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Glossary

x vector of components xp, 1 ≤ p ≤ P
s, x, y sources, observations, separator outputs
N number of sources
P number of sensors
T number of observed samples
⋆ convolution
A matrix with components Aij

A, B mixing and separation matrices
G, W, Q global, whitening, and separating unitary matrices
ǧ Fourier transform of g
ŝ estimate of quantity s
px probability density of x
ψ joint score function
ϕi marginal score function of source si

Φ first characteristic function
Ψ second characteristic function

E x, E{x} mathematical expectation of x
I{y} or I(py) mutual information of y
K{x;y} or K(px; py) Kullback divergence between px and py
H{x} or H(px) Shannon entropy x
L likelihood
A, B mixing, and separating (non linear) operators
cum{x1, . . . , xP } joint cumulant of variables {x1, . . . , xP }
cumR{y} marginal cumulant of order R of variable y
QT transposition
QH conjugate transposition

Q
∗

complex conjugation
Q† pseudo-inverse
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Υ contrast function
R real field
C complex field

Â estimator of mixing matrix
diagA vector whose composents are the diagonal of matrix A
Diag a diagonal matrix whos entries are those of vector a
traceA trace of matrix A
detA determinant of matrix A
meana arithmetic average of component of vector a
š(ν) Fourier transform of process s(t)
⊗ Kronecker product between matrices
⊗⊗⊗ tensor product
•j contraction over index j
krank{A} Kruskal’s k-rank of matrix A
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Chapter 1

Algebraic identification of

under-determined mixtures

P. Comon and L. De Lathauwer

underdet-chap

As in the previous chapters, we consider the linear statistical model below

x = As + b (1.1) obsmod-eq

where x denotes the P -dimensional vector of observations, s the N -dimensional
source vector, A the P × N mixing matrix and b an additive noise, which
stands for background noise as well as modeling errors. Matrix A is unknown
deterministic, whereas s and b are random and also unobserved. All quantities
involved are assumed to take their values in the real or complex field. It is
assumed that components sn of vector s are statistically mutually independent,
and that random vectors b and s are statistically independent.

The particularity of this chapter is that the number of sources,N , is assumed
to be strictly larger than the number of sensors, P . Even if the mixing matrix
were known, it would in general be quite difficult to recover the sources. In fact
the mixing matrix does not admit a left inverse, because the linear system is
under-determined, which means that it has more unknowns than equations. The
goal is to identify the mixing matrix A from the sole observation of realizations
of vector x. The recovery of sources themselves is not addressed in the present
chapter.

Note that other approaches exist that do not assume statistical independence
among sources sn. One can mention non negativity of sources and mixture (see
[50] and Chapter ??), finite alphabet (see [19] and Chapters ?? and ??) with
possibly a sparsity assumption on source values (see [41, 35] and Chapter ??).

This chapter is organized as follows. General assumptions are stated in
Section 1.1. Necessary conditions under which the identification problem is
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8 CHAPTER 1. UNDER-DETERMINED MIXTURES

well posed are pointed out in Section 1.2. Various ways of posing the problem
in mathematical terms are described in Section 1.3. Then tensor tools are
introduced in Section 1.4 in order to describe numerical algorithms in Section
1.5.

1.1 Observation model
obs-sec

In (1.1), mainly three cases can be envisaged concerning the noise:

10h1 H1.1. First, noise b may be assumed to be Gaussian. If one admits that noise
is made of a large number of independent contributions, invoking the central
limit theorem justifies this assumption.

10h2 H1.2. Second, it may be assumed to have independent components bp. Or,
more generally, it may be assumed to derive linearly from such a noise, so that
it can be written as b = A2 v, for some unknown matrix A2 and some random
vector v with independent components.

10h3 H1.3. Third, the noise may not satisfy the assumptions above, in which case it
is assumed to be of small variance.

Under hypotheses H1.1 or H1.2, (1.1) can be rewritten as a noiseless model.
In fact, we have the following:

x = [A, A2]

(
s
v

)
(1.2) obsmod2-eq

where the random vector in the right hand side may be viewed as another
source vector with statistically independent components. The price to pay is an
increase in the number of sources.

On the other hand, models (1.1) or (1.2) will be approximations under hy-
pothesis H1.3. We shall subsequently see that this leads to two different prob-
lems: the noiseless case corresponds to an exact fit of statistics such as cumu-
lants, whereas the latter leads to an approximate fit.

In the algorithms developed in this chapter, we shall be mainly concerned
by hypothesis H1.3, which is more realistic. However, identifiability results are
known under hypothesis H1.2.

1.2 Intrinsic identifiability
identif-sec

Before we look at the identification problem, it is useful to examine the iden-
tifiability conditions that are inherent in the problem. It may happen that the
actual necessary conditions that need to be satisfied in order to identify the
mixing matrix are algorithm dependent, and eventually significantly stronger.

Linear mixtures of independent random variables have been studied for years
in Statistics [38] [44], and the oldest result is probably due to Dugué (1951),
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Darmois (1953) and Skitovich (1954). However, the latter results concern mainly
identifiability and uniqueness, and were not constructive, in the sense that no
numerical algorithm could be built from their proofs.

1.2.1 Equivalent representations

Before addressing the general case, it is convenient to have a look at the case
where mixing matrix A has two (or more) collinear columns. Without restricting
the generality, assume the Q first columns of A, denoted a(q), are collinear to
the first one, that is:

a(q) = αq a(1), 1 6 q 6 Q, α1
def
= 1.

Then equation (1.1) can obviously be rewritten as

x =
[
a(1), a(Q+1), . . .a(N)

]
·





∑
q αq sq

sQ+1

...
sN




+ b.

We end up with a linear statistical model similar to (1.1), but of smaller size,
N −Q+ 1, which satisfies the same independence assumption. It is clear that
identifying the αq is not possible without resorting to additional assumptions.
Even if techniques do exist to solve this problem, they are out of the scope of
this chapter. With the hypotheses we have assumed, only the direction of vector
a(1) can be estimated. Hence from now on, we shall assume that

10h4 H1.4. no columns of matrix A are collinear.

Now assume hypotheses H1.1 and H1.4, and let y admit two noiseless rep-
resentations

y = As and y = Bz

where components of s (resp. z) have statistically independent components,
and A (resp. B) have pairwise noncollinear columns. Then we introduce the
definition below [44]:

Definition 1.1 Two representations (A, s) and (B, z) are equivalent if every
column of A is proportional to some column of B, and vice versa.

If all representations of y are equivalent, they are said to be essentially
unique, that is, they are equal up to permutation and scaling.

1.2.2 Main theorem

Then, we have the following identifiability theorem [44]:
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identif-th Theorem 1.1 (Identifiability) Let y be a random vector of the form y =
As, where sp are independent, and A does not have any collinear columns.
Then y can be represented as y = A1 s1 + A2 s2, where s1 is non Gaussian, s2

is Gaussian independent of s1, and A1 is essentially unique.

This theorem is quite difficult to prove, and we refer the readers to [44] for
further readings. However, we shall give a proof in the case of dimension P = 2
in the next section page 12.

Remark 1.1 If s2 is 1-dimensional, then A2 is also essentially unique, be-
cause it has a single column.

Remark 1.2 Note that Theorem 1.1 does not tell anything about the
uniqueness of the source vector itself. It turns out that if, in addition, the
columns of A1 are linearly independent, then the distribution of s1 is unique up
to scale and location indeterminacies [44]. But in our framework, the number of
sources exceeds the number of sensors so that this condition cannot be fulfilled.
We just give two examples below in order to make this issue clearer.

Example 1.1 (Uniqueness) Let si be independent with no Gaussian com-uniqueness-ex
ponent, and bi be independent Gaussian. Then the linear model below is iden-
tifiable, but A2 is not essentially unique whereas A1 is:

(
s1 + s2 + 2 b1
s1 + 2 b2

)
= A1 s + A2

(
b1
b2

)
= A1 s + A3

(
b1 + b2
b1 − b2

)

with

A1 =

(
1 1
1 0

)
, A2 =

(
2 0
0 2

)
and A3 =

(
1 1
1 −1

)
.

Hence the distribution of s is essentially unique. But (A1, A2) is not equivalent
to (A1, A3).

Example 1.2 (Non uniqueness) Let si be independent with no Gaussiannonuniqueness-ex
component, and bi be independent Gaussian. Then the linear model below is
identifiable, but the distribution of s is not unique [36]:

(
s1 + s3 + s4 + 2 b1
s2 + s3 − s4 + 2 b2

)
= A





s1
s2

s3 + b1 + b2
s4 + b1 − b2



 = A





s1 + 2 b1
s2 + 2 b2

s3
s4





with

A =

(
1 0 1 1
0 1 1 −1

)
.

