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Abstract. In this paper we show that the underdetermined ICA prob-
lem can be solved using a set of spatial covariance matrices, in case the
sources have sufficiently different temporal autocovariance functions. The
result is based on a link with the decomposition of higher-order tensors
in rank-one terms. We discuss two algorithms and present theoretical
bounds on the number of sources that can be allowed.

1 Introduction

Let us use the following notation for the basic Independent Component Analysis
(ICA) model:

xt = Ast + nt, (1)

in which the observation vector xt ∈ CJ , the noise vector nt ∈ CJ and the source
vector st ∈ CR are zero-mean. The mixing matrix A ∈ CJ×R. The goal is to
exploit the assumed mutual statistical independence of the source components
to estimate the mixing matrix and/or the source signals from the observations.
The literature on ICA addresses for the most part the so-called overdetermined
case, where J � R. Here, we consider the underdetermined or overcomplete case,
where J < R.

A large class of algorithms for underdetermined ICA starts from the assump-
tion that the sources are (quite) sparse [2, 12, 15, 22]. In this case, the scatter plot
typically shows high signal values in the directions of the mixing vectors. These
extrema may be localized by maximization of some clustering measure [2, 12].
Some of these techniques are based on an exhaustive search in the mixing vector
space, and are therefore very expensive when there are more than two observa-
tion channels. In a preprocessing step a linear transform may be applied such
that the new representation of the data is sparser (e.g. short-time Fourier trans-
form in the case of audio signals) [2].
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There are two aspects to ICA: estimation of the mixing matrix and separa-
tion of the sources. In the overdetermined case, sources are usually separated
by multiplying the observations with the pseudo-inverse of the mixing matrix
estimate. This is no longer possible in the case of underdetermined mixtures:
for each sample xt, the corresponding source sample st that satisfies xt = Ast

is only known to belong to an affine variety of dimension J − R — hence the
term “underdetermined”. One could estimate the sources and the mixing matrix
simultaneously by exploiting prior knowledge on the sources [15, 22]. An other
approach is to estimate the mixing matrix first, and then estimate the sources.
In this paper we will show that the estimation of the mixing matrix is actually
an overdetermined subproblem, even in the case of underdetermined mixtures.
If the source densities are known, then st may subsequently be estimated by
maximizing the log posterior likelihood [15]. In the case of Laplacian probability
densities, modelling sparse sources, this can be formulated in terms of a linear
programming problem [2, 15]. In the case of finite alphabet signals in telecommu-
nication, one may perform an exhaustive search over all possible combinations.
In this paper we will focus on the estimation of the mixing matrix.

This paper presents new contributions to the class of algebraic algorithms
for underdetermined ICA. In [6, 7, 8] algorithms are derived for the case of two
mixtures and three sources. An arbitrary number of mixing vectors can be esti-
mated from two observation channels by sampling derivatives of sufficiently high
order of the second characteristic function [19]. Algebraic underdetermined ICA
is based on the decomposition of a higher-order tensor in a sum of rank-1 terms.
Some links with the literature on homogeneous polynomials are discussed in [5].

In this paper we assume that the sources are individually correlated in time.
The spatial covariance matrices of the observations then satisfy [1]:

C1 ≡ E{xtxH
t+τ1

} = A · D1 · AH

...
CK ≡ E{xtxH

t+τK
} = A · DK · AH (2)

in which Dk ≡ E{stsH
t+τk

} is diagonal, k = 1, . . . , K. For simplicity, we have
dropped the noise terms; they can be considered as a perturbation of (2).

Let us stack the matrices C1, . . . , CK in Eq. (2) in a tensor C ∈ CJ×J×K .
Define a matrix D ∈ CK×R by (D)kr ≡ (Dk)rr, k = 1, . . . , K, r = 1, . . . , R.
Then we have

cijk =
R∑

r=1

aira
∗
jrdkr, (3)

which we write as

C =
R∑

r=1

ar ◦ a∗
r ◦ dr, (4)

in which ◦ denotes the tensor outer product and in which {ar} and {dr} are
the columns of A and D, respectively. Eq. (4) is a decomposition of tensor C in
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a sum of R rank-1 terms. In the literature, this is called a “Canonical Decom-
position” (CANDECOMP) [4] or a “Parallel Factors Model” (PARAFAC) [13].
The minimal number of rank-1 tensors in which a higher-order tensor can be
decomposed, is called its rank. Note that each rank-1 term in (4) consists of the
contribution of one distinct source to C. Hence, in terms of this tensor, “source
separation” amounts to the computation of decomposition (4), provided it is
unique. In contrast to the matrix case, PARAFAC can be unique (up to some
trivial indeterminacies) even when (i) the rank-1 terms are not mutually orthog-
onal and (ii) the rank is greater than the smallest tensor dimension. This allows
for the determination of the mixing matrix (up to a scaling and permutation of
its columns) in the overcomplete case.

