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Abstract An increasing number of applications are based on the manipulation of

higher-order tensors. In this paper, we derive a differential-geometric Newton method

for computing the best rank-(R1, R2, R3) approximation of a third-order tensor. The

generalization to tensors of order higher than three is straightforward. We illustrate

the fast quadratic convergence of the algorithm in a neighborhood of the solution

and compare it with the known higher-order orthogonal iteration [15]. This kind of

algorithms are useful for many problems.
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1 Introduction

Higher-order tensors are generalizations of vectors (order 1) and matrices (order 2) to

order 3 or higher. Tensor algebra is more complicated, but also richer, than matrix

algebra. For example, the rank of a matrix and its row and column ranks are always

the same whereas for tensors this is not the case. Moreover, there are two different def-

initions for rank of a tensor, each one preserving some of the properties of the matrix

rank. This paper deals with multilinear rank, as defined in [29,30]. In particular, we

discuss the best low rank-(R1, R2, . . . , RN ) approximation of a given Nth-order tensor.

The result is another tensor, as close as possible to the original one and such that it has

specified multilinear rank properties (a formal definition is given in the next section). In

the matrix case, the best low-rank approximation can be obtained from the truncated

singular value decomposition (SVD) [26]. However, in the tensor case, the truncated

higher-order SVD (HOSVD) [14] gives a suboptimal rank-(R1, R2, . . . , RN ) approxima-

tion of the tensor, which can be refined by iterative algorithms. One such algorithm is

the higher-order orthogonal iteration (HOOI) [15], which is an alternating least-squares

algorithm. In this paper, we derive a Newton algorithm using differential-geometric

techniques for quotient manifolds. Another manifold-based Newton algorithm has re-

cently been proposed in [25]. It uses the Grassmann manifold whereas the algorithm

proposed in this paper is a generalization of the geometric Newton method for Oja’s

vector field in the matrix case [1]. Quasi-Newton methods on Grassmannians have been

developed in [39]. General theory on optimization on manifolds can be found in [23,2].

In [15,46], specific algorithms for the best rank-1 approximation have been discussed.

The best rank-(R1, R2, . . . , RN ) approximation of tensors is not only of theoretical

importance but has also many applications.

One application example is dimensionality reduction for independent component

analysis (ICA) [19]. ICA applications in fields like electro-encephalography (EEG),

magneto-encephalography (MEG), nuclear magnetic resonance (NMR), hyper-spectral

image processing, etc., involve high-dimensional data in which only a few sources have

significant contributions. The best rank-(R1, R2, . . . , RN ) approximation of tensors can

be used to reduce the dimensionality of the problem from the number of observation

channels to the number of sources.

Parallel factor decomposition (PARAFAC) [27], also called canonical decomposi-

tion (CANDECOMP) [7], is a decomposition of higher-order tensors in rank-1 terms.

It is widely used in chemometrics [41] and has several applications in wireless com-

munication [40,13]. PARAFAC can also be used for epileptic seizure onset localisation

[21,20,3], since only one of its components is related to the seizure activity. However,

computing PARAFAC is a difficult problem, especially if the dimensions of the tensor

are large, so dimensionality reduction can be useful in this case as well.

Furthermore, the best rank-(R1, R2, . . . , RN ) approximation of tensors can be ap-

plied in image synthesis, analysis and recognition. For example, a set of facial images

can be represented as a higher-order tensor, where different modes of the tensor corre-

spond to different factors, such as face expression, position of the head relative to the

camera, and illumination [45].

In many signal processing applications a signal is decomposed as a sum of ex-

ponentially damped sinusoids. Given only samples of the signal, the poles and the

complex amplitudes may be estimated by means of well-known matrix methods, see

[24]. Tensor-based algorithms are developed in [38,37]. These are based on the best

rank-(R1, R2, . . . , RN ) approximation of a tensor.
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The best rank-(R1, R2, . . . , RN ) approximation of tensors has also applications in

scientific computing. It can be used for approximating higher-order tensors, obtained by

discretizing Newton potential, Slater-type functions, Yukawa and Helmholtz potentials

[31]. Finally, we mention applications in fuzzy control [6].