Further details may be found in [36], [8] and [44, ch.10]. In particular, it is
pointed out in [36] that the source distributions can be obtained in a unique
fashion, even when sources cannot be extracted, provided various sufficient con-
ditions are satisfied.
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1.2.3 Core equation
defCAF-sec

The first characteristic function of a real random variable is defined as the con-
jugated Fourier transform of its probability distribution, that is, for a real ran-
dom variable x with distribution dFx, it takes the form: Φx(t) =

∫
u
e tu dFx(u),

which is nothing else but E e tx. If the random variable is multi-dimensional,
the Fourier transform is taken on all variables, leading to:

Φx(t)
def
= E e

 tTx =

∫

u

e tTu dFx(u). (1.3) defcf-eq

The second characteristic function is defined as the logarithm of the first one:

Ψx(t)
def
= log Φx(t). It always exists in the neighborhood of the origin, and is

hence uniquely defined as long as Φx(t) 6= 0. An important property of the
second characteristic function is given by the Marcinkiewicz theorem that we
recall below without proof:

Marcinkiewicz-th Theorem 1.2 (Marcinkiewicz, 1938) If a second characteristic function
Ψx(t) is a polynomial, then its degree is at most 2 and x is Gaussian.

Another basic property will be useful for our further developments. If x and
y are two statistically independent random variables, then the joint second c.f.
splits into the sum of the marginals:

Ψx,y(u, v) = Ψx(u) + Ψy(v). (1.4) sumcf-eq

This property can be easily proved by direct use of the definition Ψx,y(u, v) =
log[E exp (ux+ vy)], which yields Ψx,y(u, v) = log[E exp( ux) E exp( vy)] as
soon as x and y are independent.

Denote by Ψx(u) the joint second characteristic function of the observed
random vector x, and ψp(vp) the marginal second characteristic function of
source sp. Then, the following core equation is established:

Proposition 1.3 If sp are mutually statistically independent random variables,
and if x = As, then we have the core equation:

Ψx(u) =
∑

p

Ψsp

(
∑

q

uq Aqp

)
(1.5) core-eq

for any u in a neighborhood of the origin.

Proof: First notice that, by definition (1.3) of the characteristic function,
we have Ψx(u) = ΨAs(u) = Ψs(A

Tu). Then the remainder of the proof is an
immediate consequence of property (1.4). To see this, just notice that because
sp are independent, Ψs(v) =

∑
p Ψsp

(vp). Replacing vp by its value, i.e. the
pth row of ATu, yields (1.5). �
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In (1.5), we see that identifying the mixing matrix A amounts to decompos-
ing the multivariate joint characteristic function of x into a sum of univariate
functions, or in other words, to finding the linear combinations entering lat-
ter univariate functions. Various approach to this problem will be surveyed in
Section 1.3.

1.2.4 Identifiability in the 2-dimensional case

We are now in a position to state the proof of the identifiability theorem 1.1 in
the case where P = 2.

Darmois-th Theorem 1.4 (Darmois-Skitovic) Let si be statistically independent ran-
dom variables, and two linear statistics:

y1 =
∑

i

ai si and y2 =
∑

i

bi si.

If y1 and y2 are statistically independent, then random variables sk for which
ak bk 6= 0 are Gaussian.

It does not restrict the generality to assume that column vectors [ak, bk]T

are not collinear, as pointed out earlier in this section. This is equivalent to
saying that (1) one can group variables that are mixed with collinear columns,
and (2) one makes a change of variable by summing the corresponding sources
together. Note however that if variables are grouped together, say sp + sq, they
need to be both non Gaussian, or both Gaussian. In the latter case we may
apply a theorem on the infinite decomposability of the normal law to conclude
that sp and sq are both Gaussian.

Proof: To simplify the proof and make it more readable, we also assume
that ψp are differentiable, which is not a necessary assumption. Assume the
notations below for the characteristic functions involved:

Ψ1,2(u, v) = log E exp( y1 u+  y2 v)

Ψk(w) = log E exp( yk w), k ∈ {1, 1}

ψp(w) = log E exp( spw), p ∈ {1, . . . , N}.

From (1.4), the statistical independence between sp’s implies:

Ψ1,2(u, v) =
∑N

k=1 ψk(u ak + v bk)

Ψ1(u) =
∑N

k=1 ψk(u ak)

Ψ2(v) =
∑N

k=1 ψk(v bk)

which are in fact core equations similar to (1.5), whereas statistical independence
between y1 and y2 implies

Ψ1,2(u, v) = Ψ1(u) + Ψ2(v).
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Hence we have
∑N

k=1 ψp(u ak + v bk) =
∑N

k=1 ψk(u ak) + ψk(v bk). The equality
is trivial for terms for which akbk = 0. So from now on, one can restrict the
sum to terms corresponding to akbk 6= 0. Since the equations hold true for any
(u, v), write this equation at u+ α/aN and v − α/bN for an arbitrary α:

N∑

k=1

ψk

(
u ak + v bk + α(

ak

aN
−
bk
bN

)

)
= f(u) + g(v).

Now perform subtraction so as to cancel the Nth term, divide the result by α,
and let α→ 0; we obtain:

N−1∑

k=1

(
ak

aN
−
bk
bN

)ψ
(1)
k (u ak + v bk) = f (1)(u) + g(1)(v)

for some univariate functions f (1)(u) and g(1)(u).
Hence, we have now a similar expression, but with one term less than before

in the sum. The idea is then to repeat the procedure (N − 1) times in order to
eventually get:

N∏

j=2

(
a1

aj
−
b1
bj

) ψ
(N−1)
1 (u a1 + v b1) = f (N−1)(u) + g(N−1)(v).

As a consequence, ψ
(N−1)
1 (u a1 + v b1) is linear, as a sum of two univariate func-

tions (in fact ψ
(N)
1 is a constant because a1b1 6= 0). By succesive integrations, we

eventually see that ψ1 is a polynomial. Lastly invoke Theorem 1.2 to conclude
that s1 is Gaussian.

Now, the reasoning we have made for s1 holds valid for any sp. By repeating
the proof for any ψp such that apbp 6= 0, we would also prove that sp is Gaussian.
This concludes the proof. �

Remark 1.3 The proof found in the literature is given when ψp are not all
differentiable, but is more complicated [44, 38]. The proof can also be extended
to infinitely many variables.

Remark 1.4 The proof was derived above for real variables, but it also
holds true in the complex field. Some other interesting remarks concerning
specificities of the complex field may be found in [37]. Some issues related to
complex variables will be stated in the next sections.

1.3 Problem formulation
formul-sec

In equation (1.5), Ψx(u) is written as a sum of contributions of the individual
sources, i.e., the sources have been separated. This remains true when we apply
a linear transformation to both sides of the equation. One could for instance
compute derivatives at the origin. This leads to cumulant-based methods, see
Section 1.3.2. Specific algorithms are discussed in Sections 1.5.2.2, 1.5.4 and
1.5.5. One could also compute derivatives in different points than the origin,
see Section 1.3.1. Specific algorithms are discussed in Sections 1.5.2.3 and 1.5.6.



14 CHAPTER 1. UNDER-DETERMINED MIXTURES

1.3.1 Approach based on derivatives of the joint charac-

teristic function
sect:charderfit

The goal is hence to produce simple equations from the core equation (1.5),
whose coefficients can be estimated from realizations of observation x.

The idea discussed in this section has its roots in the proof of the theorem
of Darmois-Skitovic [44, 38]. It has been first proposed in [71] and further
developed in [25]. A variant has been proposed in [76], see also Section 1.5.3.

Consider the core equation (1.5) for values u belonging to some finite set
G of cardinality L. Assume source characteristic functions ψp all admit finite
derivatives up to order r in a neighborhood of the origin containing G. Then,
taking r = 3 as a working example [25]:

∂3Ψx

∂ui∂uj∂uk
(u) =

N∑

p=1

Aip Ajp Akp ψ(3)
p (

P∑

q=1

uq Aqp). (1.6) CAF-eq

Now denote u(ℓ) the L points of the grid G, 1 6 ℓ 6 L, and define Bℓp
def
=

ψ
(3)
p (
∑P

q=1 uq(ℓ)Aqp). The array of 3rd order derivatives may be estimated
from the observations of x. Hence the problem has now been translated into
the following: given an array Tijkℓ, find two matrices A and B such that

Tijkℓ ≈
∑

p

Aip Ajp Akp Bℓp. (1.7) CAF2-eq

In Sections 1.5.2.3 and 1.5.6, algorithms will be proposed to perform this
matching, ignoring the dependence of B on A.

