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Fourth-Order Cumulant-Based Blind Identification
of Underdetermined Mixtures

Lieven De Lathauwer, Senior Member, IEEE, Joséphine Castaing, and Jean-François Cardoso

Abstract—In this paper we study two fourth-order cumulant-
based techniques for the estimation of the mixing matrix in un-
derdetermined independent component analysis. The first method
is based on a simultaneous matrix diagonalization. The second
is based on a simultaneous off-diagonalization. The number of
sources that can be allowed is roughly quadratic in the number
of observations. For both methods, explicit expressions for the
maximum number of sources are given. Simulations illustrate the
performance of the techniques.

Index Terms—Cumulant, higher order statistics, higher order
tensor, independent component analysis (ICA), parallel factor
analysis, simultaneous diagonalization, underdetermined mixture.

I. INTRODUCTION

CONSIDER the following basic linear mixture model:

(1)

The stochastic vector represents multichannel ob-
servations, the components of the stochastic vector
correspond to unobserved source signals, and
denotes additive noise. The a priori unknown mixing matrix

characterizes the way the sources are com-
bined in the observations. The goal of independent component
analysis (ICA) [13], [31], or blind source separation (BSS), con-
sists of the estimation of the source signals and/or the mixing
matrix from observations of , assuming that the sources are
statistically independent. The literature on ICA addresses for
the most part the so-called overdetermined case, where .
Here, we consider the underdetermined or overcomplete case,
where .

A large class of algorithms for underdetermined ICA starts
from the assumption that the sources are (quite) sparse [5], [26],
[29], [33], [39]. In this case, the scatter plot typically shows
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high signal values in the directions of the mixing vectors. These
extrema may be localized by maximization of some clustering
measure [5], [26], [39]. Some of the clustering-based techniques
perform an exhaustive search in the mixing vector space, and are
therefore very expensive when there are more than two obser-
vation channels. In a preprocessing step a linear transform may
be applied such that the new representation of the data is sparser
(e.g., short-time Fourier transform in the case of audio signals)
[5]. The method in [1] only requires that for each source one area
in the time-frequency plane can be found where only that par-
ticular source is active; the signals may overlap anywhere else.
In [24] the difference between long-time stationary sources and
sources that are only short-time stationary is exploited to sepa-
rate the latter.

There are two aspects to ICA: estimation of the mixing ma-
trix and separation of the sources. In the overdetermined case,
sources are usually separated by multiplying the observations
with the pseudo-inverse of the mixing matrix estimate. This is
no longer possible in the case of underdetermined mixtures: for
each sample , the corresponding source sample that satis-
fies is only known to belong to an affine variety of di-
mension —hence the term “underdetermined.” However,
the mixing matrix and the source densities are still unique under
mildly restrictive conditions [27]. Uniqueness of the source dis-
tributions allows for the joint estimation of sources and mixing
matrix in a probabilistic framework [34]. However, even in the
case of underdetermined mixtures, the estimation of the mixing
matrix is an overdetermined problem (e.g., see Sections II and
III), such that it makes sense to estimate the mixing matrix first,
and then estimate the sources. The source values may subse-
quently be estimated by maximizing the log posterior likelihood
[34]. In the case of sparse sources, characterized by Laplacian
densities, this can be formulated in terms of a linear program-
ming problem [5], [10], [33]. If at most sources can be
active at the same time, then for each sample the active mixing
vectors may be determined and the corresponding mixture in-
verted [29]. In the case of finite alphabet signals in telecommu-
nication, one may perform an exhaustive search over all possible
combinations. In this paper we focus on the estimation of the
mixing matrix. The estimate of the mixing matrix may subse-
quently be used to separate the sources by means of the tech-
niques mentioned earlier.