This paper is organized as follows. Section 2 introduces basic definitions and the

problem of the best rank-(R1, R2, R3) approximation of tensors. For simplicity, we only

consider real-valued third-order tensors. A good starting value for iterative algorithms

can be obtained by truncating the HOSVD [14], which is a multilinear generalization

of the matrix SVD [26]. HOSVD is summarized in Section 3 together with the HOOI

[15], which is a known algorithm for solving the problem of the best rank-(R1, R2, R3)

approximation. Our differential-geometric Newton method is developed in Section 4.

We use a quotient manifold structure that is discussed in the same section. In Section

5, we summarize our practical experience with the algorithm. We draw our conclusions

in Section 6.

Notation. Throughout this paper, third-order tensors are denoted by calligraphic

letters (A,B, . . .), matrices correspond to bold-face capitals (A,B, . . .), vectors are

represented by capital letters (A,B, . . .), and scalars are written as lower-case letters

(a, b, . . .). Thus, for example, the elements of a third-order tensor A are aijk = (A)ijk.

Some special scalars, such as upper bounds of indices, are denoted by capital letters

(I, I1, I2, I3, N,R, . . .) as well. The symbol “×” stands for the Cartesian product of two

sets, “⊗”stands for the Kronecker product, I is the identity matrix, OR denotes the

orthogonal group (the set of all orthogonal R×R matrices), and St(R, I) denotes the

Stiefel manifold (the set of all column-wise orthonormal I ×R matrices).

2 Problem formulation

In this section, we first present some basic definitions and notations. Then we introduce

the problem of the best rank-(R1, R2, R3) approximation of a higher-order tensor.

For simplicity, throughout the paper, we consider real-valued third-order tensors. The

generalization to complex-valued N -th order tensors with N > 3 is straightforward.

The elements of a third order tensor are referred to by three indices. The mode-1

vectors of the tensor are defined to be its columns and the mode-2 vectors are its rows.

In general, the mode-n vectors (n = 1, 2, 3) are the vectors, obtained by varying the

n-th index, while keeping the other indices fixed. The number of linearly independent

mode-n vectors is called mode-n rank. It is a generalization of column and row ranks

of a matrix. Contrary to the matrix case, different mode-n ranks are not necessarily

equal to each other.

We now define the product of a matrix and a tensor.

Definition 1 The mode-n products A •n M(n), n = 1, 2, 3 of a tensor A ∈ RI1×I2×I3
with matrices M(n) ∈ RJn×In are defined by

(A •1 M(1))j1i2i3 =
∑
i1
ai1i2i3m

(1)
j1i1

,

(A •2 M(2))i1j2i3 =
∑
i2
ai1i2i3m

(2)
j2i2

,

(A •3 M(3))i1i2j3 =
∑
i3
ai1i2i3m

(3)
j3i3

,

where 1 ≤ in ≤ In, 1 ≤ jn ≤ Jn.
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Sometimes it is useful to reorganize the elements of a higher-order tensor in a

matrix form. To do so, we first choose one of the modes of the higher-order tensor,

e.g., n. Then, all the mode-n vectors are put one after the other in a specific order. We

have the following definition.

Definition 2 The matrix representations A(n), n = 1, 2, 3 of a tensor A ∈ RI1×I2×I3
are defined as follows

(A(1))i1,(i2−1)I3+i3 = (A(2))i2,(i3−1)I1+i1 = (A(3))i3,(i1−1)I2+i2 = ai1i2i3 ,

where 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, 1 ≤ i3 ≤ I3 .

Finally, we mention that the scalar product of two tensors and the Frobenius norm

of a tensor are defined in a straightforward way.

Definition 3 The scalar product of two tensors A,B ∈ RI1×I2×I3 is defined as

〈A,B〉 =
∑
i1

∑
i2

∑
i3

ai1i2i3 bi1i2i3 .

Definition 4 The Frobenius norm of a tensor A ∈ RI1×I2×I3 is defined as

‖A‖ =
√
〈A,A〉.

The best rank-(R1, R2, R3) approximation Â ∈ RI1×I2×I3 of a third-order tensor

A ∈ RI1×I2×I3 is defined as the tensor that minimizes the least-squares cost function

f : RI1×I2×I3 → R,
f : Â 7→ ‖A − Â‖ 2 (1)

under the constraint that Â has mode-n ranks (n = 1, 2, 3), smaller or equal to R1, R2,

and R3, respectively.

