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.beABSTRACTIn this paper we address the blind separation of an in-stantaneous 
omplex mixture of statisti
ally indepen-dent non-
ir
ular signals. We show that, if the sour
esare non-
ir
ular at order 2, by exploiting all the se
ond-order information, the mixing matrix 
an be estimatedup to a real orthogonal fa
tor. This is based on a linkwith the Takagi fa
torization, for the 
omputation ofwhi
h we derive a Ja
obi-type algorithm. We provethat, if the sour
es are non-
ir
ular at order 4, aftera 
lassi
al prewhitening, the remaining unitary fa
tor
an be found via a simultaneous Takagi fa
torization /Hermitian Eigenvalue De
omposition (EVD). We alsodes
ribe a variant in whi
h no hard prewhitening is 
ar-ried out. In addition, we pay some attention to the issueof dimensionality redu
tion, in the 
ase where there arefewer sour
es than sensors.1 INTRODUCTIONThe basi
 statisti
al model for Independent ComponentAnalysis (ICA), or Blind Sour
e Separation (BSS), is inthis paper denoted asY =MX +N; (1)in whi
h the observed ve
tor Y 2 C J , the sour
e ve
torX 2 C I and the noise ve
tor N 2 C J are zero-meanrandom ve
tors. The 
omponents of X are mutuallystatisti
ally independent, as well as statisti
ally inde-pendent from the noise 
omponents. We assume thatI 6 J and that the mixing matrix M 2 C J�I is non-singular. The goal of ICA 
onsists of the estimation ofM and the 
orresponding realizations of X , given onlyrealizations of Y .1This work is supported by (1) the Resear
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In this paper we assume that the sour
es are non-
ir
ular. Non-
ir
ularity at order 2 is dealt with in Se
-tion 2; it applies to, e.g., BPSK 
onstellations. Non-
ir
ularity at order 4 is dealt with in Se
tion 4; it ap-plies to, e.g., QAM4 and QAM16 
onstellations. Onthe other hand, it is natural to assume that the noise is
ir
ular (e.g. Gaussian).In what follows, �T denotes the transpose, �� the 
om-plex 
onjugate and �H the Hermitian adjoint.2 SECOND-ORDER ANALYSISLet us de�ne C(1;1)Y def= EfY Y Hg and C(2;0)Y def= EfY Y T g.We haveC(1;1)Y = M �C(1;1)X �MH +C(1;1)N ; (2)C(2;0)Y = M �C(2;0)X �MT ; (3)in whi
h, due to the mutual statisti
al independen
eof the sour
es, C(1;1)X = diagf�21 ; : : : ; �2Ig, with �2i =Efjxij2g, and C(2;0)X = diagf~�21 ; : : : ; ~�2Ig, with ~�2i =Efx2i g. We take �i 2 R+ . In this se
tion we makethe assumption that at most one of the entries of C(2;0)Xvanishes. Note that, unlike (2), (3) does not 
ontain anoise term.The mixing matrix 
an only be determined modulo apermutation and s
aling of its 
olumns. In the equiva-len
e 
lass we may 
onsiderM0 def= M � diagf�1ei�1 ; : : : ; �Iei�Ig; (4)with �i de�ned by ~�2i = j~�ij2ei2�i . Let a Singular ValueDe