This paper presents new contributions to the class of alge-
braic algorithms for underdetermined ICA. In [15], [18], and
[19] algorithms are derived for the specific case of two mix-
tures and three sources. An arbitrary number of mixing vectors
can be estimated from two observation channels by sampling
derivatives of sufficiently high order of the second character-
istic function [38]. A more stable version of [38] is presented
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in [17]. Algebraic underdetermined ICA is based on the de-
composition of a higher order tensor in a sum of rank-1 terms.
Some links with the literature on homogeneous polynomials are
discussed in [14]. A simultaneous matrix diagonalization tech-
nique that may still be used when the number of sources ex-
ceeds the number of sensors is presented in [42]. In [3] the al-
gebraic structure of the sixth-order cumulant tensor is partially
exploited. A similar idea can be applied to a set of fourth-order
cumulant tensors, corresponding to different time lags, when
the individual source signals are dependent over some time in-
terval [28]. In this paper we merely assume that the sources
have nonzero kurtosis. For convenience, we also assume that
the noise is Gaussian. Non-Gaussian noise leads to a perturba-
tion of the equations. This is admissible as long as the perturba-
tion stays relatively small, i.e., the signal-to-noise ratio (SNR)
has to be sufficiently high.

The paper is organized as follows. A first fourth-order cu-
mulant-based approach is discussed in Section II. The resulting
algorithm is based on a simultaneous matrix diagonalization. A
second approach, leading to a simultaneous off-diagonalization,
is discussed in Section III. Simulation results are presented in
Section IV. Section V is the conclusion. The proofs of the the-
orems are given in the Appendix. The presentation is in terms
of complex signals. Whenever the results cannot be directly ap-
plied to real data, this is explicitly mentioned.

The foundations of Section II were laid in [6]. Some math-
ematical aspects are developed in more detail in [21]. In [22],
[23] a variant of the technique is presented that generalizes si-
multaneous matrix diagonalization-based methods (involving a
set of correlation matrices, for instance) to the underdetermined
case.

Notation: Scalars are denoted by lowercase italic letters
, vectors by lowercase boldface letters ,

matrices by boldface capitals , and tensors by cal-
ligraphic letters . Italic capitals are used to denote
index upper bounds . The entry with row index

and column index in a matrix , i.e., , is symbol-
ized by . Likewise, we have . The
columns of are denoted by We will frequently use

matrix representations of tensors.
To this end, we define

Analogously, matrices will often be stacked in -di-
mensional vectors

The inverse of the latter operation is denoted by
. Vectorization of an tensor is done

as follows:

The symbol stands for the Kronecker delta, i.e.,
if and 0 otherwise. denotes the space of

Hermitean matrices. Finally, we recall the definition of the
Kronecker product and the Khatri–Rao product [35]

...
...

II. FOOBI ALGORITHM

Consider the quadricovariance
. Due to the multilinearity property of cumulant ten-

sors, we have

(2)

in which is the kurtosis of the th source. This is a decom-
position of a symmetric fourth-order tensor in a sum of sym-
metric rank-1 terms, cf. [9], [14], [16], [20], [21], [30], and
the references therein. The minimal number of rank-1 tensors
in which a higher order tensor can be decomposed is called
its rank. In terms of and

, (2) can be written as

(3)

Note that each term in (2) consists of the contribution of one
distinct source to . Hence, in terms of the quadricovariance,
“mixture identification” amounts to the computation of decom-
position (2)–(3). We will work via a second decomposition,
which is introduced in the following theorem.

Theorem 1: A tensor , satisfying the sym-
metries and , can be eigendecomposed
as

(4)

in which the matrices are Hermitean and mutually or-
thonormal w.r.t. the Euclidean inner product, and in which
the values are real and nonzero. is the rank of

. Denote
and .

Then (4) is equivalent to

(5)

in which is columnwise orthonormal, with
, and in which the values are real

and nonzero.
From Theorem 1 we have

(6)

(7)

The latter equation is essentially a matrix eigenvalue decompo-
sition (EVD), which may easily be computed. The eigenvectors
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have to be normalized in order to make the matrices Her-
mitean; in the Appendix it is explained how this can be done.
Note that, if is full column rank and if (com-
plex case) or (real case), the number of sources
is given by the rank of . (We notice that in array processing
applications, properties of the array may cause to be
column rank deficient—we refer to Remark 2.) We will now
show how (2)–(3) and (6)–(7) are linked. Assume at this point
that all sources are super-Gaussian, i.e., .
The more general situation will be addressed in Remark 1. From
(3) it is clear that is positive (semi)definite. We have the fol-
lowing theorem.