It has been shown in [15,33,34] that problem (1) is equivalent to the problem of

maximizing the function

g :St(R1, I1)× St(R2, I2)× St(R3, I3)→ R,

(U,V,W) 7→ ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT A(1)(V ⊗W)‖ 2
(2)

over the matrices U,V and W (recall that St(R, I) stands for the set of column-

wise orthonormal I × R matrices). This fact is not surprising because it is a direct

generalization [19] of the matrix case. There, given a matrix A ∈ RI1×I2 , the problem

of finding the best rank-R approximation Â = U ·B ·VT with B ∈ RR×R and column-

wise orthonormal U ∈ RI1×R and V ∈ RI2×R is equivalent to the maximization of

‖UT ·A ·V‖ = ‖A •1 UT •2 VT ‖. In this paper, our goal is to solve the maximization

problem (2). In order to optimize (1), it is sufficient to determine U,V and W in (2).

Having estimated these matrices, the optimal tensor Â is computed by

Â = B •1 U •2 V •3 W,

where B ∈ RR1×R2×R3 is given by

B = A •1 UT •2 VT •3 WT .
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3 The higher-order singular value decomposition and the higher-order

orthogonal iteration method

In this section we first briefly recall a generalization of the SVD [26] to higher-order

tensors, namely the HOSVD [14]. It is a good starting point for iterative algorithms

computing the best rank-(R1, R2, R3) approximation of a higher-order tensor. More-

over, it can be shown that in the third-order case, its computation involves only three

SVDs. In the second part of the section, we present the HOOI [15], which is an alternat-

ing least squares algorithm for refining the approximation obtained by the truncated

HOSVD.

For third-order tensors the HOSVD is defined as follows.

Theorem 1 (Third-order singular value decomposition)

Every tensor A ∈ RI1×I2×I3 can be written as a product of a tensor S ∈ RI1×I2×I3
and three orthogonal matrices U(i) ∈ RIi×Ii , i = 1, 2, 3,

A = S •1 U(1) •2 U(2) •3 U(3) ,

where the matrices (subtensors) Sin=α, obtained by fixing the n-th index of S to α have

the following two properties:

– all-orthogonality: the matrices Sin=α and Sin=β are orthogonal for any n, α and

β, such that α 6= β, i.e.,

〈Sin=α,Sin=β〉 = 0 , α 6= β,

– ordering:

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In‖ ≥ 0 , for every n.

The Frobenius norms ‖Sin=i‖ are the mode-n singular values of A and the columns of

U(n) are the mode-n singular vectors. This HOSVD is a normalized representation of

the Tucker decomposition, introduced in [42,43].

The mode-n singular matrix U(n) (and the mode-n singular values) of a tensor A
can be computed as the matrix of the left singular vectors (and the singular values) of

the mode-n matrix representation A(n). Hence, the computation of HOSVD of a third-

order tensor A consists of the computation of three matrix SVDs of the matrices A(1) ∈
RI1×I2I3 , A(2) ∈ RI2×I3I1 , and A(3) ∈ RI3×I1I2 . The tensor S can be computed

through the following equality

S = A •1 U(1)T •2 U(2)T •3 U(3)T .

The latter is usually a full tensor. In general, it is not possible to reduce a higher-

order tensor to a pseudo-diagonal form by means of orthogonal transformations. Other

generalizations of the matrix SVD are also possible, focusing on different properties

of the SVD. In the literature, decompositions are considered where the tensor corre-

sponding to S is as diagonal as possible (in a least squares sense) [8,16,36], or where

the original tensor is decomposed in a minimal number of rank-1 terms (CANDE-

COMP/PARAFAC) [9,27,7,17,10], on which orthogonal constraints could be imposed

[32]. Recently, block term decompositions have been proposed as a hybrid between

Tucker/HOSVD and CANDECOMP/PARAFAC [11,12,18].
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The truncated SVD gives the best low-rank approximation of a matrix. How-

ever, the truncated HOSVD usually gives a good but not the best possible rank-

(R1, R2, . . . , RN ) approximation of a higher-order tensor. The outcome of the trun-

cated HOSVD can be refined by iterative algorithms.

