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In this paper we assume that the soures are non-irular. Non-irularity at order 2 is dealt with in Se-tion 2; it applies to, e.g., BPSK onstellations. Non-irularity at order 4 is dealt with in Setion 4; it ap-plies to, e.g., QAM4 and QAM16 onstellations. Onthe other hand, it is natural to assume that the noise isirular (e.g. Gaussian).In what follows, �T denotes the transpose, �� the om-plex onjugate and �H the Hermitian adjoint.2 SECOND-ORDER ANALYSISLet us de�ne C(1;1)Y def= EfY Y Hg and C(2;0)Y def= EfY Y T g.We haveC(1;1)Y = M �C(1;1)X �MH +C(1;1)N ; (2)C(2;0)Y = M �C(2;0)X �MT ; (3)in whih, due to the mutual statistial independeneof the soures, C(1;1)X = diagf�21 ; : : : ; �2Ig, with �2i =Efjxij2g, and C(2;0)X = diagf~�21 ; : : : ; ~�2Ig, with ~�2i =Efx2i g. We take �i 2 R+ . In this setion we makethe assumption that at most one of the entries of C(2;0)Xvanishes. Note that, unlike (2), (3) does not ontain anoise term.The mixing matrix an only be determined modulo apermutation and saling of its olumns. In the equiva-lene lass we may onsiderM0 def= M � diagf�1ei�1 ; : : : ; �Iei�Ig; (4)with �i de�ned by ~�2i = j~�ij2ei2�i . Let a Singular ValueDeomposition (SVD) of M0 be given byM0 = U � S �V; (5)in whih U 2 C J�I has orthonormal olumns, S 2 RI�Iis positive diagonal, and V 2 C I�I is unitary. Then Uand S an be found from an EVD of C(1;1)Y :C(1;1)Y = U � S2 �UH (6)(negleting the noise term, for larity; if J > I and thenoise is spatially white, then the noise variane may be
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estimated as the mean of the J � I smallest eigenvaluesof C(1;1)Y , and the noise term may be ompensated bysubtrating this value from the I biggest eigenvalues, asis well-known). Substituting these results in (3) leads toS�1 �UH �C(2;0)Y �U� � S�1 =V � diagf j~�1j2�21 ; : : : ; j~�I j2�2I g �VT ; (7)whih is a Takagi fatorization [9℄:Theorem 1 If A 2 C I�I is symmetri (A = AT ), thenthere exists a unitary E and a real nonnegative diago-nal � suh that A = E�ET . The olumns of E arean orthonormal set of eigenvetors for AA�, and theorresponding diagonal entries of � are the nonnegativesquare roots of the orresponding eigenvalues of AA�.Let us �rst onsider the hypothetial situation inwhih all the values j~�ij=�i are distint. In this ase Van be uniquely determined, up to the sign of its rows,so that we don't need Higher-Order Statistis (HOS) tosolve the problem. However, perturbations of a matrixmay result in signi�ant hanges of eigenvetors, whenthe orresponding eigenvalues are lose. In this respet,it may be wise to resort to HOS anyway, to obtain ex-tra onstraints on the mixing matrix. For instane, it islear that, by embedding (7) in a joint diagonalization(JODI), like we will do in Setion 4, the estimation ofV beomes more robust, f. [2℄.Now let us turn to the more ommon situation inwhih all the soures have the same distribution. It isstill possible to extrat useful information from C(2;0)Y .The key is that, whenAA� in the Takagi fatorizationtheorem has an eigenvalue with multipliity greater than1, not every orthonormal set of orresponding eigenve-tors an be used for the orresponding olumns of E.Assume that �2 is an eigenvalue of AA� with multipli-ity R 6 I , that we have the EVDAA� = (E1E2) � � �2I �22 � �� EH1EH2 � (8)with the obvious partitioning, and that a Takagi fator-ization of A is given byA = (E1E2) �� �I �2 � �� ET1ET2 � : (9)In (8), E1 may be replaed by E1Q, in whihQ 2 C R�Ris unitary, i.e., QQH = I. If we replae E1 in (9) byE1Q, then this gives only a fatorization of A whenQQT = I. Hene, Q = Q�, or Q an only be a realorthogonal matrix.This means that, when the soures are identially dis-tributed, V an be found from (7) up to a real orthog-onal fator. This fator has to be estimated from theHOS of Y . The fat that the fator is real, drastiallyredues the omputational omplexity | f. [1, 3, 6℄.