Up to now, random variables have been assumed to take their values in
the real field. However, in a number of applications, e.g., telecommunications,
identification problems are posed in the complex field. For complex random
variables, one can work with proper generalizations of the characteristic func-
tions.

1.3.2 Approach based on cumulants
sect:cumfit

In this section, we shall show how the blind identification problem can be seen,
in a first approximation, as a cumulant matching problem, which will allow us
to solve it in different ways in Sections 1.5.2.2, 1.5.4 and 1.5.5.

1.3.2.1 Definitions

If Φ can be expanded in Taylor series about the origin, then its coefficients are
related to moments:

µ′x
(r)

def
= EX

r = (−)r ∂rΦ(t)

∂tr

∣∣∣∣
t=0

. (1.8) PhiExpand-eq

It is usual to introduce central moments µx
(r) as the moments of the centered

variable x− µ′x
(1).
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Similarly, if Ψ may be expanded in Taylor series about the origin, then its
coefficients are the cumulants:

κx
(r)

def
= cum{X,X, . . . , X︸ ︷︷ ︸

r times

} = (−)r ∂rΨ(t)

∂tr

∣∣∣∣
t=0

. (1.9) PsiExpand-eq

The relation between moments and cumulants can be obtained by expanding
the logarithm and grouping terms of same order together.

Example 1.3 Cumulants of order 2, 3 and 4 The cumulant of 2nd
order, κ2, is nothing else but the variance: µ′

(2) − µ
′
(1)

2
= κ(2). And for zero-

mean random variables, cumulants of order 3 and 4 are related to moments by:
κ3 = µ3 and κ4 = µ4 − 3µ2

2.

Example 1.4 Skewness and Kurtosis The skewness is a 3rd order nor-

malized cumulant: K3
def
= κ3/κ2

3/2. The kurtosis is a normalized 4th order

cumulant K4
def
= κ4/κ2

2.

Skewness and kurtosis are null for any Gaussian random variable. These
quantities can serve as measures of deviation from Gaussianity. In fact, random
variables having a negative (resp. positive) kurtosis can be called platykur-
tic (resp. leptokurtic) [45]. Conversely, random variables having zero kurtosis
(referred to as mesokurtic) are not necessarily Gaussian.

For multivariate random variables, denote the cumulants

κij..ℓ = cum{Xi, Xj , ...Xℓ}.

As explained above, expressions of moments as a function of cumulants can
be obtained by expanding the logarithm in the definition of the second char-
acteristic function and grouping terms of same order together. This yields for
instance:

µ′
i = κi,

µ′
ij = κij + κi κj , (1.10)

µ′
ijk = κijk + [3]κi κjk + κi κj κk.

In the relation above, we have used McCullagh’s bracket notation [54] defined
below.

Bracket notation A sum of k terms that can be deduced from each other
by permutation of indices is denoted by the number k between brackets followed
by a single monomial describing the generic term. This is McCullagh’s bracket
notation [54].

Example 1.5 Simple examples will do it better than a long explanation.

[3] δij δkl = δij δkl + δik δjl + δil δjk, (1.11)

[3] aij bk cijk = aij bk cijk + aik bj cijk + ajk bi cijk. (1.12)
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The presence of the bracket yields an implicit summation; all terms with r in-
dices are completely symmetric order-r tensors. The number of distinct mono-
mials that may be obtained by permutation is equal to the integer appearing
between brackets. As additional examples, the following expressions are consis-
tent:

[3] aiδjk, [6] ai aj δkl, [10] bi bj bk δlm, [35]Aijk Babcd Cijkabcd.

1.3.2.2 Relations between moments and cumulants

Relations (1.10) can be inverted in order to obtain cumulants as a function of
moments [45] [54]. In the case of non central random variables, multivariate
cumulants of order 3 and 4 can be given in a compact form as a function of
multivariate moments as:

κij = µ′
ij − µ

′
i µ

′
j , (1.13)

κijk = µ′
ijk − [3]µ′

i µ
′
jk + 2µ′

i µ
′
j µ

′
k, (1.14)

κijkl = µ′
ijkl − [4]µ′

i µ
′
jkl − [3]µ′

ij µ
′
kl

+ 2 [6]µ′
i µ

′
j µ

′
kl − 6µ′

i µ
′
j µ

′
k µ

′
l. (1.15)

On the other hand, if variables are all zero-mean, then the expressions simplify
to:

κij = µij , (1.16)

κijk = µijk, (1.17)

κijkl = µijkl − [3]µij µkl. (1.18)

At order 5 and 6 we have:

κijklm = µijklm − [10]µij µklm,

κijklmn = µijklmn − [15]µij µklmn

− [10]µijk µlmn + 2 [15]µij µkl µmn.

1.3.2.3 Properties of cumulants

Cumulants enjoy several useful properties [55]. Some of them are shared by
moments, but others are not. See also Chapter ??.

First of all, moments and cumulants enjoy the so-called multi-linearity prop-
erty:

multilinearity-prty Property 1.5 If two random variables are related by a linear transform, y =
Ax, then their cumulants are related multi-linearly:

cum{yi, yj, . . . yk} =
∑

p,q,...r

AipAjq . . . Akr cum{xp, xq, . . . xr}. (1.19) multilinearity-eq

A similar property holds for moments.
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This property actually makes that we can call moments and cumulants ten-
sors [54]. As a corollary, we have the following:

cum{αx1, x2, .., xn} = α cum{x1, x2, .., xn}, (1.20)

cum{x1 + y1, x2, .., xn} = cum{x1, x2, .., xn}+ cum{y2, x2, .., xn}.

Another obvious property directly results from the definition, namely that
of invariance by permutation of indices:

cum{X1, X2, ..Xr} = cum{Xσ(1), Xσ(2), ..Xσ(r)}.

In other words, rth order cumulants (and moments) are fully symmetric rth
order tensors.

Let’s now turn to properties that are specific to cumulants. First, they are
invariant with respect to translation; this means that ∀r > 1 and ∀h constant:

cum{X1 + h, X2, .., Xr} = cum{X1, X2, .., Xr}.

This property is sometimes referred to as the shift invariance of cumulants.
Next, cumulants of a set of random variables are null as soon as this set can be
split into two statistically independent subsets:

{X1, . . . , Xp} independent of {Y1, . . . , Yq} ⇒ cum{X1, . . . , Xp, Y1, . . . , Yq} = 0.

A consequence of this property is the additivity of cumulants.

additivity-prty Property 1.6 Let X and Y be (possibly multivariate) statistically independent
random variables. Then

cum{X1 + Y1, X2 + Y2, .., Xr + Yr} = cum{X1, X2, .., Xr}

+ cum{Y1, Y2, .., Yr}. (1.21)

1.3.2.4 Cumulants of complex random variables
cumCmplx-sec

Up to now, random variables have been assumed to take their values in the
real field. Moments and cumulants of complex random variables can be defined
starting from proper generalizations of the characteristic functions. Contrary to
real variables, there is not a unique way of defining a cumulant (or a moment)
of order r of a complex random variable; in fact, it depends on the number of
conjugated terms. It is thus necessary to be able to distinguish between complex
random variables that are conjugated and those that are not. For this purpose,
one introduces a specific notation, with superscripts:

cum{Xi, ..Xj, X
∗
k , ..X

∗
ℓ }

def
= Ck..ℓ

i..j . (1.22) cumCdef-eq

Example 1.6 The covariance matrix of a complex random variable is

E zi z
∗
j − E zi E zj

∗ = κz j
i .
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Among all the possible definitions, only one is called circular cumulant,
namely the one having exactly half of its arguments conjugated. All other
cumulants may be called non circular cumulants. Note that there exist circular
cumulants only at even orders. For instance, the cumulant below is circular

κz kℓ
ij = cum{zi, zj , z

∗
k, z

∗
ℓ }.

Exact expressions of cumulants of multivariate complex random variables
are given in the Appendix.

1.3.2.5 Blind identification via cumulant matching
cummat-sec

Combining the model (1.1) with the multi-linearity (1.19) and additivity (1.21)
properties of cumulants leads to a system of equations, which we shall solve in
Section 1.5. In order to fix the ideas, consider first cumulants of order 4 of the
observed random vector x:

κx jk
iℓ =

N∑

n=1

Ain A
∗
jn A

∗
kn Aℓn κ

s nn
nn , (1.23)

κx ℓ
ijk =

N∑

n=1

Ain Ajn Akn A
∗
ℓn κ

s n
nnn, (1.24)

κx
ijkℓ =

N∑

n=1

Ain Ajn Akn Aℓn κ
s
nnnn. (1.25)

In the equations above, the notation introduced in (1.22) has been used.
In general, the use of the circular cumulant κx kℓ

ij is preferred. But cumulant
κx

ijkℓ has also been successfully used in the identification of communication

channels [18] [30] [31] [40]. On the other hand, cumulant κx ℓ
ijl is rarely used

because it is generally close to zero. The choice of the cumulants to use depends
on the a priori we have on the source cumulants.