The HOOI [15] is one such algorithm. It is an alternating least-squares (ALS)

algorithm for the (local) minimization of f(Â), where at each step the estimate of one

of the matrices U,V,W is optimized, while the other two are kept constant. While

optimizing with respect to the unknown orthonormal matrix U, the function g from

(2) is thought of as a quadratic expression in the components of U (the matrices V,W

stay fixed). Since

g(U,V,W) = ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT (A(1)(V ⊗W))‖ 2 ,

the columns of U ∈ RI1×R1 should build an orthonormal basis for the left R1-

dimensional dominant subspace of A(1)(V ⊗W). The solution can be obtained from

the SVD of A(1)(V ⊗W). The optimization with respect to the other two unknown

matrices V and W is performed by analogy.

The HOOI Algorithm can be summarized as follows

1. Obtain initial estimates U0 ∈ St(R1, I1), V0 ∈ St(R2, I2), W0 ∈ St(R3, I3), e.g.,

from the truncated HOSVD [14].

2. Iterate until convergence (k = 0, 1, 2, . . .)

– Compute the R1-dimensional left dominant subspace of A(1)(Vk ⊗Wk).

As columns of Uk+1, take orthonormal basis vectors of this subspace.

– Compute the R2-dimensional left dominant subspace of A(2)(Wk ⊗Uk+1).

As columns of Vk+1, take orthonormal basis vectors of this subspace.

– Compute the R3-dimensional left dominant subspace of A(3)(Uk+1 ⊗Vk+1).

As columns of Wk+1, take orthonormal basis vectors of this subspace.

3. Compute

B = A •1 UT •2 VT •3 WT ,

Â = B •1 U •2 V •3 W ,

where U, V, W are the converged matrices from step 2.

4 Differential-geometric Newton method

In this section, we derive the main algorithm of the paper. To this end, we first formulate

the solution of the optimization problem (2) as a zero of a function F . The function

F has a symmetry property by the action of the orthogonal group, which is known

to be a source of difficulty when the usual Newton method is employed to compute

the zeros of F (see [1]). In the spirit of [1], we propose a remedy to the difficulty in

the form of a differential-geometric Newton method that deals with the symmetry by

working conceptually on a quotient space where the symmetry is removed. For more

information on differential-geometric versions of Newton’s method, we refer the reader

to [28,44,5,22,35]. As in [1], we rely chiefly on the theory developed in [4,2].
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4.1 Reformulation of the problem

It follows from (2) that the matrix U ∈ St(R1, I1) is optimal if and only if [28, Th. 3.17]

its columns span the same subspace as the R1 dominant left singular vectors of the

matrix A(1)(V ⊗W). A necessary condition for this is that the column space of U is

an invariant subspace of A(1)(V ⊗W)(V ⊗W)TAT
(1), i.e.,

U S1 = A(1)(V ⊗W)(V ⊗W)TAT
(1)U (3)

for some S1 ∈ RR1×R1 . Similar equations can be derived for V and W which leads to

the following set of equations:

U S1 = A(1)(V ⊗W)(V ⊗W)TAT
(1)U ,

V S2 = A(2)(W ⊗U)(W ⊗U)TAT
(2)V ,

W S3 = A(3)(U⊗V)(U⊗V)T AT
(3) W,

(4)

for some S1 ∈ RR1×R1 , S2 ∈ RR2×R2 and S3 ∈ RR3×R3 . We define

R1(X) = UTA(1)(V ⊗W) ,

R2(X) = VTA(2)(W ⊗U) ,

R3(X) = WTA(3)(U⊗V) ,

where X = {U,V,W}. We further define an Euclidean space E by

E = RI1×R1 ×RI2×R2 ×RI3×R3 , (5)

and the function F by

F : E → E ,
X 7→ {F1(X), F2(X), F3(X)},

(6)

where

F1(X) = U R1(X)R1(X)T −A(1)(V ⊗W)(V ⊗W)TAT
(1)U ,

F2(X) = V R2(X)R2(X)T −A(2)(W ⊗U)(W ⊗U)TAT
(2)V ,

F3(X) = WR3(X)R3(X)T −A(3)(U⊗V)(U⊗V)T AT
(3) W .

We will look for X = {U,V,W} such that

F (X) = 0 ,

from which (4) follows.
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4.2 The invariance property

Notice that the functions Fi, i = 1, 2, 3 have the invariance property

Fi(XQ) = Fi(X) Qi, (7)

where XQ = {UQ1, VQ2, WQ3} and Qi ∈ ORi
, i = 1, 2, 3 are orthogonal matrices.