Note that in this way, half of the independent parame-ters of V are obtained from C(2;0)Y , and the other halffrom the HOS of Y .Instead of alulating C(1;1)Y expliitly, it is numer-ially preferable to work via the SVD of the dataset,suh that the singular values are not squared. For asquare-root version of (7) we may resort to the follow-ing theorem:Theorem 2 A matrix A 2 C I�T may be deomposed asA = USVT , with U 2 C I�I unitary, S 2 RI�T diago-nal ontaining R stritly positive entries and V 2 C T�Tomplex orthogonal (i.e., VTV = I) i� rank(AAT ) =rank(A) = R.This theorem an be proved in analogy with the SVDtheorem. Note that VTV does not prevent the entriesof V from being big, whih is a numerial disadvantage.Due to lak of spae, we will not disuss proedures forthe omputation of the deomposition.3 JACOBI ALGORITHM FOR TAKAGI'SFACTORIZATIONThe omponents of the Takagi fatorization of a matrixA an be derived from an EVD of AA�; however, thisapproah has the numerial disadvantage that the on-dition number is squared. In this setion we will workdiretly on A. We propose a Jaobi-type algorithm forthe alulation of the deomposition; as far as we know,this has not appeared in the literature yet. The deriva-tion is analogous to that of its Hermitian EVD ounter-part [8℄.By left multipliation of A with a Jaobi-rotation af-feting rows p and q, and right multipliation with itstranspose, the Frobenius-norm of the (o�-)diagonal partof A an only be hanged through the transformationof the entries app, apq and aqq . Let us represent theJaobi-rotation byJ = � os� � sin� ej�sin� e�j� os� � : (10)The o�-diagonal entry of� bpp bpqbqp bqq � def= JT � � app apqaqp aqq � � J (11)is then given by bpq = 12 GT � V; in whihV T def= (os 2�; sin 2� os�; sin 2� sin�) ; (12)GT def= (2 apq; aqq � app;�j (aqq + app)) : (13)Hene bpq an be made zero by hoosing V as a realunit-norm vetor that satis�es� Re(GT )Im(GT ) � � V = � 00 � : (14)
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The elements of the optimal Jaobi rotation follow fromos� =p1 + os(2�)=2 and sin� ei� = (sin(2�) os�+i sin(2�) sin�)=(2 os�). By hoosing the �rst entryof V to be positive, J an be restrited to the innerrotations (� 2 (��=4; �=4℄).If we assume that apq was the o�-diagonal entry withlargest modulus, then the squared Frobenius-norm ofthe o�-diagonal part of A was redued with at least afator 1� 2I(I�1) . Hene, by repeating this proedure weneessarily onverge to a diagonal form. (In pratie, weaddress the o�-diagonal entries in a yli way.) A om-plex phase of the diagonal entries an be inorporated inthe overall unitary fator. This is a onstrutive proofof Theorem 1.4 PREWHITENING-BASED COMPUTA-TIONLet us assume that a lassial prewhitening, i.e., diag-onalization of C(1;1)Y , has been arried out. We on-sider then the transformed observation vetor Z def=S�1UHY , and the task beomes the estimation of theunitary matrix V.The lassial approah is to exploit onditions on thestruture of C(2;2)Z = CumfZ;Z�; Z; Z�g: Due to the sta-tistial independene of the omponents of X , we have(C(2;2)Z )i1i2i3i4 =Xi �i vi1iv�i2ivi3iv�i4i; (15)in whih �i def= Cumfxi; x�i ; xi; x�i g, whih we will writeas C(2;2)Z = C(2;2)X �1 V �2 V� �3 V �4 V�; (16)in whih C(2;2)X = diagf�1; : : : ; �Ig. In [1℄ the onditionof diagonality of C(2;2)X is exploited in a simultaneousHermitian EVD:A(2;2)1 = V �D(2;2)1 �VH...A(2;2)K = V �D(2;2)K �VH : (17)A(2;2)k 2 C I�I (1 6 k 6 K) are Hermitian matries,derived from C(2;2)Z , and the goal is to estimate V asthe unitary matrix that makes D(2;2)k (1 6 k 6 K) si-multaneously as diagonal as possible in the Frobeniussense. In [10℄ it is shown that the problem an also berephrased as ~A(2;2)1 = V � ~D(2;2)1 �VT...~A(2;2)~K = V � ~D(2;2)~K �VT ; (18)in whih ~D(2;2)k (1 6 k 6 K) are (theoretially) diago-nal omplex matries. We will all this a simultaneousTakagi fatorization.