In Section 1.5.5, the circular cumulant of order 6,

κx kℓm
ijn

def
= cum{xi, xj , x

∗
k, x

∗
ℓ , x

∗
m, xn},

will be also used. Because again of properties (1.19) and (1.21), the equation
to solve for A is then the following, for all 6-uplet of indices:

κx kℓm
ijp =

N∑

n=1

Ain Ajn A
∗
kn A

∗
ℓnA

∗
mnApn κ

s nnn
nnn . (1.26) 6thCum-eq

1.4 Higher-order tensors
tensors-sec

For our purposes, a tensor may be assimilated to its array of coordinates. Jus-
tifications may be found in [22, sec. 2.1]; see also [26, sec. 2.1]. Hence we shall
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not make the distinction in the remainder. A tensor of order r defined on the
tensor product of r vector spaces of dimension Ni, 1 6 i 6 r, will be represented
by an array of numbers, of dimensions N1 ×N2 × · · · ×Nr.

1.4.1 Canonical tensor decomposition

1.4.1.1 Definition

rank1-def Definition 1.2 If a rth order tensor [[Tij...ℓ]] can be written as an outer product
Tij...ℓ = ui vj . . . wℓ, then it is called a rank-1 tensor.

In a compact form, one shall write rank-1 tensors as T = u⊗⊗⊗ v⊗⊗⊗ . . .⊗⊗⊗ w, where
⊗⊗⊗ denotes the outer (tensor) product.

cand-def Definition 1.3 (Tensor rank) A tensor [[Tij...ℓ]] can always be decomposed
into a sum of rank-1 tensors as

T =

r∑

n=1

un ⊗⊗⊗ vn ⊗⊗⊗ . . .⊗⊗⊗wn. (1.27) cand-eq

The minimal value of r for which the equality holds is called the rank of tensor
T.

For order-2 tensors, which are actually matrices, this definition coincides with
the usual definition of matrix rank.

When r equals rank{T}, the decomposition given in (1.27) is often referred to
as the Canonical Decomposition (CanD) of tensor T [13]. Other names appear
in the literature, such as Parafac in psychometrics and chemometrics [42] [47]
[49] [66], or Polyadic form [43] in mathematical physics. In linear algebra,
the acronym CP is now often used, and stands for CanDecomp-Parafac; see
[26] and references therein.

An alternative representation of (1.27) is obtained by imposing each vector
to be of unit modulus, and by inserting a scale factor λp in the decomposition,
which yields:

T =

r∑

n=1

λn un ⊗⊗⊗ vn ⊗⊗⊗ . . .⊗⊗⊗ wn. (1.28) normalizedCanD-eq

1.4.1.2 Symmetry

A tensor is symmetric if its entries do not change when permuting the indices.
The terminology of “supersymmetry” should be avoided [21]. When decompos-
ing a symmetric tensor, it may be relevant to impose all vectors in each outer
product of (1.28) to be the same. This leads to a CanD of the form

T =

r∑

n=1

λn un ⊗⊗⊗ un ⊗⊗⊗ . . .⊗⊗⊗ un. (1.29) symRank-eq
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Up to now, it has not yet been proved that the rank defined above under the
symmetry constraint is the same as that defined in (1.28). Hence, the rank
defined above is called the symmetric rank of T [21]. In this chapter, by the
rank of a structured tensor it will be always meant the structured rank of that
tensor. This definition applies to both real or complex symmetric tensors.

In the complex field, Hermitian symmetry is also quite important, and often
more useful than plain symmetry. Similar definitions can be introduced for
various symmetry properties. For instance, for the 4th order cumulant tensor
defined in (1.23), the rank is the minimal integer r such that the following CanD
holds:

T =

r∑

n=1

λn un ⊗⊗⊗ u∗
n ⊗⊗⊗ u∗

n ⊗⊗⊗ un (1.30) CanD-4th-eq

and similarly for the 6th order cumulant tensor (1.26),

T =
r∑

n=1

λn un ⊗⊗⊗un ⊗⊗⊗ u∗
n ⊗⊗⊗ u∗

n ⊗⊗⊗ u∗
n ⊗⊗⊗ un. (1.31) CanD-6th-eq

In the CanD above, vectors un are wished to be equal to some normalized
column of matrix A up to a scaling factor.

1.4.1.3 Link with homogeneous polynomials

The linear space of symmetric tensors of order d and dimension P can be bi-
jectively mapped to the space of homogeneous polynomials of degree d in P
variables. This property will be useful in Section 1.5.2.1. As pointed out in [17]
[54], there exist two different notations in the literature; we recall them below
and relate them.

Let x be an array of unknowns of size P , and j a multi-index of the same

size. One can assume the notation xj def
=
∏P

k=1 x
jk

k and |j|
def
=
∑

k jk. Then for
homogeneous monomials of degree d, xj, we have |j| = d.

Example 1.7 Take the example of cubics in 4 variables to fix the ideas.
One can associate every entry Tijk of a 3rd order symmetric tensor with a
monomial Tijk xixjxk. For instance, T114 is associated with T114 x

2
1x4, and thus

to T114 x[2,0,0,1]; this means that we have a map f([1, 1, 4]) = [2, 0, 0, 1].

More generally, the d−dimensional vector index i = [i, j, k] can be associated
with a P−dimensional vector index f(i) containing the number of times each
variable xk appears in the associated monomial. Whereas the d entries of i take
their values in {1, . . . , P}, the P entries of f(i) take their values in {1, . . . , d}
with the constraint that

∑
k fk(i) = d, ∀i.

As a consequence, in order to define the bijection, it suffices to associate
every polynomial p(x) with the symmetric tensor T as:

p(x) =
∑

|f(i)|=d

Ti x
f(i) (1.32) bijec-eq
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where Ti are the entries of tensor T. The dimension of these spaces is (P+d−1
d ),

and one can choose as a basis the set of monomials: B(P ; d) = {xj, |j| = d}.

Example 1.8 Let p and q be two homogeneous polynomials in P variables,
associated with tensors P and Q, possibly of different orders. Then, polynomial
pq is associated with P⊗⊗⊗ Q. In fact we have [17]:

p(x) q(x) =
∑

i

∑

j

PiQjx
f(i)+f(j) =

∑

[i j]

[P⊗⊗⊗ Q][i j] x
f([i j]).

1.4.2 Essential uniqueness
uniqueness-sec

Let us, for the sake of convenience, consider the third-order version of (1.27):

T =
r∑

n=1

un ⊗⊗⊗ vn ⊗⊗⊗ wn. (1.33) eq:Candnonnorm

Obviously, the order in which terms enter the sum are not relevant. The con-
sequence is that the triplet of matrices (U,V,W) is defined up to a common
permutation of columns. Next, if (U,V,W) corresponds to a CanD, then so
does (U∆U ,V∆V ,W∆−1

U ∆−1
V ), for any pair of diagonal invertible matrices

(∆U ,∆V ).
We see that, in the absence of additional assumptions, the best we can do

is to calculate one representative of this equivalence class of CanD solutions. In
the literature, uniqueness up to scale and permutation is sometimes referred to
as essential uniqueness. So our first goal will be to identify the conditions under
which essential uniqueness is met.

1.4.2.1 Necessary conditions for uniqueness

If tensor T is of size I × J × K, and has rank r, then the number of degrees
of freedom on the left hand side of (1.33) is IJK, whereas it is equal to (I +
J +K − 2)r on the right hand side. So the CanD will not be essentially unique
if the number of unknowns is larger than the number of equations, that is, if
IJK > (I + J +K − 2)r. More generally, we have the necessary condition:

Proposition 1.7 A dth order tensor T of dimensions P1 × P2 × . . . Pd may
have an essentially unique CanD only if:

rank{T} 6

∏d
k=1 Pk

1− d+
∑d

k=1 Pk

def
= ρ. (1.34) NecCond-eq

In other words, the rank of T should not exceed an upper bound ρ. The
closest integer larger than ρ, ⌈ρ⌉, is called the expected rank. A similar reasoning
can be carried out for symmetric tensors, using the normalized CanD expression
(1.29), and leads to:
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Proposition 1.8 A dth order symmetric tensor T of dimension P may have
an essentially unique CanD only if:

rank{T} 6

(
P+d−1

d

)

P

def
= ρs. (1.35) NecCondSym-eq

Two remarks are in order here. The first is that even when rank{T} 6 ρ
(equality may occur if ρ is integer), there may be infinitely many solutions. In
Section 1.4.2.2 we will present conditions such that there is just one solution,
up to permutation and scaling. The second remark is that, for certain dimen-
sions, even in the generic case, more than ⌈ρ⌉ terms might be necessary to
form the tensor; in other words, the generic rank might be strictly larger than
the expected rank. See [22] [20] for an easily accessible summary of these odd
properties.