Thus,

F (X) = 0 ⇐⇒ F (XQ) = 0.

This means that the zeros of F are not isolated. Because of this, a Newton method

will most probably perform poorly (see, for example, [2, Prop. 2.1.2] or [1]). As in [1],

we remedy this problem by a differential-geometric approach, summarized in the next

subsection.

4.3 Differential-geometric approach

We consider an equivalence relation ∼ on Rn×p∗ , defined by

Y ∼ Y1 ⇐⇒ there exists Q ∈ Op, s.t. Y1 = YQ,

where Op is the orthogonal group (the set of all orthogonal p× p matrices) and Rn×p∗
is the set of all full-rank n×p matrices. Further, we consider the quotient Rn×p∗ /Op. It

can be proved that Rn×p∗ /Op is a quotient manifold. A description of the manifold can

be found in [1]. The general theory on Newton’s method on manifolds can be found in

[2], in a form that is chiefly based on [4]. Here we only mention some properties that

we will use later on. First, the vertical space at point Y is the tangent space to the

equivalent class of Y at Y. It is given by the following formula

VY = {YΩ : Ω = −ΩT ∈ Rp×p}.

The horizontal space HY has to be such that its direct sum with VY yields Rn×p. We

can take

HY = {YS + Y⊥K : S = ST ∈ Rp×p,K ∈ R(n−p)×p,Y⊥ ∈ Rn×(n−p)∗ ,YTY⊥ = 0} .
(8)

Finally, the projection onto HY along VY is given by

PhYZ = Z−Y skew((YTY)−1YTZ) , (9)

where skew(B) = (B−BT )/2 .

4.4 Newton’s method

As in [1], we consider the following Newton equation∣∣∣∣∣P
h
X D(PhXF )(X)[∆] = −PhXF (X) , ∆ ∈ HX

X+ = X +∆,
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where D(PhXF )(X)[∆] is the derivative of PhXF (X) along ∆ and X+ stands for the next

iterate. However, in the case of function (6), we need to work on the product manifold

M = RI1×R1
∗ /OR1

×RI2×R2
∗ /OR2

×RI3×R3
∗ /OR3

(10)

instead of the more simple manifold Rn×p∗ /Op. Hence, we need to develop a nontrivial

generalization of the algorithm proposed in [1], which involves more difficult computa-

tions. More precisely, we have the following Newton equation∣∣∣∣∣∣∣∣∣∣∣

PhU D(PhUF1)(X)[∆] = −PhUF1(X)

PhV D(PhVF2)(X)[∆] = −PhVF2(X) , ∆ = {∆1,∆2,∆3} ∈ HU ×HV ×HW .

PhW D(PhWF3)(X)[∆] = −PhWF3(X)

X+ = X +∆

(11)

In order to compute D(PhUF1)(X)[∆], we first compute

PhUF1(X) = UR1(X)R1(X)T −A(1)(V ⊗W)(V ⊗W)TAT
(1)U

+Uskew((UTU)−1R1(X)R1(X)T ) .

Here we have used that skew(S) = 0, when S is a symmetric matrix. Hence,

D(PhUF1)(X)[∆]

= ∆1R1(X)R1(X)T + U∆T1 A(1)(V ⊗W)R1(X)T + UR1(X)(V ⊗W)TAT
(1)∆1

+UUTA(1)D((V ⊗W)(V ⊗W)T )(X)[∆]AT
(1)U

−A(1)(V ⊗W)(V ⊗W)TAT
(1)∆1

−A(1)D((V ⊗W)(V ⊗W)T )(X)[∆]AT
(1)U

+∆1skew((UTU)−1R1(X)R1(X)T )

+Uskew(−(UTU)−1(∆T1 U + UT∆1)(UTU)−1R1(X)R1(X)T )

+Uskew((UTU)−1(∆T1 A(1)(V ⊗W)R1(X)T + R1(X)(V ⊗W)TAT
(1)∆1))

+Uskew((UTU)−1UTA(1)D((V ⊗W)(V ⊗W)T )(X)[∆]AT
(1)U) ,

(12)

where

D((V ⊗W)(V ⊗W)T )(X)[∆] = (∆2 ⊗W)(V ⊗W)T + (V ⊗∆3)(V ⊗W)T

+(V ⊗W)(∆2 ⊗W)T + (V ⊗W)(V ⊗∆3)T .