For soures that are non-irular at order 4, we mayalso onsider C(4;0)Z = CumfZ;Z; Z; Zg: We have(C(4;0)Z )i1i2i3i4 =Xi ~�i vi1ivi2ivi3ivi4i; (19)in whih ~�i def= Cumfxi; xi; xi; xig, whih we write asC(4;0)Z = C(4;0)X �1 V �2 V �3 V �4 V; (20)in whih C(4;0)X = diagf~�1; : : : ; ~�Ig. This again leads toa simultaneous Takagi fatorization:A(4;0)1 = V �D(4;0)1 �VT...A(4;0)L = V �D(4;0)L �VT : (21)By taking this extra information into aount, we mayexpet to enhane the auray. In addition, we mayalso have Eq. (7) and equations related to C(3;1)Z .In [4, Setion 4℄ we proposed a Jaobi-type approahto solve a simultaneous Takagi fatorization. This teh-nique has independently been derived in [10℄. [4℄ men-tions that the tehnique an also be used for a simultane-ous Takagi fatorization ombined with a simultaneousHermitian EVD, whih applies when one deides to re-sort to Eqs. (17) instead of Eqs. (18). It was shown thatthe omputation of an elementary rotation amounts tothe omputation of the dominant eigenvetor of a realsymmetri (3 � 3)-matrix. One an assoiate weightsto the di�erent equations, depending on their supposedrelative reliability and importane. In ase one startswith a \full" prewhitening, in whih also C(2;0)Y is di-agonalized, under the onditions spei�ed in Setion 2,the remaining unknown fator is real orthogonal. Theomputation of an elementary rotation then amounts tothe omputation of the dominant eigenvetor of a realsymmetri (2� 2)-matrix.5 SOFT WHITENINGIt seems strange to onsider seond-order onstraintson the mixing matrix as in�nitely more reliable thanhigher-order onstraints (note that (2) is the only equa-tion that is expliitly a�eted by Gaussian noise). Inthis setion we will handle seond- and higher-order on-straints simultaneously, instead of sequentially. With-out loss of generality, we assume that I = J . Theproblem of dimensionality redution will be disussedin Setion 6.If we do not perform an expliit prewhitening, thenwe obtain a weighted system of equations of the typeB1 = M �D1 �MH...BP = M �DP �MH (22)
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~B1 = M � ~D1 �MT...~B ~P = M � ~D ~P �MT : (23)If possible, we assume that (an estimate of) the noiseontribution to C(1;1)Y has been subtrated. If not (e.g.,due to an unknown olour of the noise), then the equa-tion related to C(1;1)Y an be dropped or given a littleweight.(The problem is redued to the one in Setion 4 bypiking one of the subequations of (22) (and possibly(23)) and giving them an in�nite weight.) For a setof equations like (22), an algorithm has been proposedin [11℄. This tehnique an easily be adapted to take(23) into aount as well. One only has to make surethat in the Z-steps of the extended QZ iteration, theontributions related to (23) are omplex onjugated.An alternative sheme is proposed in [7℄.6 DIMENSIONALITY REDUCTIONLet us assume that J > I , that Fp 2 C J�J is the equiv-alent of Bp (1 6 p 6 P ) and ~F~p 2 C J�J the equivalentof ~B~p (1 6 ~p 6 ~P ). From (22) and (23) it is lear thatthe olumn spae of Fp and ~F~p is equal to the olumnspae of M. This vetor spae an be estimated as thespae generated by the dominant left singular vetors of�F1 : : :FP ~F1 : : : ~F ~P� ; (24)and