1.4.2.2 Sufficient conditions for uniqueness
suf_uniq-sec

When studying the arithmetic complexity of the product of two matrices,
Kruskal obtained a sufficient condition for the essential uniqueness of the CanD
of a 3rd order tensor. This condition involved the notion of k-rank of a set of
column vectors [48]:

Definition 1.4 (Kruskal’s rank) A matrix A has k-rank kA if and only if
every subset of kA columns of A is full column rank, and this does not hold true
for kA + 1. The k-rank of a matrix A will be denoted by krank{A}.

Remark 1.5 It is important to distinguish between the k-rank and the
rank of a matrix. Remember that in a matrix of rank r, there is at least one
subset of r linearly independent columns. In a matrix of k-rank kA, every subset
of kA columns is of rank kA. Note that the k−rank is also related to what is
sometimes called the kernel of the set of column vectors, or the spark of the
matrix.

The sufficient condition developed in [48] has been later extended to tensors
of arbitrary order [63] [69], and can be stated as follows:

Theorem 1.9 A dth order tensor T of dimensions P1 × P2 × . . . Pd admits an

essentially unique CanD, as T =
∑rank{T}

n=1 λn a
(1)
n ⊗⊗⊗ a

(2)
n ⊗⊗⊗ . . .a

(d)
n , if

2 rank{T}+ d− 1 6

d∑

k=1

krank{A(k)}. (1.36) KruskalUniqueness-eq

Remark 1.6 For generic P×r matrices, the k-rank equals min(P, r). Hence,
if matrices A(k) all have more columns than rows, the sufficient condition (1.36)
can be generally simplified to

2 rank{T}+ d− 1 6

d∑

k=1

Pk, (1.37) eq:KruskalUniquenessGen
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which gives an explicit upper bound on the rank of T.

When we can assume that at least one of the tensor dimensions is “large”
(meaning that it is larger than rank{T}), a more relaxed sufficient uniqueness
condition can be derived. Let us first consider a third-order tensor T of dimen-
sions P1 × P2 × P3, with P3 > rank{T}. To be able to formulate the condition,
we need to introduce the following matrix rank-1 detection tool, which is a
variant of the tool introduced in [9]. The proof of the Theorem is given in [27].

prop:mapPhi Theorem 1.10 Consider the mapping Γ: (X,Y) ∈ CP1×P2 × CP1×P2 7−→
Γ(X,Y) = P ∈ CP1×P2×P1×P2 defined by:

pijkl = xijykl + yijxkl − xilykj − yilxkj

for all index values. Given X ∈ CP1×P2 , Γ(X,X) = 0 if and only if the rank of
X is at most one.

We now have the following sufficient condition for CanD uniqueness [27].

prop:canduniqdetlink1 Theorem 1.11 A third order tensor T of dimensions P1 × P2 × P3 admits an

essentially unique CanD, as T =
∑rank{T}

n=1 λn a
(1)
n ⊗⊗⊗ a

(2)
n ⊗⊗⊗ a

(3)
n , if the following

two conditions are satisfied:

1. A(3) is full column rank.

2. the tensors Γ(a
(1)
u a

(2)T
u ,a

(1)
v a

(2)T
v ), 1 6 u < v 6 rank{T}, are linearly

independent.

Remark 1.7 The generic version of Theorem 1.11 is that T admits an
essentially unique CanD if (i) P3 > rank{T}, and (ii) rank{T}(rank{T}− 1) 6

P1P2(P1 − 1)(P2 − 1)/2 [27]. The second condition implies that rank{T}
is roughly bounded by the product of P1 and P2. On the other hand, if
P3 > rank{T}, then the generic version (1.37) of Kruskal’s condition reduces
in the third-order case to rank{T}+ 2 6 P1 + P2, which implies that rank{T}
is roughly bounded by the sum of P1 and P2. We conclude that, if A(3) is
full column rank, Theorem 1.11 is an order of magnitude more relaxed than
Kruskal’s condition in the third-order case. Moreover, the proof of Kruskal’s
condition is not constructive, while the proof of Prop. 1.11 yields an algorithm.
This algorithm will be further discussed in Section 1.5.3.

Remark 1.8 The generic version of Theorem 1.11 depends on the symmetryrem:genreal

of T. If A(1) = A(2), then we have generic essential uniqueness if P3 > rank{T},
and

rank{T}(rank{T} − 1)

2
6

P1(P1 − 1)

4

(
P1(P1 − 1)

2
+ 1

)

−
P1!

(P1 − 4)!4!
1{P1>4}, (1.38)

where

1{P1>4} =

{
0 if P1 < 4
1 if P1 > 4

,
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as conjectured in [70]. The latter paper also presents an algorithm with which,
for any given value of P1, it can be checked whether expression (1.38) is correct.

Now let us turn to fourth-order tensors. We first introduce a third-order
tensor rank-1 detection tool [27].

prop:map3 Theorem 1.12 Consider the mappings Ω1 : (X,Y) ∈ CP1×P2×P3 ×
CP1×P2×P3 → Ω1(X,Y) ∈ CP1×P1×P2×P2×P3×P3 , Ω2 : (X,Y) ∈ CP1×P2×P3 ×
CP1×P2×P3 → Ω2(X,Y) ∈ CP1×P1×P2×P2×P3×P3 and Ω : (X,Y) ∈ CP1×P2×P3×
CP1×P2×P3 → Ω(X,Y) ∈ CP1×P1×P2×P2×P3×P3×2, defined by

(Ω(X,Y))ijklmn1 = (Ω1(X,Y))ijklmn

= xikmyjln + yikmxjln − xjkmyiln − yjkmxiln (1.39)

(Ω(X,Y))ijklmn2 = (Ω2(X,Y))ijklmn

= xikmyjln + yikmxjln − xilmyjkn − yilmxjkn. (1.40)

Then we have Ω(X,X) = 0 if and only if X is at most rank-1.

We now have the following sufficient condition for CanD uniqueness [27].

prop:canduniqdetlink2 Theorem 1.13 A fourth order tensor T of dimensions P1 × P2 × P3 × P4 ad-

mits an essentially unique CanD, as T
∑rank{T}

n=1 λn a
(1)
n ⊗⊗⊗a

(2)
n ⊗⊗⊗ a

(3)
n ⊗⊗⊗ a

(4)
n , if the

following two conditions are satisfied:

1. A(4) is full column rank.

2. the tensors {Ω(a
(1)
t ⊗⊗⊗a

(2)
t ⊗⊗⊗ a

(3)
t ,a

(1)
u ⊗⊗⊗ a

(2)
u ⊗⊗⊗a

(3)
u )}16t<u6rank{T} are lin-

early independent.

Remark 1.9 The generic version of Theorem 1.13 is that T admits an
essentially unique CanD if (i) P4 > rank{T}, and (ii) rank{T}(rank{T} −
1) 6 P1P2P3(3P1P2P3 − P1P2 − P2P3 − P3P1 − P1 − P2 − P3 + 3)/4 [27]. The
second condition implies that rank{T} is roughly bounded by the product of
P1, P2 and P3. On the other hand, if P4 > rank{T}, then the generic version
(1.37) of Kruskal’s condition roughly bounds rank{T} by the sum of P1, P2 and
P3. We conclude that, if A(4) is full column rank, Theorem 1.13 is two orders
of magnitude more relaxed than Kruskal’s condition in the fourth-order case.
Moreover, the proof of Theorem 1.13 is constructive.

In Theorems 1.11 and 1.13 we assumed that at least one of the tensor di-
mensions is larger than rank{T}. One can work in a similar way if the rank of
one matrix representation of T is larger than rank{T} (see Section 1.5.1). For
an example, we refer to the discussion of the FOOBI algorithm in Section 1.5.4.

