V. (4.5)–(4.7) can be reformulated as

V(R2×K) = (U(1) � U(2)) · Ũ(3)T .(8.1)

Ũ(3) can be computed from this (possibly overdetermined) set of linear equations.
Finally, U(3) follows from (4.9).

To conclude, let us give an outline of the computation of U(1), U(2), and U(3)

from the results of the SGSD (5.1)–(5.3). This scheme details step 4 in Algorithm 1.

4.1 Computation of R′ and R′′.
Set diag{R′} = diag{R′′} = I.
for i = R− 1, R− 2, . . . , 1
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for j = i + 1, i + 2, . . . , R

⎛
⎜⎜⎜⎝

(R1)jj (R1)ii
(R2)jj (R2)ii

...
...

(RK)jj (RK)ii

⎞
⎟⎟⎟⎠

(
r′ij
r′′ij

)
=

⎛
⎜⎜⎜⎜⎝

(R1)ij −
∑j−1

p=i+1 r
′
ip (R1)pp r

′′
pj

(R2)ij −
∑j−1

p=i+1 r
′
ip (R2)pp r

′′
pj

...

(RK)ij −
∑j−1

p=i+1 r
′
ip (RK)pp r

′′
pj

⎞
⎟⎟⎟⎟⎠

end
end

4.2 U(1) = QT · R′. U(2) = Z · (R′′)T .
4.3 Compute Ũ(3) from (8.1). Compute U(3), modulo a scaling of its columns,

from (4.9).

9. Numerical experiments. In this section we illustrate the performance of the
algorithms proposed in this paper by means of a number of numerical experiments.
These experiments are helpful to understand and evaluate the different methods, given
that a rigorous mathematical analysis of their convergence properties often proves to
be extremely tough (as is witnessed by the fact that only very few related results are
available [4, 50]).

In a first series of experiments we will compare the accuracy of both techniques
presented in section 7 and check whether an additional direct optimization of the cost
function f , defined in (2.3), is needed (step 5 in Algorithm 1). We will also show that
the extended QZ-iteration is not simply based on the minimization of cost function
h, defined in (5.6).

Tensors A ∈ R
3×3×3, of which the canonical components will afterwards be esti-

mated, are generated in the following way:

A = Ã/‖Ã‖ + σN Ñ/‖Ñ ‖,(9.1)

in which Ã exactly satisfies the CANDECOMP-model:

Ã = U
(1)
1 ◦ U (2)

1 ◦ U (3)
1 + U

(1)
2 ◦ U (2)

2 ◦ U (3)
2 + U

(1)
3 ◦ U (2)

3 ◦ U (3)
3 .(9.2)

The components in (9.1)–(9.2) are generated as follows. First consider the (3 × 3)-
matrices U(1), U(2), and U(3), defined by (4.3). The entries of 3 (3× 3)-matrices are
randomly taken from a uniform distribution on the interval [0, 1). U(2) and U(3) are
derived from two of these matrices by replacing their singular values by 3, 2, 1, while
keeping the singular vectors. U(1) is generated in the same way but three different sets
of singular values will be considered: 3, 2, 1; 30, 15, 1; 100, 50, 1. The entries of Ñ
are drawn from a zero-mean unit-variance Gaussian distribution. For each particular
choice of U(1), U(2), U(3), and Ñ , the scalar σN is varied between 1e− 3 and 1.

For each of the sets of singular values of U(1), 50 independent samples of Ã are
realized; for each of them 7 logarithmically equidistant values of σN are considered.
In each Monte Carlo simulation the following algorithms are run: (a) the Jacobi-
algorithm, discussed in section 7.2; (b) a least-squares matching of both sides of (2.3),
for which the leastsq command of the Optimization Toolbox 1.0 of MATLAB 4.2 has
been used, initialized with the result of (a); and (c) the extended QZ-iteration, de-
scribed in section 7.1. The algorithm (a) is terminated if a full sweep no longer allows
the reduction of the cost function h(Q,Z) with at least 0.01%. The same termination
criterion is used for a Q-step followed by a Z-step in the extended QZ-iteration. For
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the least-squares matching (b) a minimal precision of 1e− 5 for the optimal values of
the cost function f , defined in (2.3), and the corresponding components is presumed;
the MATLAB routine maximally performs 2100 iteration steps.