Theorem 2: Let be positive (semi)definite and assume
that it can be decomposed as in (3) and (7). Then we have

(8)

in which is real orthogonal.
After the computation of and from (7), the next step

is the computation of . Equation (8) shows that multiplication
of by yields a matrix of which the columns are
Kronecker products. The Kronecker structure of cor-
responds to the rank-1 structure of .
This may be exploited. What we need is a tool that allows us to
distinguish between Hermitean matrices that are at most rank-1
and Hermitean matrices of which the rank is greater than one.
Such a “rank-1 detecting device” is introduced in the following
theorem.

Theorem 3: Consider the mapping
defined by

(9)

Then we have that if and only if is at most
rank-1.

Define matrix , Hermitean matrices
and fourth-order tensors . Now,

let be any diagonal matrix and let . Then,
using the bilinearity of , its rank-one detecting feature, and (8),
it is readily found that . This suggests to
determine a matrix from the latter equation, and find as its
eigenmatrix. More specifically, we have the following theorem.

Theorem 4: Assume that the tensors
, are linearly independent. Then there exist precisely

linearly independent real symmetric matrices
that satisfy

(10)

These matrices have as a common eigenmatrix, i.e.,

...

(11)

in which are diagonal.
We can now proceed as follows. Given

linearly independent matrices are computed from (10),

TABLE I
FOOBI ALGORITHM

which is just a homogeneous set of linear equations. Then the
matrix follows from the simultaneous EVD (11).

In practice, we work with noisy cumulant estimates, such that
(10) will only approximately be satisfied. The matrices are
then determined as follows. Due to the symmetry of , and
the fact that , (10) can be written as

(12)

In the usual form of a set of homogeneous linear equations, we
have

(13)

in which the coefficient matrix is given by

(14)

The least-squares solution of (13) consists of the right sin-
gular vectors of that correspond to the smallest singular
values. After stacking these vectors in upper triangular matrices

, in the manner suggested by (13), the matrices
are obtained as . The following

theorem guarantees that the vectors are real, even in the case
of noisy cumulant estimates.

Theorem 5: The right singular vectors of the matrix in (14)
are real.

After computation of the matrices , the common eigen-
matrix in (11) can be obtained by means of the Jacobi algo-
rithm developed in [7] and [8]. Multiplication by ,
as in (8), yields a matrix of which the columns
are theoretically proportional to . In practice, we esti-
mate from the best rank-1 approximation of . The
overall Fourth-Order-Only Blind Identification (FOOBI) algo-
rithm is outlined in Table I.

Remark 1: In the derivation above, we have assumed that all
sources are super-Gaussian. If all sources are sub-Gaussian, i.e.,

, then we simply process . In case
not all kurtosis values have the same sign, is indefinite. The
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derivation then still applies, with the exception that is -or-
thogonal [41] instead of orthogonal. This implies that, for the
simultaneous diagonalization (11), a variant of the algorithm in
[7] and [8] has to be worked out, that involves -orthogonal ma-
trices. We can also work as follows. Instead of imposing -or-
thogonality, we simply start from

(15)

with some real nonsingular matrix. The procedure is essen-
tially the same, but the simultaneous diagonalization in (11) now
involves a real nonsingular matrix. For algorithms for this type
of simultaneous diagonalization we refer to [20], [40], [42], and
the references therein.

The condition on in Theorem 4 yields an
upper bound on the number of sources FOOBI can handle. We
call a property “generic” when it holds with probability one
when the entries of the mixing matrix are sampled from con-
tinuous probability density functions. We have the following
theorem.

Theorem 6: In the complex case, linear independence of
is generically guaranteed if

. In the real case, is bounded as
follows:

Remark 2: In [11], [12], and [25] it is explained that in an-
tenna array applications, the characteristics of the antennas and
the geometry of the array may induce a structure in the entries
of the higher order cumulant that limits the number of sources
that can effectively be dealt with. Such a structure is neglected
in Theorem 6. As a result, the number of sources that can be al-
lowed is bounded by the minimum of: 1) the number of sources
in Theorem 6 and 2) the maximal number of virtual sensors
(VSs), derived in [11], [12], and [25].

III. FOOBI-2 ALGORITHM

Like in the previous section, we start from the EVD
(7). Generically, as long as (complex case) or

(real case), the number of sources corre-
sponds to the rank of . In this section we assume that all
sources are super-Gaussian. (If all sources are sub-Gaussian,
then we process instead of .) This means that Theorem 2
still applies. We now introduce a new rank-1 detecting device.