Remark 1.10 The uniqueness properties discussed in this section, apply
to exact data. In practice, the number of mixing vectors that can be handled, is
limited by the number of available samples, the noise level and the condition of
the mixture. Moreover, in certain antenna array applications, the characteristics
of the antennas and the geometry of the array may induce a structure in the
data that by itself bounds the number of sources that can effectively be dealt
with [15, 14, 34].
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1.4.3 Computation
comp-sec

As explained above, underdetermined mixtures are estimated in this chapter by
formulating the problem in terms of a CanD of a (partially) symmetric higher-
order tensor. This decomposition may in principle be computed by means of any
general-purpose optimization method that minimizes the norm of the difference
between the given tensor and its approximation by a sum of rank-1 terms. We
mention the popular Alternating Least Squares (ALS) algorithm [42] [47] [66]
[77], conjugate gradient [59], Levenberg-Marquardt [73] and minimization of the
least absolute error [75]. It is interesting to note that, due to the multilinear
structure of the problem, the size of the optimal step in a given search direction
may be computed explicitly [57] [62]. The symmetric CanD of symmetric (2×2×
. . .× 2) tensors can be found by means of an algorithm developed by Sylvester,
see Section 1.5.2.1. Overdetermined CanD may be computed by means of the
algebraic algorithms proposed in [32] [51] [74]. These algorithms can also be
used in the core iteration of the algebraic algorithm for underdetermined CanD
presented in [27]. One of the advantages of algebraic algorithms is that they
will find the global optimum when the data are exact. Strictly speaking, there
are some iterative procedures inside (e.g., the Singular Value Decomposition
(SVD)), but these are well mastered.

Variants of these algorithms, designed for underdetermined ICA, are dis-
cussed in Section 1.5.

Concerning fitting a sum of rank-1 terms to a higher-order tensor, a comment
is in order. Because the set of tensors of rank N is not closed, the error does in
general not admit a minimum but only an infimum [52, 21]. In other words, in
general there is no best solution for the canonical factors unless the rank of T
is exactly N . In cases where there is no minimum but only an infimum, some
entries in the factor matrices will tend to infinity as the algorithm approaches
the infimum. This has been called CP-degeneracy by some authors [49] [60] [72]
[22]. This phenomenon has been the object of study the last few years [21] [33]
[46] [67] [68]. The algebraic algorithms in [32] [27] [51] [74] do not suffer from
degeneracy.

1.5 Tensor-based algorithms
tensorAlgo-sec

1.5.1 Vector and matrix representations
mapping-sec

Matrices of size M ×N can be stored in 1-dimensional arrays of size MN . We
adopt the following conventions relating X ∈ CM×N and x ∈ CMN :

x = vec(X) and X = unvec(x) ⇔ (x)(m−1)N+n = (X)mn,

1 6 m 6 M, 1 6 n 6 N.

Similarly, tensors can be stored in lower order tensors, e.g., in matrices or vec-
tors. For later use, we now define two such arrangements. First, 4th order
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cumulant tensors (1.23)

Cx
4

def
= mat(Qx) (1.41)

are stored in a P 2×P 2 Hermitian matrix, sometimes called the quadricovariance
of x. More precisely, if Qx jk

iℓ is defined as in (1.23), matrix Cx
4 = mat(Q) is

defined as follows:

(Cx
4 )(i−1)P+j,(k−1)P+ℓ = Qx jk

iℓ .

Second, 6th order cumulant tensors (1.26) can also be stored in a in a P 3×P 3

Hermitian matrix, sometimes called hexacovariance of x:

Cx
6

def
= mat(Hx). (1.42) hexacovDef-eq

In that case, matrix Cx
6 = mat(H) is defined as

(Cx
6 )P (P (i−1)+j−1)+n,P (P (ℓ−1)+m−1)+k = Hℓmn

ijk .

Consider two matrices A and B, of dimensions I×J and K×L, respectively.
The Kronecker product, denoted A⊗B, is the IK × JL matrix defined by:

A⊗B
def
=




A11 B A12 B . . .
A21 B A22 B . . .

...
...



 .

It is clear from the above that matrix A⊗B contains the coordinates of tensor
A⊗⊗⊗ B; but they should not be confused, since the former is a matrix and the
latter a 4th order tensor.

Another useful product that helps in manipulating tensor coordinates in
matrix form is the column-wise Kronecker product, also often called the Khatri-
Rao product. Now let matrices A and B have the same number of columns
J , and denote aj and bj their jth column, respectively. Then the Khatri-Rao
product A⊙B is defined as:KhatriRao

A⊙B
def
= (a1⊗b1, a2⊗b2, . . . aJ ⊗bJ ) .

Remark 1.11 As demonstrated in [14] the way cumulants are stored in a
matrix array is important, and has an impact on the number of sources that
can be localized.

1.5.2 The 2-dimensional case
algecaf-sec

1.5.2.1 Sylvester’s theorem
sylvester-sec

In this section, we concentrate on symmetric tensors of order d and dimen-
sion 2. Such tensors are bijectively associated with binary quantics, that is,
homogeneous polynomials in two variables.
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Theorem 1.14 (Sylvester, 1896) A binary quantic p(x1, x2) =∑d
i=0(

d
i ) ci x

i
1 x

d−i
2 can be written as a sum of dth powers of r distinct

linear forms in C as:

p(x1, x2) =

r∑

j=1

λj (αj x1 + βj x2)
d, (1.43) cand-eq2

if and only if (i) there exists a vector q of dimension r+1, with components qℓ,
such that 


c0 c1 · · · cr
...

...
cd−r · · · cd−1 cd



 q = 0. (1.44) sylves-eq

and (ii) the polynomial q(x1, x2) =
∑r

i=0 qi x
i
1 x

r−i
2 admits r distinct roots, i.e.

it can be written as q(x1, x2) =
∏r

j=1(β
∗
j x1 − α

∗
j x2).

The proof of this theorem is fortunately constructive [23] [21] and yields
Algorithm 1.1, as described in [7] for instance. Given a binary polynomial
p(x1, x2) of degree d with coefficients ai = (d

i ) ci, 0 6 i 6 d, define the Hankel
matrixH [r] of dimensions d−r+1×r+1 with entries H [r]ij = ci+j−2. Then the
following algorithm outputs coefficients λj and coefficients of the linear forms
ℓT

j x, for 1 6 j 6 rank{p}.

sylvester-alg Algorithm 1.1 (Sylvester)

1. Initialize r = 0.

step2-item 2. Increment r ← r + 1.

3. If the column rank of H [r] is full, then go to step 2.

4. Else compute a basis {ℓ1, . . . , ℓl} of the right kernel of H [r].

step5-item 5. Specialization:

• Take a generic vector q in the kernel, e.g. q =
∑

i µiℓi by drawing
randomly coefficients µi.

• Compute the roots of the associated polynomial q(x1, x2) =∑r
i=0 qi x

i
1 x

d−i
2 . Denote them (βj ,−αj), where |αj |

2 + |βj |
2 = 1.

• If the roots are not distinct in the projective space, try another spe-
cialization. If distinct roots cannot be obtained, go to step 2.

• Else if q(x1, x2) admits r distinct roots then compute coefficients λj ,
1 6 j 6 r, by solving the linear system below, where ai denotes (d

i ) ci





αd
1 . . . αd

r

αd−1
1 β1 . . . αd−1

r βr

αd−2
1 β2

1 . . . αd−1
r β2

r

: : :
βd

1 . . . βd
r




λ =





a0

a1

a2

:
ad




.
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6. The decomposition is p(x1, x2) =
∑r

j=1 λj ℓj(x)d, where ℓj(x) = (αj x1 +
βj x2).

Note that step 5 is a specialization only if the dimension of the right kernel is
strictly larger than 1.

1.5.2.2 Sylvester’s algorithm applied to cumulants
sylvcum-sec

From (1.32), we know that any symmetric tensor can be associated with a
homogeneous polynomial. First, consider in this section the case of 4th order
cumulants. Decomposing the 4th order cumulant tensor of 2 random variables is
equivalent to decomposing a homogeneous polynomial of degree 4 in 2 variables.
As a consequence, we can use Sylvester’s theorem described in the previous
section.

But for P = 2 sensors, the necessary condition (1.35) is never satisfied for
under-determined mixtures [23] [17]. That’s why it has been proposed in [16,
sec. 3.2] [18, sec. III] to fix the indeterminacy remaining in the decomposition
of a tensor, whose rank is larger than generic, by using jointly two 4th order
tensors of dimension 2, namely (1.23) and (1.25). This is explained in details in
the algorithm below. Variants of the algorithm are presented in [30] [31].

ALGECUM-alg Algorithm 1.2 (Algecum)

1. Compute an estimate of the two 4th order cumulant arrays κx kℓ
ij and κx

ijkℓ,
defined in Section 1.3.2.4.