I itself an be determined by looking for a gapin the singular value spetrum. If the dominant sub-spae is represented by X 2 C J�I with orthonormalolumns, then a dimensionality redution an be real-ized by taking Bp = XHFpX and ~B~p = XH ~F~pX�.However, when resorting to estimates Ĉ(2;0)Y , Ĉ0(1;1)Y (anoise-ompensated version of Ĉ(1;1)Y ), Ĉ(2;2)Y , Ĉ(3;1)Y andĈ(4;0)Y , this is in priniple not equivalent to maximizationoff(X) def= w21 kXHĈ0(1;1)Y Xk2 + w22 kXHĈ(2;0)Y X�k2+w23 kĈ(2;2)Y �1 XH �2 XT �3 XH �4 XT k2+w24 kĈ(3;1)Y �1 XH �2 XH �3 XH �4 XT k2+w25 kĈ(4;0)Y �1 XH �2 XH �3 XH �4 XHk2; (25)although the two approahes are usually lose. Oneould, e.g., start an Alternating Least Squares (ALS)iteration, in analogy with [5℄. Typially, in iterationstep k a olumn-wise orthonormal matrix X(k) is alu-lated of whih the olumn spae is equal to the spaegenerated by the dominant left singular vetors of thematrix ontaining all the olumns of w1 Ĉ0(1;1)Y X(k�1),w2 Ĉ(2;0)Y X(k�1)� , w3 Ĉ(2;2)Y �2 X(k�1)T �3 X(k�2)H �4X(k�3)T , w4 Ĉ(3;1)Y �2 X(k�1)H �3 X(k�2)H �4 X(k�3)Tand w5 Ĉ(4;0)Y �2 X(k�1)H �3 X(k�2)H �4 X(k�3)H .

7 CONCLUSIONFor non-irular random variables more statistis areavailable than for irular random variables. In this pa-per we have exploited this extra knowledge in the on-text of BSS. Di�erent approahes were derived, depend-ing on the relative importane of the statistis.Referenes[1℄ J.F. Cardoso, A. Souloumia, \Blind Beamformingfor Non-Gaussian Signals", IEE Pro.-F, Vol. 140,No. 6, 1994, pp. 362{370.[2℄ J.F. Cardoso, \Perturbation of Joint Diagonaliz-ers", Teh. Report No. 94d027, ENST Paris, 1994.[3℄ P. Comon, \Independent Component Analysis, ANew Conept?" Signal Proessing, Vol. 36, No. 3,April 1994, pp. 287{314.[4℄ L. De Lathauwer, B. De Moor, J. Vandewalle, \ICATehniques for More Soures than Sensors", Pro.IEEE Signal Proessing Workshop on Higher-OrderStatistis (HOS'99), Caesarea, Israel, June 14-16,1999, pp. 121{124.[5℄ L. De Lathauwer, B. De Moor, J. Vandewalle, \Onthe Best Rank-1 and Rank-(R1; R2; : : : ; RN ) Ap-proximation of Higher-Order Tensors", SIAM J.Matrix Anal. Appl., Vol. 21, No. 4, April 2000, pp.1324{1342.[6℄ L. De Lathauwer, B. De Moor, J. Vandewalle, \In-dependent Component Analysis and (Simultane-ous) Third-Order Tensor Diagonalization", IEEETrans. Signal Proessing, Vol. 49, No. 10, Ot.2001, pp. 2262{2271.[7℄ L. De Lathauwer, B. De Moor, J. Vandewalle, \AnAlgorithm for Joint Diagonalization by a Congru-ene Transformation", Pro. 23rd Symp. on Infor-mation Theory in the Benelux, May 29{31, 2002,Louvain-la-Neuve, Belgium.[8℄ G.H. Golub, C.F. Van Loan, Matrix Computations,3rd ed., Johns Hopkins University Press, Baltimore,Maryland, 1996.[9℄ R.A. Horn, C.R. Johnson, Matrix Analysis, Cam-bridge University Press, 1985.[10℄ A. Souloumia, E. Moreau, \Blind Soure Separa-tion via Joint Diagonalization of Symmetri Com-plex Matries", Pro. 2002 IEEE Int. Conf. onAoustis, Speeh and Signal Proessing (ICASSP2002), Orlando, FL, USA, May 13-17, 2002.[11℄ A.J. van der Veen, A. Paulraj, \An AnalytialConstant Modulus Algorithm", IEEE Trans. Sig-nal Proessing, Vol. 44, No. 5, May 1996, pp. 1136{1155.
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