Theorem 7: Consider the mapping
defined by

(16)

Then we have that if and only if is at most
rank-1.

Let and define symmetric
matrices by

The following theorem suggests a new algorithm for the com-
putation of .

TABLE II
FOOBI-2 ALGORITHM

Theorem 8: The matrix in (8) satisfies

(17)

This theorem shows that the matrix can be computed by
means of simultaneous off-diagonalization of (real
case) or (complex case) real symmetric matrices. The simul-
taneous off-diagonalization can be realized by means of a simple
variant of the Jacobi algorithm derived in [7], [8]. It suffices to
chose in each step the Jacobi rotation that minimizes (instead
of maximizes) the sum of the squared diagonal entries. Simul-
taneous off-diagonalization also appeared in [4]. The FOOBI-2
algorithm is summarized in Table II.

The iteration that forms the core of FOOBI-2 (step 4 in Al-
gorithm II) is computationally more expensive than FOOBI’s
core iteration (step 5 in Algorithm I), because the simultaneous
off-diagonalization involves more matrices. On the other hand,
FOOBI requires the computation of part of the SVD of the

matrix (step 4 in Algorithm I). Also,
FOOBI-2 is less restrictive in terms of the number of sources
that can be allowed. It only requires that (complex
case) or (real case), provided decomposition
(2) is unique. Consequently, we investigate under which condi-
tions generic uniqueness holds. (We notice that in nongeneric
cases Remark 2 still holds.)

In [16] it is stated that a decomposition in rank-1 terms is
generically unique when the number of parameters in the de-
composition is strictly smaller than the number of distinct tensor
entries. When both numbers are equal, then generically only
a finite number of decompositions are possible. In the com-
plex case, the total number of distinct real and distinct imagi-
nary parts of the entries of a generic tensor

satisfying the symmetries and
is given by

(18)

where we assume that when . On the other

hand, the number of distinct real parameters in the decompo-
sition , with real, is equal to
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. The maximal rank for which the decomposition is unique
is then given by in the following table:

Note that can be greater than . In the real case, the
number of distinct entries of a generic symmetric
tensor is equal to , while the number
of parameters in the decomposition equals . The maximal
rank for which the decomposition is unique is then given by

in the table above. Note that can be greater than
.

IV. SIMULATIONS

In the first simulation, narrow-band sources are received
by a uniform circular array (UCA) of identical sensors of
radius . We assume free-space propagation. This means that
the entries of the mixing matrix before normalization are given
by

where
and . We have

. The mixing matrix is obtained by dividing
the columns of by their Frobenius norm. We consider two
cases: and . These values of are not greater
than the number of fourth-order VSs of the UCA [11], [12],
[25]. The directions-of-arrival (DOAs) of the sources are given
by

and
. In the case ,

we consider the first five DOAs. The sources are unit-variance
QAM4 in baseband, which means that they take their values
equally likely in the set . Additive zero-mean
complex Gaussian noise is added to the data. The mixing
matrix is estimated by means of: 1) the FOOBI algorithm;
2) the FOOBI-2 algorithm; and 3) the BIRTH algorithm [2]
(or 6-BIOME1 algorithm, in the terminology of [3]), which
uses the sixth-order cumulant of the observations. (We note
that the 6-BIOME3 algorithm is somewhat more accurate
than 6-BIOME1, at the expense of a higher computation cost
[3].) The precision is measured in terms of the mean relative
error , in which the norm is the Frobenius
norm and in which represents the optimally ordered and
scaled estimate of . We conduct Monte Carlo experiments
consisting of 100 runs.

Fig. 1 shows the accuracy as a function of the SNR, when
5000 samples are used. The FOOBI and FOOBI-2 curves prac-
tically coincide. BIRTH is less accurate. We have also compared
to the AC-DC algorithm [42], applied to the dominant Her-
mitean eigenmatrices of the fourth-order cumulant. This means
that exactly the same statistics as in FOOBI and FOOBI-2 are
used. However, AC-DC failed to reliably estimate the mixture.

Fig. 2 shows the accuracy as a function of the number of data
samples , for the case . The SNR was taken equal to 16
dB. Again, the FOOBI and FOOBI-2 curves practically coincide
and BIRTH is less accurate.

Fig. 1. Accuracy as a function of SNR in the first experiment (J = 4;R =

5; 6; 5000 samples).