To evaluate the accuracy of the different algorithms we will consider the quality
of the estimate Û(1) of U(1); at this point the columns of U(1) are normalized to
unit-length. In Figure 9.1 the error is plotted as a function of the noise level σN .
For a given noise level and a given algorithm, this error measure has been computed
as the average, over the different Monte Carlo simulations, of the Frobenius-norm
‖Û(1) − U(1)‖; the ordering of the columns of Û(1) that corresponds to the ordering
of the columns of U(1), has been determined as the ordering that minimizes the error;
we also scale the columns of Û(1) in the optimal way. Algorithms (a), (b), and (c)
correspond to solid, dotted, and dash-dot curves, respectively. The upper, middle,
and lower curves correspond to a condition number of U(1), equal to 100, 30 and 3,
respectively.
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Fig. 9.1. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the Jacobi-
algorithm (solid), with additional least-squares matching (dotted) and the extended QZ-algorithm
(dashdot). The upper, middle, and lower curves correspond to a condition number κ of U(1), equal
to 100, 30, and 3, respectively.

Figure 9.1 displays the expected performance degradation as the noise level and/or
the condition number of U(1) increases. The number of simulations is high enough
to give a good picture: the variance of the error, divided by its squared value ranges
from at least 4e− 6 (σN = 1e− 3) to typically 2.5e− 2 (σN = 1). We notice that on
the average, the accuracy of methods (a) and (c) is comparable. The figure also shows
that an additional least-squares matching routine generally improved the accuracy,
but that the marginal improvement became smaller as the CANDECOMP factors
were better conditioned. For well-conditioned problems, no direct optimization of f
is needed.

In Figure 9.2 we have plotted the mean value of the cost function h in (5.6) for the
algorithms (a) and (c). The figure shows that the extended QZ-iteration indeed does
not minimize cost function h; this effect is more outspoken as the condition number
of U(1) is larger. On the other hand, it is clear from the discussion in section 7.1 that,
in the absence of noise, the theoretical solution is a stationary point of the extended
QZ-algorithm; in Figure 9.1 we see that the algorithm was still reliable in the presence
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Fig. 9.2. The mean value of h, defined in (5.6), as a function of the noise level σN , for the
Jacobi-algorithm (solid) and the extended QZ-algorithm (dashdot). The upper, middle, and lower
curves correspond to a condition number κ of U(1), equal to 100, 30, and 3, respectively.

of noise.

In a second series of experiments we illustrate the convergence behavior of meth-
ods (a) and (c). For each of the sets of singular values of U(1) (3, 2, 1; 30, 15, 1; 100,
50, 1), 100 independent samples of A are realized as before, with σN = 0. The differ-
ent algorithms are now terminated if the instantaneous value of h has been reduced
below 1e− 14.

In Figure 9.3 we have plotted the average evolution of the value of h as a function
of the iteration step l (for the scenarios with condition number κ = 3, 30, 100) and for
algorithm (a) (only with condition number κ = 3, as will be motivated immediately).
For these curves, the convergence speed is quasi-linear. The curves for the extended
QZ-iteration have only been marginally affected by the chosen value of κ. On the
other hand, it makes less sense to plot an average curve for the Jacobi-method in the
cases where κ = 30 or 100, as the results can be strongly data-dependent. Namely,
the convergence is still good in most cases, but for some particular instances of A,
the algorithm is observed to move through a swamp: apparently, like ALS iterations,
Jacobi-iterations can be affected by swamps, although for well-conditioned problems
they seem to form a minor issue. The extended QZ-algorithm appears to be less
vulnerable, as the typical swamp behavior has only been observed for one instance
of A (κ = 100). Rather than plotting the remaining mean convergence curves, we
show in a histogram how many iterations were needed to terminate the algorithm
in the different Monte Carlo simulations, for the various set-ups (see Figure 9.4,
in which we have taken as a convention that experiments in which more than 100
iterations were needed, are added to the final histogram bin). Concerning Figures 9.3
and 9.4, we finally remark that for 5 instances of A, the extended QZ-algorithm
was observed to start by increasing the value of h to some extent, before actual
convergence.