2. Compute the 2× 4 Hankel matrix defined in (1.44), built on κx
ijkℓ.

3. Compute two 4-dimensional vectors v1 and v2 forming a basis of its null
space.

4. Associate the 4-way array κxkℓ
ij with a 4th degree polynomial in 4 real

variables; this polynomial lives in a linear space of dimension 35, and can
be expressed in a (arbitrarily chosen) basis of the latter.

5. For a finite subset of values θ ∈ [0, π) and ϕ ∈ [0, 2π), compute vector

g(θ, ϕ)
def
= v1 cos θ + v2 sin θ eϕ.

6. For each value (θ, ϕ), compute the three linear forms ℓj(x|θ, ϕ), 1 ≤ j ≤ 3
associated with g(θ, ϕ).

7. Express |ℓj(x|θ, ϕ)|4 in the chosen basis of the 35-dimensional linear space,
and devote uj(θ, ϕ) their coordinate vector.

8. Detect the value (θo, ϕo) of (θ, ϕ) for which κxkℓ
ij is the closest to the linear

space spanned by {u1,u2,u3}.

9. Set Lj = ℓj(θo, ϕo), and A = [L1, L2, L3], where Lj are expressed by
their two coordinates.
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1.5.2.3 Sylvester’s algorithm applied to characteristic functions
sylvchar-sec

In the previous section, we have used Sylvester’s algorithm in order to decom-
pose the 4th order cumulant tensor of a 2-dimensional random variable. We
shall see in this section how to apply the latter theorem to the characteristic
function itself.

The starting point is to take any two derivatives of the core equation (1.5),
and to combine them so as to cancel one term in the sum in (1.5). More precisely,
for any triplet of indices, (n, i, j), n ≤ N , i, j ≤ P , define the differential operator
below:

Dn,i,j
def
= Ain

∂

∂uj
− Ajn

∂

∂ui
.

Then, it is clear that for any triplet (n, i, j), Dn,i,jΨx(u) does not depend on n,

because that term involving ψn vanishes (recall that we denoted ψn
def
= Ψsn

for
the sake of simplicity).

Thus, by applying such an operator N times for all the successive values of
n, one eventually gets zero. Of course, the problem is not yet solved, because
we don’t know the entries of A, and hence the exact form of operator Dn,i,j .
However, in dimension 2, the pair (i, j) is necessarily kept fixed to (1, 2). As a
consequence, after N successive actions of D, we have:

{ N∏

n=1

Dn,i,j

}
Ψx(u) =

N∑

k=0

qk
∂NΨx(u)

∂uN−k
j ∂uk

i

= 0, ∀u ∈ Ω (1.45) derivN:eq

where qk is a known function of the unknown matrix A.

By plugging the core equation (1.5) into (1.45), we obtain:

N∑

n=1

[
N∑

k=0

qkA
N−k
jn Ak

in

]
ψ(N)

n (
∑

p

Apnup) = 0 (1.46)

where ψ
(N)
n denotes the Nth derivative of ψn. Since it is true for any vu in the

neighborhood of the origin, we have eventually:

N∑

k=0

qkA
N−k
jn Ak

in = 0, ∀n. (1.47) q2A:eq

The latter equation may be seen as a polynomial in Ain/Ajn, and can be
rooted, which would yield the N solutions for this ratio if qk were known. So
let’s now concentrate on how to estimate qk.

As suggested in Section 1.3.1, consider equation (1.45) on a grid G of L
values {u[1], . . . ,u[L]}. One can then build the over-determined linear system
H[N ]q = 0, where H[N ] is the K×N+1 matrix of Nth order derivatives given
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below:

H [N ]
def
=





∂N Ψx(u[1])

∂uN
j

∂NΨx(u[1])

∂uN−1

j
∂ui

. . .
∂NΨx(u[1])

∂uN
i

∂N Ψx(u[2])

∂uN
j

∂NΨx(u[2])

∂uN−1

j
∂ui

. . .
∂NΨx(u[2])

∂uN
i

...
...

...
...

∂NΨx(u[K])

∂uN
j

∂N Ψx(u[K])

∂uN−1

j
∂ui

. . .
∂NΨx(u[K])

∂uN
i





. (1.48) defHN:eq

The latter system allows to estimate components qk of vector q. These results
consequently lead us to the following algorithm [25] [24], able to estimate two
rows of matrix A up to a scale factor:

algecaf1-alg Algorithm 1.3 (Algecaf1)

1. Fix the number N of sources sought (the algorithm can increment on N ,
starting with N = P ).

2. Select two sensor indices [i, j], 1 ≤ [i, j] ≤ P .

3. Define a grid G of L values u[ℓ] in a neighborhood of the origin in RP ,
1 ≤ ℓ ≤ K.

4. Estimate the Nth order derivatives of the joint second characteristic func-
tion of observation [xi, xj ], ψx(u) on this grid, and store them in a matrix
H[N ] as defined in (1.48).

5. Compute the right singular vector q of H[N ] associated with the smallest
singular value.

6. Root the Nth degree polynomial whose coefficients are qk, 0 ≤ k ≤ N in
the projective space (that is, include infinity if necessary).

7. Associate each root with the ratio Ain/Ajn.

This algorithm can be made more robust by observing that similar equations
can be obtained if derivatives of order higher than N are computed. In fact,
(1.45) is still null if further derivatives are taken. For one additional derivative,
we have:

∂

∂uℓ

N∑

k=0

qk
∂NΨx(u)

∂uN−k
j ∂uk

i

= 0, (1.49) derivN+1:eq

where ℓ ∈ {i, j}. Denote H[N+1, i] and H[N+1, j] the two K×N+1 matrices
built from (1.49), and ℓ ∈ {i, j}. Then q satisfies the following linear system:




H[N ]

H[N + 1, i]
H[N + 1, j]



 · q = 0 (1.50) Hq:eq

where matrices H[N, ℓ], ℓ ∈ {i, j}, are defined by (1.49). We then obtain the
following:
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algecaf2-alg Algorithm 1.4 (Algecaf2)

1. Run steps 1 to 4 of algorithm Algecaf1.

2. Build matrices H[N + 1, i] and H[N + 1, j].

3. Compute the right singular vector q of (1.50).

4. Run steps 6 and 7 of algorithm Algecaf1.

Remark 1.12 Note that if the grid of values contains only the origin
(which implies L = 1), only cumulants of order N are required in Algorithm
1.3, and additional cumulants of order N + 1 in Algorithm 1.4. There is no
need to estimate derivatives of the characteristic function. However, taking a
few values in the neighborhood of the origin has shown to improve the results.
Computational details are omitted and can be found in [25].

1.5.3 SOBIUM family
subsect:sobium

In this section we assume that the sources are mutually uncorrelated but indi-
vidually correlated in time. The presentation is in terms of complex data, but
the method works also for real data, under somewhat more restrictive conditions
on the number of sources, see e.g. Remark 1.8. Up to a noise term, the spatial
covariance matrices of the observations satisfy [5] (see also Chapter ??):

C1
def
= Extx

H

t+τ1
= A ·D1 ·A

H

...

CK
def
= E xtx

H

t+τK
= A ·DK ·A

H (1.51)

in which Dk
def
= E sts

H

t+τk
is diagonal, k = 1, . . . ,K. One of the delays τk can be

equal to zero. The approach in this section applies to any ICA technique that
is based on a simultaneous matrix diagonalization like (1.51). Besides spatial
covariance matrices for different time lags, matrices {Ck} may correspond to
spatial covariance matrices measured at different time instances, in the case
of non-stationary sources subject to a constant mixing [61]. They may also
correspond to spatial time-frequency distributions [6]. They could for instance
also be Hessian matrices of the second characteric function of the observations,
sampled at different working points [76].

Stack the matrices C1, . . . , CK in a tensor T ∈ CP×P×K as follows:

(T)p1p2k
def
= (Ck)p1p2

, p1 = 1, . . . , P, p2 = 1, . . . , P, k = 1, . . . ,K. Then (1.51)
can be rewritten as follows:

T =
N∑

n=1

an ⊗⊗⊗ a∗
n ⊗⊗⊗dn, (1.52) eq:reform

in which
(dn)k

def
= (Dk)nn, 1 6 n 6 N, 1 6 k 6 K.
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For later use, we define D ∈ CK×N as follows:

(D)kn
def
= (Dk)nn, 1 6 n 6 N, 1 6 k 6 K.

The key observation is that decomposition (1.52) is a CanD of tensor T. The
CanD uniqueness properties (see Section 1.4.2) allow one to determine mixtures
even in the underdetermined case. One can in principle use any CanD algo-
rithm. This approach is called SOBIUM, which stands for Second-Order Blind
Identification of Underdetermined Mixtures [28].