Uniqueness issues are discussed in Section 2. Section 3 and 4 present algo-
rithms for the computation of decomposition (4). Section 3 deals with the case
where R > K. More powerful results are obtained for the case where R � K in
Section 4. Section 5 shows the results of some simulations. The presentation is
in terms of complex signals. Whenever the results cannot be directly applied to
real data, this will be explicitly mentioned.

This paper is a short version of [11]. The foundations of Section 4 were laid
in [3]. Some mathematical aspects are developed in more detail in [10].

2 PARAFAC Uniqueness

PARAFAC can only be unique up to permutation of the rank-1 terms and scaling
and counterscaling of the factors of the rank-1 terms. We call the decomposition
in (4) essentially unique if any other matrix pair A′ and D′ that satisfies (4), is
related to A and D via

A = A′ · P · Ω1 D = D′ · P · Ω2, (5)

with Ω1, Ω2 diagonal matrices, satisfying Ω1 ·Ω∗
1 ·Ω2 = I, and P a permutation

matrix.
A first uniqueness result requires the notion of Kruskal-rank or k-rank k(A)

of a matrix A [14]. It is defined as the maximal number k such that any set of
k columns of A is linearly independent. From [14, 18] we have then immediately
that decomposition (4) is essentially unique when

2k(A) + k(D) � 2(R + 1). (6)

For a second uniqueness condition we assume that the number of sources R
does not exceed the number of covariance matrices K. We call decomposition
(4) generic when the (noiseless) entries of A and D can be considered drawn
from continuous probability densities. It turns out that in the complex case the
generic decomposition is essentially unique when 2R(R−1) � J2(J −1)2 [10, 11].
For real-valued tensors, we have uniqueness if R � Rmax, given by [18]:

J 2 3 4 5 6 7 8
Rmax 2 4 6 10 15 20 26
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3 Case 1: R > K

Generically, a matrix is full rank and full k-rank. Hence, in practice, k(A) =
min(J, R) = J and k(D) = min(K, R) = K if R > K. Eq. (6) then guarantees
identifiability if 2J + K � 2R + 2, i.e., when the number of sources R � J − 1 +
K/2.

The standard way to compute PARAFAC, is by means of an “Alternating
Least Squares” (ALS) algorithm [13]. The aim is to minimize the (squared)
Frobenius norm of the difference between C and its estimated decomposition in
rank-1 terms by means of an iteration in which each step consists of fixing a
subset of unknown parameters to their current estimates, and optimizing w.r.t.
the remaining unknowns, followed by fixing an other subset of parameters, and
optimizing w.r.t. the complimentary set, etc. (Like for matrices, the squared
Frobenius norm of a tensor is the sum of the squared moduli of its entries.)
More specifically, one optimizes the cost function

f(U,V,D) = ‖C −
R∑

r=1

ur ◦ v∗
r ◦ dr‖2. (7)

Due to the multi-linearity of the model, estimation of one of the arguments,
given the other two, is a classical linear least squares problem. One alternates
between updates of U, V and D. After updating U and V, their columns are
rescaled to unit length, to avoid under- and overflow. Although during the iter-
ation the symmetry of the problem is broken, one supposes that eventually U
and V both converge to A. If some difference remains, then the mixing vector
ar can be estimated as the dominant left singular vector of the matrix [ur vr ],
r = 1, . . . , R. The rank of C is estimated by trial-and-error. In [16] an exact line
search is proposed to enhance the convergence of the ALS algorithm.

4 Case 2: R � K

In this case, one can still work as in the previous section. However, more pow-
erful results can be derived. We assume that the second uniqueness condition in
Section 2 is satisfied. This implies in particular that R < J2.

We stack the entries of tensor C in a (J2 × K) matrix C as follows:

(C)(i−1)J+j,k = cijk, i ∈ [1, J ], j ∈ [1, J ], k ∈ [1, K].

Eq. (4) can be written in a matrix format as:

C = (A � A∗) · DT , (8)

in which � denotes the Khatri-Rao or column-wise Kronecker product, i.e., A�
A∗ ≡ [a1⊗a∗

1, . . . ,aR⊗a∗
R]. If R � min(J2, K), then A�A∗ and S are generically

full rank [10]. This implies that the number of sources R is simply equal to the
rank of C. Instead of determining it by trial-and-error, as in the previous section,
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it can be estimated as the number of significant singular values of C. Let the
“economy size” Singular Value Decomposition (SVD) of C be given by:

C = U · Σ · VH , (9)

in which U ∈ CJ2×R and V ∈ CK×R are column-wise orthonormal matrices and
in which Σ ∈ RR×R is positive diagonal. We deduce from (8) and (9) that there
exists an a priori unknown matrix F ∈ CR×R that satisfies:

A � A∗ = U · Σ · F. (10)

If we would know F, then the mixing matrix A would immediately follow. Stack
the entries of the columns mr of A � A∗ in (J × J) matrices Mr as follows:
(Mr)ij ≡ (mr)(i−1)J+j , i, j = 1, . . . , J . Then Mr is theoretically a rank-one
matrix: Mr = araH

r . This means that ar can, up to an irrelevant scaling factor,
be determined as the left singular vector associated with the largest singular
value of Mr, r = 1, . . . , R.