Fig. 2. Accuracy as a function of data length in the first experiment (J =

4;R = 5; 16 dB).

Fig. 3. Computation time as a function of data length in the first experiment
(J = 4;R = 5; 16 dB).

In Fig. 3 we compare the computational cost of the algo-
rithms. FOOBI and FOOBI-2 are about equally expensive in
this simulation. BIRTH is about a factor 40 more expensive than
FOOBI and FOOBI-2. The reason is that BIRTH requires the
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Fig. 4. Accuracy as a function of angle of first mixing vector (J = 4;R =
5; 16 dB).

estimation of cumulant entries. The estimation of the
sixth-order cumulant accounts for more than 90% of the total
computational cost. The estimation of the fourth-order cumu-
lant accounts for about 10% of the total FOOBI or FOOBI-2
cost when 200 samples are used; respectively, 70% when 5000
samples are used. The computation time varies little as a func-
tion of the SNR.

Fig. 4 shows the accuracy as a function of the condition of the
problem, for the case . The SNR was taken equal to 16 dB,
and 5000 samples were used. The figure shows what happens
when is varied from to (the latter value
is very close to ). Again, the FOOBI and FOOBI-2 curves
practically coincide. FOOBI and FOOBI-2 are more accurate
than BIRTH when the problem is well conditioned. On the other
hand, when the two mixing vectors are very close, BIRTH is
more reliable than FOOBI and FOOBI-2. The reason is that the
vectors and are less close than the
vectors and , as explained in [12].

In the second simulation, narrow-band sources are
received by a UCA of identical sensors. The number
of sources is less than the number of fourth-order VSs for this
array, which is equal to 6 [12]. However, the number of sources
is above the FOOBI bound (Theorem 6). Consequently, the
mixing matrix is only estimated by means of: 1) the FOOBI-2
algorithm and 2) the BIRTH algorithm. The DOAs of the
sources are equal to the first five DOAs in the first experiment.
All other parameters are as in the first experiment.

Fig. 5 shows the accuracy as a function of the SNR. FOOBI-2
turns out to be more accurate than BIRTH. Similar curves as in
the first experiment have been obtained for the accuracy and the
computational cost as a function of the number of samples.

Finally, we show the results of a simulation with entirely syn-
thetic data. In this simulation, there are 18 observation chan-
nels and 25 sources. The sources have unit kurtosis. The entries
of the mixing matrix are drawn from a zero-mean unit-vari-
ance complex Gaussian distribution. The columns are subse-
quently scaled to unit length. The noise-free cumulant is com-
puted directly from (3). Whenever the condition number of
is greater than 100, a new mixing matrix is generated, so that

Fig. 5. Accuracy as a function of SNR in the second experiment (J = 3;R =
5; 5000 samples).

Fig. 6. Accuracy as a function of SNR in the third experiment (J = 18; R =
25).

we do not consider severely ill-conditioned data. Additive zero-
mean Gaussian noise is added directly on the cumulant. With the
noise term represented by , the SNR is defined
as , in which the norms are Frobenius norms. The
mixing matrix is estimated by means of the FOOBI algorithm.
Fig. 6 shows the results of a Monte Carlo experiment consisting
of 100 runs.

V. CONCLUSION

In this paper we have studied the estimation of the mixing
matrix from the observed fourth-order cumulant tensor in under-
determined ICA. As long as the number of sources is less than
the number of VSs of the antenna array (if the results of [11],
[12], and [25] apply), it can be found as the rank of a matrix rep-
resentation of the cumulant. Under a specific condition on the
mixing vectors, allowing for a number of sources that increases
quadratically with the number of observations, the noise-free
solution may be found from an EVD. For noisy data we pro-
posed the FOOBI algorithm, which computes the solution by
means of a simultaneous matrix diagonalization. A second al-
gorithm, called FOOBI-2, was based on a simultaneous off-di-
agonalization. FOOBI-2 is even less restrictive in the number of
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sources than FOOBI. The algorithms are based on new results
w.r.t. the decomposition of a fourth-order symmetric tensor in a
sum of symmetric rank-1 terms. We have determined the max-
imum number of terms such that this decomposition is generi-
cally unique. Throughout the paper, both the real and the com-
plex case have been addressed. The performance of the algo-
rithms has been illustrated by means of simulations.