omposition (SVD) of M0 be given byM0 = U � S �V; (5)in whi
h U 2 C J�I has orthonormal 
olumns, S 2 RI�Iis positive diagonal, and V 2 C I�I is unitary. Then Uand S 
an be found from an EVD of C(1;1)Y :C(1;1)Y = U � S2 �UH (6)(negle
ting the noise term, for 
larity; if J > I and thenoise is spatially white, then the noise varian
e may be
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estimated as the mean of the J � I smallest eigenvaluesof C(1;1)Y , and the noise term may be 
ompensated bysubtra
ting this value from the I biggest eigenvalues, asis well-known). Substituting these results in (3) leads toS�1 �UH �C(2;0)Y �U� � S�1 =V � diagf j~�1j2�21 ; : : : ; j~�I j2�2I g �VT ; (7)whi
h is a Takagi fa
torization [9℄:Theorem 1 If A 2 C I�I is symmetri
 (A = AT ), thenthere exists a unitary E and a real nonnegative diago-nal � su
h that A = E�ET . The 
olumns of E arean orthonormal set of eigenve
tors for AA�, and the
orresponding diagonal entries of � are the nonnegativesquare roots of the 
orresponding eigenvalues of AA�.Let us �rst 
onsider the hypotheti
al situation inwhi
h all the values j~�ij=�i are distin
t. In this 
ase V
an be uniquely determined, up to the sign of its rows,so that we don't need Higher-Order Statisti
s (HOS) tosolve the problem. However, perturbations of a matrixmay result in signi�
ant 
hanges of eigenve
tors, whenthe 
orresponding eigenvalues are 
lose. In this respe
t,it may be wise to resort to HOS anyway, to obtain ex-tra 
onstraints on the mixing matrix. For instan
e, it is
lear that, by embedding (7) in a joint diagonalization(JODI), like we will do in Se
tion 4, the estimation ofV be
omes more robust, 
f. [2℄.Now let us turn to the more 
ommon situation inwhi
h all the sour
es have the same distribution. It isstill possible to extra
t useful information from C(2;0)Y .The key is that, whenAA� in the Takagi fa
torizationtheorem has an eigenvalue with multipli
ity greater than1, not every orthonormal set of 
orresponding eigenve
-tors 
an be used for the 
orresponding 
olumns of E.Assume that �2 is an eigenvalue of AA� with multipli
-ity R 6 I , that we have the EVDAA� = (E1E2) � � �2I �22 � �� EH1EH2 � (8)with the obvious partitioning, and that a Takagi fa
tor-ization of A is given byA = (E1E2) �� �I �2 � �� ET1ET2 � : (9)In (8), E1 may be repla
ed by E1Q, in whi
hQ 2 C R�Ris unitary, i.e., QQH = I. If we repla
e E1 in (9) byE1Q, then this gives only a fa
torization of A whenQQT = I. Hen
e, Q = Q�, or Q 
an only be a realorthogonal matrix.This means that, when the sour
es are identi
ally dis-tributed, V 
an be found from (7) up to a real orthog-onal fa
tor. This fa
tor has to be estimated from theHOS of Y . The fa
t that the fa
tor is real, drasti
allyredu
es the 
omputational 
omplexity | 
f. [1, 3, 6℄.