With respect to Figure 9.4 we conclude that for good condition numbers, the
Jacobi-algorithm requires less iterations than the extended QZ-iteration. However,
when the condition number increases, the risk increases that the Jacobi-algorithm
requires a higher number of iterations. In this respect, we should also keep in mind
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Fig. 9.3. The evolution of h, defined in (5.6), as a function of the iteration step l, for the
Jacobi-algorithm (solid) and the extended QZ-algorithm (dashdot). The parameter κ is the condition
number of U(1).
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Fig. 9.4. Histogram of 100 Monte Carlo simulations, showing the number of iterations required
to reduce the value of h (see (5.6)) below 1e−14, for methods (a) (Jacobi-algorithm) and (c)(extended
QZ-algorithm), and a condition number κ of U(1), equal to 3, 30, or 100. Experiments in which
more than 100 iterations were needed have been added to the final histogram bin.

that for small tensors the computational complexity of a Jacobi-iteration step is higher
than that of an extended QZ-iteration step; for larger tensor sizes, the extended QZ-
iteration steps are more complex (as is clear from the discussion in section 7).

Figure 9.5 is an example of an ALS iteration moving through a “swamp.” After 5
iterations the convergence speed becomes almost equal to zero, and after 70 iterations
it starts to increase again. It is clear that tolerances have to be set very tight in order
to reach the global optimum. This type of convergence is not uncommon. The figure
was obtained for a (2 × 2 × 4) tensor of the form (9.1), with the condition numbers
of U(1), U(2), and U(3) equal to 2 and σN = 1e − 2. Note that in this case (7.15)
provides an explicit expression for the solution.

In the following experiment we will compare the performance of the simultaneous
generalized Schur approach with other techniques. In each of 50 Monte Carlo runs,
a tensor A ∈ R

2×2×10 of the form (9.1) is generated. The singular values of U(2) are
taken equal to 2, 1. For U(1) three different sets of singular values are considered:
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Fig. 9.5. Example of a “swamp”-type convergence curve for ALS iterations. f is the cost
function defined in (2.3) and l the iteration step.

2,1; 10,1; 100,1. The entries of U(3) are generated as u
(3)
ij = 1 + gij/50, in which gij

is drawn from a Gaussian distribution with unit variance. For each particular choice
of U(1), U(2), U(3), and Ñ , the scalar σN is varied between 1e − 4 and 1e − 2. In
this way, σN ranges from a level where the eigenvalues in (4.10) are subject only to a
small perturbation to a level where there is a certain risk that these eigenvalues have
crossed each other.

In Figure 9.6 we compare the mean value of ‖Û(1)−U(1)‖ obtained with a SGSD
to the one obtained from the EVD of the matrix V2 · V−1

1 (cf. [38, 43, 5, 42]). It
is clear that the SGSD is more accurate than a single EVD, because it takes all the
matrices Vk into account. However, the technique is more sensitive to the condition
number of U(1). In the case of an ill-conditioned matrix U(1), the performance may
considerably degrade when the noise level is high; as such, this effect cannot be
examined by means of the first-order perturbation analysis in section 6. Note that
the EVD may yield complex eigenvalues and eigenvectors for low signal-to-noise ratios.
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Fig. 9.6. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the SGSD
(solid) and for a single EVD (dashed). The condition number κ of U(1) is equal to 2 (◦), 10 (×),
or 100 (+).
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Fig. 9.7. The mean value of ‖Û(1) −U(1)‖, as a function of the noise level σN , for the SGSD,
followed by an ALS iteration (solid) and for an EVD followed by an ALS iteration (dashed). The
condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).