APPENDIX I
PROOFS

Theorem 1:
Proof: Due to the symmetry , the matrix

is Hermitean. Hence, its EVD takes the form of (5), with
columnwise orthonormal and real. The tensor can thus
be decomposed as in (4), with mutually orthonormal w.r.t.
the scalar product of matrices, and real. Consider the tensor

, defined by , and its matrix representation
. We have

(19)

in which is defined by
. On the other hand,

we have

(20)

Because of the symmetry , we have and
. In the case where all eigenvalues are different, projec-

tors and corresponding to the same eigenvalue are
equal. Hence

(21)

If is a multiple eigenvalue, then the corresponding rank-1 pro-
jectors can be chosen equal. We conclude that the projectors sat-
isfy the same symmetries as itself.

Now we show that this implies that the matrices can al-
ways be normalized to Hermitean matrices. Note that the pro-
jector does not change when is multiplied by a unit-
modulus scalar . Let . If some diagonal entry of

, say , is nonzero, then we choose such that
is real. Since we have for all

is Hermitean. If all the diagonal entries of are zero,
then we proceed as follows. First notice that (21) implies that
all . If, say, , then we multiply

by chosen such that . Since we have
is Hermitean.

The computation of tensor decomposition (4) amounts to the
computation of the classical matrix EVD in (5), in which the
eigenvectors are normalized in order to make the matrices
Hermitean, as explained in the proof. We emphasize that these
eigenmatrices are not Hermitean by default, as they may be mul-

tiplied by any unit-modulus scalar. Multiplication by even
yields anti-Hermitean eigenmatrices. We also mention that, in
the complex case, the rank can be as large as , the max-
imal rank of matrices. The equivalent of Theorem 1
for real-valued tensors is simply obtained by dropping complex
conjugations. The proof is trivial. Since the eigenmatrices are
real symmetric here, is bounded by , the dimen-
sion of the vector space of real symmetric matrices.

Theorem 2:
Proof: Both and are square

roots of the positive (semi)definite matrix . Hence, they are
related as in (8), with unitary. We will now show that

is in fact real. Consider the permutation matrix ,
defined by

elsewhere.

From the symmetry properties of the columns of and
, we have

(22)

Combination of (8) and (22) shows that is real.
Theorem 3:

Proof: The “if” part is obvious. For the “only if” part, we
start from

which implies

The latter equation can be written in matrix terms as

(23)

The case can be discarded, since it implies that
and hence , since is Hermitean. Dividing

(23) by shows that the unit trace Hermitean matrix
satisfies . Hence, is an orthogonal

projector. Moreover, since the dimension of the image space of
an orthogonal projector is equal to its trace, the rank of is
equal to one. We conclude that is rank-1. The theorem can
also be proved in analogy with [21, Th. 2.1].

Theorem 4:
Proof: We first show that every real symmetric matrix

that satisfies (10), has as eigenmatrix. Due to the bilinearity
of , we have from (8)

(24)

Substitution of (24) in (10) yields
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According to Theorem 3, we have
. Additionally taking into account the symmetry of

and the fact that is symmetric in its arguments, we obtain

(25)

If the tensors , are linearly
independent, then the coefficients in (25) have to be zero

(26)

This can be written in a matrix format as

(27)

in which is diagonal. Since linear independence of matrices
amounts to linear independence of diagonal matrices , at

most real symmetric matrices can satisfy (10). On the other
hand, it is easy to verify that any real diagonal matrix gen-
erates a real symmetric matrix that does satisfy (10). This
proves the theorem.

Theorem 5:
Proof: It suffices to prove that is Hermitean. This

can be done by computing its entries and taking into account
that the matrices are Hermitean.

Theorem 6:
Proof: The complex case is a technical variant of the proof

of [21, Th. 2.5]. The real case is analyzed in [37]. An algorithm
is described that allows to compute for any given . It is
conjectured that in the real case the bound is of the form

where

if
if

Theorem 7:
Proof: It is easy to verify that if is rank-1.

For the “only if” part, let the EVD of be given by .
We have if and only if

Hence, at most one eigenvalue can be different from zero.
Theorem 8:

Proof: Due to the bilinearity of , we have

(28)

This equation can be written in terms of as follows:

This equation is equivalent with (17) because of the link be-
tween and .
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