Note that in this way, half of the independent parame-ters of V are obtained from C(2;0)Y , and the other halffrom the HOS of Y .Instead of 
al
ulating C(1;1)Y expli
itly, it is numer-i
ally preferable to work via the SVD of the dataset,su
h that the singular values are not squared. For asquare-root version of (7) we may resort to the follow-ing theorem:Theorem 2 A matrix A 2 C I�T may be de
omposed asA = USVT , with U 2 C I�I unitary, S 2 RI�T diago-nal 
ontaining R stri
tly positive entries and V 2 C T�T
omplex orthogonal (i.e., VTV = I) i� rank(AAT ) =rank(A) = R.This theorem 
an be proved in analogy with the SVDtheorem. Note that VTV does not prevent the entriesof V from being big, whi
h is a numeri
al disadvantage.Due to la
k of spa
e, we will not dis
uss pro
edures forthe 
omputation of the de
omposition.3 JACOBI ALGORITHM FOR TAKAGI'SFACTORIZATIONThe 
omponents of the Takagi fa
torization of a matrixA 
an be derived from an EVD of AA�; however, thisapproa
h has the numeri
al disadvantage that the 
on-dition number is squared. In this se
tion we will workdire
tly on A. We propose a Ja
obi-type algorithm forthe 
al
ulation of the de
omposition; as far as we know,this has not appeared in the literature yet. The deriva-tion is analogous to that of its Hermitian EVD 
ounter-part [8℄.By left multipli
ation of A with a Ja
obi-rotation af-fe
ting rows p and q, and right multipli
ation with itstranspose, the Frobenius-norm of the (o�-)diagonal partof A 
an only be 
hanged through the transformationof the entries app, apq and aqq . Let us represent theJa
obi-rotation byJ = � 
os� � sin� ej�sin� e�j� 
os� � : (10)The o�-diagonal entry of� bpp bpqbqp bqq � def= JT � � app apqaqp aqq � � J (11)is then given by bpq = 12 GT � V; in whi
hV T def= (
os 2�; sin 2� 
os�; sin 2� sin�) ; (12)GT def= (2 apq; aqq � app;�j (aqq + app)) : (13)Hen
e bpq 
an be made zero by 
hoosing V as a realunit-norm ve
tor that satis�es� Re(GT )Im(GT ) � � V = � 00 � : (14)
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The elements of the optimal Ja
obi rotation follow from
os� =p1 + 
os(2�)=2 and sin� ei� = (sin(2�) 
os�+i sin(2�) sin�)=(2 
os�). By 
hoosing the �rst entryof V to be positive, J 
an be restri
ted to the innerrotations (� 2 (��=4; �=4℄).If we assume that apq was the o�-diagonal entry withlargest modulus, then the squared Frobenius-norm ofthe o�-diagonal part of A was redu
ed with at least afa
tor 1� 2I(I�1) . Hen
e, by repeating this pro
edure wene
essarily 
onverge to a diagonal form. (In pra
ti
e, weaddress the o�-diagonal entries in a 
y
li
 way.) A 
om-plex phase of the diagonal entries 
an be in
orporated inthe overall unitary fa
tor. This is a 
onstru
tive proofof Theorem 1.4 PREWHITENING-BASED COMPUTA-TIONLet us assume that a 
lassi
al prewhitening, i.e., diag-onalization of C(1;1)Y , has been 
arried out. We 
on-sider then the transformed observation ve
tor Z def=S�1UHY , and the task be
omes the estimation of theunitary matrix V.The 
lassi
al approa
h is to exploit 
onditions on thestru
ture of C(2;2)Z = CumfZ;Z�; Z; Z�g: Due to the sta-tisti
al independen
e of the 
omponents of X , we have(C(2;2)Z )i1i2i3i4 =Xi �i vi1iv�i2ivi3iv�i4i; (15)in whi
h �i def= Cumfxi; x�i ; xi; x�i g, whi
h we will writeas C(2;2)Z = C(2;2)X �1 V �2 V� �3 V �4 V�; (16)in whi
h C(2;2)X = diagf�1; : : : ; �Ig. In [1℄ the 
onditionof diagonality of C(2;2)X is exploited in a simultaneousHermitian EVD:A(2;2)1 = V �D(2;2)1 �VH...A(2;2)K = V �D(2;2)K �VH : (17)A(2;2)k 2 C I�I (1 6 k 6 K) are Hermitian matri
es,derived from C(2;2)Z , and the goal is to estimate V asthe unitary matrix that makes D(2;2)k (1 6 k 6 K) si-multaneously as diagonal as possible in the Frobeniussense. In [10℄ it is shown that the problem 
an also berephrased as ~A(2;2)1 = V � ~D(2;2)1 �VT...~A(2;2)~K = V � ~D(2;2)~K �VT ; (18)in whi
h ~D(2;2)k (1 6 k 6 K) are (theoreti
ally) diago-nal 
omplex matri
es. We will 
all this a simultaneousTakagi fa
torization.