In Figure 9.7 we display the accuracy obtained when the results of Figure 9.6 are
used to initialize an ALS routine. The iteration was terminated when∥∥∥∥∥∥∥

⎛
⎜⎝ Û

(1)
k+1

Û
(2)
k+1

Û
(3)
k+1

⎞
⎟⎠−

⎛
⎜⎝ Û

(1)
k

Û
(2)
k

Û
(3)
k

⎞
⎟⎠
∥∥∥∥∥∥∥ < 1e− 4,

in which Û
(i)
k is the estimate of U(i) at iteration step k. We see that, even after

an ALS iteration, the EVD approach remains less accurate than the simultaneous
generalized Schur approach. In additional simulations we observed that this is less
the case when U(3) is better conditioned.

In Figure 9.8 we put the result obtained by the SGSD and the enhanced result
obtained by an extra ALS iteration next to each other. It turns out that the perfor-
mance degradation that is linked to a bad condition number of U(1) (as mentioned
in the discussion of Figure 9.6), can be mitigated by an additional ALS iteration. If
there is no such problem, then an extra ALS iteration is not required.

In Figure 9.9 we compare the ALS-enhanced SGSD result to the best result ob-
tained by ALS iteration, starting from 10 random initializations. Remarkably enough,
ALS gives better results when the condition number of U(1) increases. The SGSD
turns out to be more accurate than the direct ALS approach. In additional simula-
tions we observed that the difference in performance decreases when U(3) is better
conditioned.

In Figure 9.10 we plot the total CPU time, over 50 Monte Carlo runs and 10
random initializations per run, required by the ALS routine. Analysis of the data
showed that, for a given value of κ and σN , not more than 2 out of 3 initializations
led to an estimation error ‖Û(1) −U(1)‖ that was more than twice its minimal value
over all runs and initializations. This ratio depended little on the particular value
of κ and σN . This means that we actually did not have to start from 10 random
initializations; 5 initializations would have been sufficient and the computational cost
can be divided by two. Nevertheless, this remains much more expensive than a SGSD
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Fig. 9.8. The mean value of ‖Û(1) − U(1)‖, as a function of the noise level σN , obtained by
the SGSD (solid), and by a subsequent ALS iteration (dashed). The condition number κ of U(1) is
equal to 2 (◦), 10 (×), or 100 (+).
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Fig. 9.9. The mean value of ‖Û(1) − U(1)‖, as a function of the noise level σN , for the
ALS-enhanced SGSD (solid) and direct ALS starting from 10 random initializations (dashed). The
condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).

(overall CPU time approximately 1 s, independent of κ and σN ) or a simple EVD
(CPU time in the order of magnitude of 1e − 2 s) (the latter merely consists of
MATLAB’s function eig applied to a (2 × 2) matrix).

Figure 9.11 shows the CPU time required by the ALS iteration that was initialized
by means of the SGSD or the EVD. Fewer computations were needed for the SGSD.
The figure also shows that each of these two special initializations led to fewer ALS
iterations than an average random start.

Whenever in this section we have used ALS iterations for the optimization of cost
function f , we have also tried the general-purpose Levenberg–Marquardt algorithm
[39] (we used the command lsqnonlin of the Optimization Toolbox 2.0 of MATLAB
5.3). In the last series of experiments, Levenberg–Marquardt gave consistently much
less accurate results than ALS, even when the tolerance on the value of f was set as
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Fig. 9.10. Total CPU time, over 50 Monte Carlo runs and 10 random initializations per run,
required by the ALS routine. The condition number κ of U(1) is equal to 2 (◦), 10 (×), or 100 (+).
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Fig. 9.11. Total CPU time, over 50 Monte Carlo runs, required by the ALS iteration following
a SGSD (solid) or a single EVD (dashed). The condition number κ of U(1) is equal to 2 (◦), 10
(×), or 100 (+).

sharp as 1e−10. For well-conditioned problems, the accuracy of Levenberg–Marquardt
and ALS may be comparable. However, in this case, Levenberg–Marquardt is typically
an order of magnitude more expensive than ALS.