We will now explain how the matrix F in (10) can be found. Let Er be a
(J × J) matrix in which the rth column of matrix UΣ is stacked as above. We
have

Er =
R∑

k=1

(
akaH

k

)
(F−1)kr . (11)

This means that the matrices Er consist of linear combinations of the rank-one
matrices akaH

k and that the linear combinations are the entries of the nonsingular
matrix F−1. It would be helpful to have a tool that allows us to determine
whether a matrix is rank-one or not. Such a tool is offered by the following
theorem [3, 10].

Theorem 1. Consider the mapping Φ: (X,Y) ∈ CJ×J × CJ×J �−→ Φ(X,Y) =
P ∈ C

J×J×J×J defined by:

pijkl = xijykl + yijxkl − xilykj − yilxkj

for all index values. Given X ∈ CJ×J , Φ(X,X) = 0 if and only if the rank of X
is at most one.

From the matrix UΣ in the SVD (9) we construct the set of R2 tensors {Prs ≡
Φ (Er,Es)}r,s∈[1,R]. It can now be proved [3, 10, 11] that generically there exist
exactly R linearly independent symmetric matrices Br ∈ CR×R that satisfy:

R∑

t,u=1

Ptu(Br)tu = 0. (12)

Moreover, these matrices can all be diagonalized by F:

B1 = F · Λ1 · FT

...
BR = F · ΛR · FT (13)
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in which Λ1, . . . ,ΛR are diagonal. Eqs. (12) and (13) provide the means to find
F. Eq. (12) is just a linear set of equations, from which the matrices Br may
be computed. Note that, in the absence of noise, F already follows from the
Eigenvalue Decomposition (EVD)

B1 · B−1
2 = F · (Λ1 · Λ−1

2 ) · F−1.

In practice, it is more reliable to take all matrices in (13) into account. The
set can be simultaneously diagonalized by means of the algorithms presented in
[9, 13, 20, 21].

5 Simulations

We conduct a Monte-Carlo experiment consisting of 100 runs. In each run, signal
values are drawn from a standardized complex Gaussian distribution and subse-
quently passed through a filter of which the coefficients are rows of a (16 × 16)
Hadamard matrix. (More specifically, rows 1, 2, 4, 7, 8 and 13 are considered.)
The resulting sources are mixed by means of a matrix of which the entries are
also drawn from a standardized complex Gaussian distribution and additive
Gaussian noise is added.

In the first experiment, we assume J = 4 observation channels and R = 5
sources. Covariance matrices are computed for τ = 0, . . . , 3. This problem is
quite difficult since two of the (4×4) submatrices of D have a condition number
of about 30, which indicates some lack of “diversity” for these submatrices. The
number of samples T = 10000. The mixing matrix is computed by means of the
ALS algorithm described in Section 3. In Fig. 1 we plot the mean relative error
E{‖A − Â‖/‖A‖}, in which the norm is the Frobenius-norm. (The columns of
A are normalized to unit length and Â represents the optimally ordered and
scaled estimate.)

In the second experiment, we compute 12 covariance matrices (τ = 0, . . . , 11).
This makes the problem better conditioned. We consider R = 5 or 6 sources.
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Fig. 1. Relative error in the first experiment (K = 4)
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Fig. 2. Relative error in the second experiment (K = 12)

The number of samples T = 5000. The mixing matrix is computed by means
of the algorithm described in Section 4, where we used the algorithm derived in
[20] for the simultaneous diagonalization. The mean relative error is shown in
Fig. 2. Note that the mixing matrix is estimated with an accuracy of two digits.

To have a reference, we also computed the solution by means of the AC-DC
algorithm proposed in [21]. In neither experiment, AC-DC yielded a reliable
estimate of the mixing matrix.

6 Conclusion

In this paper we exploited differences in autocovariance to solve the underde-
termined ICA problem. The joint decomposition of a set of spatial covariance
matrices was interpreted as the decomposition in rank-one terms of the third-
order tensor in which these matrices can be stacked. We distinguished between
two cases, depending on whether the number of covariance matrices K exceeds
the number of sources R or not. For both cases, we presented theoretical bounds
on the number of sources that can be allowed and discussed algebraic algorithms.
We explained that, in the case K > R, the noise-free solution can be obtained by
means of an EVD. The same approach can be used for nonstationary sources, by
considering spatial covariance matrices at different time instances, sets of spatial
time-frequency distributions, etc.
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