For sour
es that are non-
ir
ular at order 4, we mayalso 
onsider C(4;0)Z = CumfZ;Z; Z; Zg: We have(C(4;0)Z )i1i2i3i4 =Xi ~�i vi1ivi2ivi3ivi4i; (19)in whi
h ~�i def= Cumfxi; xi; xi; xig, whi
h we write asC(4;0)Z = C(4;0)X �1 V �2 V �3 V �4 V; (20)in whi
h C(4;0)X = diagf~�1; : : : ; ~�Ig. This again leads toa simultaneous Takagi fa
torization:A(4;0)1 = V �D(4;0)1 �VT...A(4;0)L = V �D(4;0)L �VT : (21)By taking this extra information into a

ount, we mayexpe
t to enhan
e the a

ura
y. In addition, we mayalso have Eq. (7) and equations related to C(3;1)Z .In [4, Se
tion 4℄ we proposed a Ja
obi-type approa
hto solve a simultaneous Takagi fa
torization. This te
h-nique has independently been derived in [10℄. [4℄ men-tions that the te
hnique 
an also be used for a simultane-ous Takagi fa
torization 
ombined with a simultaneousHermitian EVD, whi
h applies when one de
ides to re-sort to Eqs. (17) instead of Eqs. (18). It was shown thatthe 
omputation of an elementary rotation amounts tothe 
omputation of the dominant eigenve
tor of a realsymmetri
 (3 � 3)-matrix. One 
an asso
iate weightsto the di�erent equations, depending on their supposedrelative reliability and importan
e. In 
ase one startswith a \full" prewhitening, in whi
h also C(2;0)Y is di-agonalized, under the 
onditions spe
i�ed in Se
tion 2,the remaining unknown fa
tor is real orthogonal. The
omputation of an elementary rotation then amounts tothe 
omputation of the dominant eigenve
tor of a realsymmetri
 (2� 2)-matrix.5 SOFT WHITENINGIt seems strange to 
onsider se
ond-order 
onstraintson the mixing matrix as in�nitely more reliable thanhigher-order 
onstraints (note that (2) is the only equa-tion that is expli
itly a�e
ted by Gaussian noise). Inthis se
tion we will handle se
ond- and higher-order 
on-straints simultaneously, instead of sequentially. With-out loss of generality, we assume that I = J . Theproblem of dimensionality redu
tion will be dis
ussedin Se
tion 6.If we do not perform an expli
it prewhitening, thenwe obtain a weighted system of equations of the typeB1 = M �D1 �MH...BP = M �DP �MH (22)
3



~B1 = M � ~D1 �MT...~B ~P = M � ~D ~P �MT : (23)If possible, we assume that (an estimate of) the noise
ontribution to C(1;1)Y has been subtra
ted. If not (e.g.,due to an unknown 
olour of the noise), then the equa-tion related to C(1;1)Y 
an be dropped or given a littleweight.(The problem is redu
ed to the one in Se
tion 4 bypi
king one of the subequations of (22) (and possibly(23)) and giving them an in�nite weight.) For a setof equations like (22), an algorithm has been proposedin [11℄. This te
hnique 
an easily be adapted to take(23) into a

ount as well. One only has to make surethat in the Z-steps of the extended QZ iteration, the
ontributions related to (23) are 
omplex 
onjugated.An alternative s
heme is proposed in [7℄.6 DIMENSIONALITY REDUCTIONLet us assume that J > I , that Fp 2 C J�J is the equiv-alent of Bp (1 6 p 6 P ) and ~F~p 2 C J�J the equivalentof ~B~p (1 6 ~p 6 ~P ). From (22) and (23) it is 
lear thatthe 
olumn spa
e of Fp and ~F~p is equal to the 
olumnspa
e of M. This ve
tor spa
e 
an be estimated as thespa
e generated by the dominant left singular ve
tors of�F1 : : :FP ~F1 : : : ~F ~P� ; (24)and I itself 
an be determined by looking for a gapin the singular value spe
trum. If the dominant sub-spa
e is represented by X 2 C J�I with orthonormal
olumns, then a dimensionality redu
tion 
an be real-ized by taking Bp = XHFpX and ~B~p = XH ~F~pX�.However, when resorting to estimates Ĉ(2;0)Y , Ĉ0(1;1)Y (anoise-
ompensated version of Ĉ(1;1)Y ), Ĉ(2;2)Y , Ĉ(3;1)Y andĈ(4;0)Y , this is in prin
iple not equivalent to maximizationoff(X) def= w21 kXHĈ0(1;1)Y Xk2 + w22 kXHĈ(2;0)Y X�k2+w23 kĈ(2;2)Y �1 XH �2 XT �3 XH �4 XT k2+w24 kĈ(3;1)Y �1 XH �2 XH �3 XH �4 XT k2+w25 kĈ(4;0)Y �1 XH �2 XH �3 XH �4 XHk2; (25)although the two approa
hes are usually 
lose. One
ould, e.g., start an Alternating Least Squares (ALS)iteration, in analogy with [5℄. Typi
ally, in iterationstep k a 
olumn-wise orthonormal matrix X(k) is 
al
u-lated of whi
h the 
olumn spa
e is equal to the spa
egenerated by the dominant left singular ve
tors of thematrix 
ontaining all the 
olumns of w1 Ĉ0(1;1)Y X(k�1),w2 Ĉ(2;0)Y X(k�1)� , w3 Ĉ(2;2)Y �2 X(k�1)T �3 X(k�2)H �4X(k�3)T , w4 Ĉ(3;1)Y �2 X(k�1)H �3 X(k�2)H �4 X(k�3)Tand w5 Ĉ(4;0)Y �2 X(k�1)H �3 X(k�2)H �4 X(k�3)H .

7 CONCLUSIONFor non-
ir
ular random variables more statisti
s areavailable than for 
ir
ular random variables. In this pa-per we have exploited this extra knowledge in the 
on-text of BSS. Di�erent approa
hes were derived, depend-ing on the relative importan
e of the statisti
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