Similar formulas can be obtained for the other two equations in (11). Notice that (11)

is a linear system of equations in the unknown ∆. One possible way to solve it, is

by using Matlab’s GMRES solver. Our numerical experiments in Section 5 have been

solved in this way. Finally, we summarize our algorithm in Table 1.

The Newton method has local quadratic convergence to the nondegenerate zeros of

the vector field ξ onM (10) represented by the horizontal lift PhF . First, observe that

if X∗ is a zero of F (6), then the equivalence class of X∗ is a zero of ξ. It remains to

see what the nondegeneracy condition entails. One would expect that nondegeneracy



10

Table 1 Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation
of a tensor.

1. Given: initial estimates

U0 ∈ St(R1, I1), V0 ∈ St(R2, I2), W0 ∈ St(R3, I3), X0 = {U0,V0,W0} ,

taken e.g., from the truncated HOSVD.

2. Iterate until convergence (k = 0, 1, 2, . . .):

• Solve the linear system of equations:∣∣∣∣∣∣∣∣∣∣∣

Ph
U D(Ph

UF1)(Xk)[∆k] = −Ph
UF1(Xk)

Ph
V D(Ph

VF2)(Xk)[∆k] = −Ph
VF2(Xk) , ∆k = {∆k1,∆k2,∆k3} ∈ HU ×HV ×HW .

Ph
W D(Ph

WF3)(Xk)[∆k] = −Ph
WF3(Xk)

Xk+1 = Xk +∆k

3. Compute
B = A •1 UT •2 VT •3 WT ,

Â = B •1 U •2 V •3 W ,

where X = {U, V, W} is the converged triplet from step 2.

of the zeros holds under mild conditions, much as in [1]. However, in contrast to [1],

a mathematical proof of such a property remains elusive. Instead, we have obtained

numerical evidence that nondegeneracy holds under generic conditions. Indeed, over

our 103 numerical experiments, we have observed that the condition number of the

linear operator

G :H → H,

∆ 7→ PhX∗D(PhF (X∗)[∆]),

whereH = HU×HV×HW and X∗ is a zero of PhF , was always smaller than 1010. This

suggests that the zeros of PhF – viewed as a vector field on M (10) – are generically

nondegenerate. (This contrasts with the zeros of F (6) on the Euclidean space E (5);

recall that they are always degenerate in view of the invariance property (7).)

5 Numerical Experiments

In this section, we summarize our practical experience with the algorithm proposed in

this paper. Moreover, we compare the differential-geometric Newton method with the

HOOI algorithm.

We first consider a tensor T ∈ RI1×I2×I3 that is exactly rank-(R1, R2, R3). We now

assume that the data is affected by additive noise. The tensor that will be approximated

is then given by

A(σ) = T + σ ∗ E =
T
‖T ‖

+ σ ∗ E
‖E‖

, (13)
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in which E ∈ RI1×I2×I3 represents noise with elements uniformly distributed in the

interval [0, 1] and in which σ controls the noise level. If σ is small, then A(σ) has a

dominant rank-(R1, R2, R3) part. If σ is large, then A(σ) is unstructured. Normaliza-

tion does not change rank properties, so the tensor T has the same mode-n ranks as T ,
namely, (R1, R2, R3). To impose these rank conditions, T is constructed as a product

of a tensor C ∈ RR1×R2×R3 and 3 matrices Mi ∈ RIi×Ri , i = 1, 2, 3, all with elements

uniformly distributed in the interval [0, 1], in the following way

T = C •1 M1 •2 M2 •3 M3.

In Fig. 1, the dimensions of T are I1 = I2 = I3 = 20, the mode-n ranks are
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Fig. 1 Evolution of the relative norm of the gradient ‖grad g(X)‖/g(X) for the cost function
(2). The tensor A ∈ R20×20×20 is as in (13), with R1 = R2 = R3 = 5 and σ = 0.1 The starting
values are taken from the truncated HOSVD and initial 5 iterations of HOOI are performed.

(R1, R2, R3) = (5, 5, 5) and σ = 0.1. The initial matrices U0, V0 and W0 are taken

from the truncated HOSVD and 5 iterations of HOOI are performed before starting

with the differential-geometric Newton method. The reason for these initial iterations

is that a Newton method needs a good starting value. The value obtained from the

truncated HOSVD is not always in the basin of attraction of a zero of F [25]. As it can

be seen from the figure, the differential-geometric Newton method converges in fewer

iterations than HOOI.