Finally, we have applied Algorithm 1 to a real-life dataset. It concerns a real-
valued (5× 10× 13)-tensor representing the displacements of 13 points of the tongue
of 5 test persons while pronouncing 10 vowels. A detailed description of these data
and their analysis by means of a CANDECOMP can be found in [29]. The dataset
can be downloaded from [21].

First, we observed that the two dominant 1-mode, 2-mode, and 3-mode singu-
lar values [19] explain 94.5%, 95.4%, and 96.0%, respectively, of the “energy” in the
dataset. Therefore we performed a dimensionality reduction by calculating the best
rank-(2, 2, 2) approximation of the data tensor before starting the actual CANDE-
COMP computations, as explained in section 3. The approximation was obtained by
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means of a higher-order orthogonal iteration, initialized with the truncated HOSVD
[20]. The stop criterion consisted of checking if the adjustment of each of the compo-
nent matrices in an iteration step was below 1e− 4 (Frobenius-norm). The algorithm
converged in 5 steps. The approximation contained 92.6% of the energy.

Next, we looked for the least-squares approximation of the (2×2×2)-core tensor by
a sum of two rank-1 components. We resorted to the Jacobi-technique of section 7.2,
in which the solution was found by rooting a polynomial of degree 8. The error of the
fit was in the order of the numerical accuracy of MATLAB. Backtransformation to
the original dimensionality by multiplication with the best rank-(2, 2, 2) components
yielded the best rank-2 approximation of the original dataset. Further enhancement by
an additional minimization of cost function (2.3) was not possible (step 5 in Algorithm
1); otherwise, the rank-(2, 2, 2) approximation would not have been optimal or the
core tensor would not have been rank-2.

The cosine of the angle in R
5×10×13 between the original data tensor and its rank-

2 approximation was equal to 0.962, which was even slightly better than the result
of [29] (0.956); the latter result had been obtained by repeating ALS iterations for
different rank estimates and different starting values, and cross-examining the results.
On a SUN Ultra 2 Sparc and using MATLAB 4.2c, our computations took 0.2+0.04s
of CPU-time, which was a drastic improvement [37].

10. Conclusion. In this paper we have investigated the computation of the
CANDECOMP, under the assumptions made in section 2. Currently, the calculation
of the factors mostly takes the form of an ALS descent algorithm, possibly initialized
with an estimate obtained by a matrix EVD. For well-conditioned problems ALS it-
erations are reliable. However, for some ill-conditioned problems the results are less
satisfactory. In this paper the CANDECOMP is computed via a simultaneous diag-
onalization, by equivalence or congruence, of a set of matrices. Since we take all the
available information into account, this is numerically more reliable than the calcula-
tion of a single EVD. Diagonalization by a simultaneous congruence transformation
was encountered as well in the derivation of an analytical constant modulus algo-
rithm [48], where it was translated into a SGSD and subsequently solved by means of
an extended QZ-iteration scheme. In this paper, we have also proposed a Jacobi-type
algorithm. In this context we have derived the explicit solution for the case of rank-2
tensors. The behavior of the different algorithms was illustrated and their perfor-
mance compared by means of some numerical experiments. In this paper we have
also studied necessary and sufficient conditions for the uniqueness of some simultane-
ous matrix decompositions; in addition, we have performed a first-order perturbation
analysis of the SGSD.

Acknowledgment. The authors wish to thank Dr. J. Dehaene (K.U.Leuven)
for explaining the basic principles underlying the derivation in section 6.2.
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