Next, we consider a tensor A ∈ RI1×I2×I3 with elements uniformly distributed in

the interval [0, 1] and look again for the best rank-(5, 5, 5) approximation of this tensor.

We start from values taken from the truncated HOSVD and perform 20 iterations of

HOOI. Then we run both algorithms until convergence or, with a maximum of 50

iterations. In Fig. 2, the results of this experiment are given for one representative

example. The difference between the number of iterations for the two algorithms is

even greater than in the previous test. This seems to be typical for tensors that do
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Fig. 2 Evolution of the relative norm of the gradient ‖grad g(X)‖/g(X) for the cost function
(2). The tensor A ∈ R20×20×20 has elements uniformly distributed in the interval [0, 1] and
R1 = R2 = R3 = 5. The starting values are taken from the truncated HOSVD and initial 20
iterations of HOOI are performed.

not have a clearly dominant rank-(R1, R2, R3) part. However, in both cases it needs

more time per iteration than HOOI. The main computational cost of one iteration of

HOOI comes from computing the three SVDs and forming the matrices of the form

A(1)(V ⊗W). It is even not necessary to compute the whole SVDs but only the first

several left singular vectors. If we assume for simplicity that R1 = R2 = R3 = R

and I1 = I2 = I3 = I then the amount of flops for computing the singular vectors is

approximately 3(6IR4 + 11R6) [26], i.e., O(IR4 + R6). The expression A(1)(V ⊗W)

is a matrix representation of A •2 VT •3 WT . The cost for computing A •2 VT is of

order O(I3R) (see also Definition 1 in Section 2) and the number of flops necessary

for computing A •2 VT •3 WT given A •2 VT is O(I2R2). Thus, the computational

cost for A(1)(V ⊗W) is of order O(I3R). The total cost for one iteration of HOOI

is then O(I3R + IR4 + R6). For the differential-geometric Newton method, the main

computational cost comes from solving the linear system of equations (11). We use

Matlab’s GMRES solver. The products A•1 UT , A•2 VT , A•3 WT , A•2 VT •3 WT ,

etc. need to be computed only once at the beginning of the GMRES step. This can

be done with a total cost of O(I3R) flops. Each step within GMRES is dominated by

the computation of expressions like A(1)(V ⊗∆3), see (12). Since A •2 VT is already

available, the cost is O(I2R2) flops. Note that A •3 ∆T3 •2 VT = A •2 VT •3 ∆T3 so

A(1)(∆2⊗W) is as expensive as A(1)(V⊗∆3). Here we have used that V,W,∆2, and

∆3 have the same dimensions. Assuming that we require an accurate solution of the

linear system (11), the number of steps within GMRES is comparable to the dimension

of the horizontal space (8), which is O(IR). Hence, the total cost for one iteration of

the differential-geometric Newton method is O(I3R) +O(I2R2.IR) = O(I3R3) flops.
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Finally, we mention a possible disadvantage of the proposed method. As a Newton

method, it does not necessarily converge to a local maximum of (2). First, not all zeros

of F correspond to local maxima of (2). Moreover, in theory, Newton’s method can

diverge; however, we did not observe this behavior in our numerical experiments. To

favor convergence to the maximum of (2), one can initialize the Newton algorithm by

performing an HOSVD followed by a few iterations of HOOI. One could additionally

check for the negative definiteness of the Hessian H of (2). Indeed, if H is negative

definite then the converged point is a local maximum. This was the case in both

experiments shown in Fig. 1 and Fig. 2.

6 Conclusions and further research

In this paper, we have developed a differential-geometric method for computing the

best rank-(R1, R2, R3) approximation of a tensor. It is a Newton method based on

quotient manifold techniques. The advantage of the algorithm is its fast convergence

in the neighborhood of the solution. On the other hand, global convergence to the best

approximation of the tensor is not guaranteed. However, starting from a good initial

guess and performing several iterations of HOOI increases the chances of converging

to a solution.

Further research includes the development of algorithms that combine advantages

of HOOI and the differential-geometric Newton method, namely, convergence to a local

minimum of (1) with a convergence rate that is faster than linear. We will consider

both trust-region and conjugate gradient based algorithms on a quotient manifold.
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