A powerful technique can be derived if we can assume that A ⊙ A∗ and
D are tall (i.e., have at least as many rows as columns) and that they are full

column rank. Let us define a matrix representation T̄ ∈ CP 2×K of T as follows:

(T̄)(p1−1)P+p2,k = (T)p1p2k p1 = 1, . . . , P, p2 = 1, . . . , P, k = 1, . . . ,K.

Then Eq. (1.52) can be written in a matrix format as:

T̄ = (A⊙A∗) ·DT. (1.53) eq:matrix_model1

The full rank property of the two factors in this product implies that N is equal
to the rank of T̄. This is an easy way to estimate the number of sources, even
in the underdetermined case.

Let the “economy size” SVD of T̄ be given by:

T̄ = U ·Σ ·VH, (1.54) eq:svd_Y

in which U ∈ CP 2×N and V ∈ CK×N are column-wise orthonormal matrices
and in which Σ ∈ RN×N is positive diagonal. Combination of (1.53) and (1.54)
yields that there exists an a priori unknown nonsingular matrix F ∈ CN×N that
satisfies:

A⊙A∗ = U ·Σ · F. (1.55) eq:defin_F

Matrix F can be found by imposing the Khatri-Rao structure in the left-hand
side of this equation. This Khatri-Rao structure is a vectorized form of a matrix
rank-1 structure. We work as follows.

Define H = UΣ ∈ CP 2×N and Hn = unvec(hn) ∈ CP×P , n = 1, . . . , N . Eq.
(1.55) can now be written as:

Hn =

N∑

t=1

(ata
H

t ) (F−1)tn. (1.56) eq:defH

The rank-1 structure of ata
H

t is exploited by using the mapping Γ, defined in
Theorem 1.10. From the set of matrices {Hn}, we construct the set of N2

tensors {Prs
def
= Γ (Hr,Hs)}16r,s6N . Due to the bilinearity of Γ, we have from

(1.56):

Prs =
N∑

t,u=1

(F−1)tr(F
−1)usΓ (ata

H

t , aua
H

u) . (1.57) eq:phist
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We now check whether there exists a symmetric matrix M ∈ CN×N that is
a solution to the following set of homogeneous linear equations (it will soon
become clear that such a solution indeed exists):

N∑

r,s=1

MrsPrs = O. (1.58) eq:defM

Substitution of (1.57) in (1.58) yields:

N∑

r,s=1

N∑

t,u=1

(F−1)tr(F
−1)usMrsΓ (ata

H

t , aua
H

u) = O. (1.59) eq:substphiM

Using the symmetry of M, the fact that Γ is symmetric in its arguments and
Theorem 1.10, (1.59) can be reduced to:

N∑

r,s=1

N∑

t,u=1

t<u

(F−1)tr(F
−1)usMrsΓ (ata

H

t , aua
H

u) = O. (1.60) eq:sum_rs_pq

We now assume, like in the second condition of Prop. 1.11, that the tensors
Γ (ata

H

t , aua
H

u), 1 6 t < u 6 N , are linearly independent. Then (1.60) can only

hold if the coefficients
∑N

r,s=1(F
−1)tr(F

−1)usMrs vanish when t 6= u. (If t = u,
then Γ (ata

H

t , aua
H

u) = O because of Prop. 1.10.) This can be expressed in
matrix terms as follows:

M = F ·Λ ·FT, (1.61) eq:defM2

in which Λ is diagonal. It is easy to verify that any diagonal matrix Λ generates
a matrix M that satisfies Eq. (1.58). Hence, solving (1.58) yields N linearly
independent matrices {Mn}, which can be decomposed as

M1 = F ·Λ1 ·F
T

...

MN = F ·ΛN ·F
T, (1.62)

in which Λ1, . . . ,ΛN are diagonal. Note that, if the covariance matrices {Ck}
are such that tensor T satisfies the two conditions in Theorem 1.11, then the
exact solution of the underdetermined problem may be found by means of an
Eigenvalue Decomposition (EVD). Indeed, F can be found from the EVD

M1 ·M
−1
2 = F · (Λ1 ·Λ

−1
2 ) ·F−1.

If M2 is singular, or if M1 ·M
−1
2 has coinciding eigenvalues, then one may work

with linear combinations of {Mn}. In the case of inexact data, it is preferable to
take all matrices in (1.62) into account. Eq. (1.62) may be solved by means of
any method for joint approximate nonorthogonal matrix diagonalization, such
as the algorithms presented in [32] [59] [74] [77] and references therein.
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Once matrix F has been found from (1.62), the mixing matrix A can be

found from (1.55). Define Ã = A⊙A∗ ∈ CP 2×N and Ãn = unvec(ãn) ∈ CP×P ,
n = 1, . . . , N . Then the rank of Ãn is theoretically equal to 1: Ãn = anaH

n.
Consequently, an can, up to an irrelevant scaling factor, be determined as the left
singular vector associated with the largest singular value of Ãn, n = 1, . . . , N .

alg:sobium Algorithm 1.5 (Sobium, case N 6 K ) 1. Estimate the covariance ma-
trices C1, . . . ,CK . Define T̄ = [vec(C1) · · · vec(CK)].

2. Compute the SVD T̄ = U ·Σ ·VH. H = U ·Σ. The number of sources N
equals rank(T̄).

3. Compute Pst = Γ(Hs,Ht), 1 6 s 6 t 6 N .

4. Compute N linearly independent symmetric matrices Mn that (approxi-

mately) satisfy
∑N

r,s=1MrsPrs = O.

5. Compute nonsingular F that best simultaneously diagonalizes the matrices
Mn.

6. Compute Ã = U ·Σ ·F.

7. Estimate mixing vector an as the dominant left singular vector of Ãn =
unvec(ãn), n = 1, . . . , N .

1.5.4 FOOBI family
subsect:foobi

In this section we work with the quadricovariance, defined in Sections 1.3.2.5
and 1.5.1. The presentation is in terms of complex data, but the method works
also for real data, under somewhat more restrictive conditions on the number of
sources. Eq. (1.23) is a CanD of the fourth-order cumulant tensor. The CanD
uniqueness properties (see Section 1.4.2) allow one to determine mixtures even
in the underdetermined case. This approach is called FOOBI, which stands for
Fourth-Order-Only Blind Identification [9] [29].

Eq. (1.23) can be written in a matrix format as follows:

Cx
4 = (A⊙A∗) ·∆4 · (A⊙A∗)H, (1.63) eq:CANDsym2m

where ∆4 is the N×N diagonal matrix containing the 4th order source marginal
cumulants. We have the following theorem [29].

theor:EVDSS4 Theorem 1.15 Consider a tensor T ∈ CP×P×P×P , satisfying the symmetries
tklij = t∗ijkl and tjilk = t∗ijkl, and its matrix representation T̄ = mat(T) ∈

CP 2×P 2

. The matrix T̄ can be eigen-decomposed as

T = E ·Λ ·EH, (1.64) eq:propeig2

in which E ∈ CP 2×N is column-wise orthonormal, with e(p1−1)P+p2,n =
e∗(p2−1)P+p1,n, p1, p2 = 1, . . . , P , n = 1, . . . , N , and in which Λ ∈ CN×N is
a diagonal matrix of which the diagonal elements are real and nonzero. N is
the rank of T̄.
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From this theorem we have that Cx
4 can be decomposed as

Cx
4 = E ·Λ · EH. (1.65) eq:tensevd2

This matrix EVD may be easily computed. Note that N is equal to the rank
of Cx

4 . This is an easy way to estimate the number of sources, even in the
underdetermined case.

We now assume that all sources have strictly positive kurtosis. The more
general situation will be addressed in Remark 1.13. From Eq. (1.63) it follows
that Cx

4 is positive (semi)definite. We have the following theorem [29].

theor:EVDPARAFAC Theorem 1.16 Let Cx
4 be positive (semi)definite and assume that it can be

decomposed as in (1.63) and (1.65). Then we have:

(A⊙A∗) · (∆4)
1/2 = E ·Λ1/2 ·V, (1.66) eq:squareroot

in which V is real (N ×N) orthogonal.

Eq. (1.66) is analogous to the SOBIUM equation (1.55). The matrix V can
be determined by exploiting the Khatri-Rao structure of A⊙A∗. The following
rank-1 detection tool was used in the original FOOBI algorithm [9] [29]. HP×P

represents the space of (P × P ) Hermitean matrices.

theor:rank1a Theorem 1.17 Consider the mapping Γ̃ : (X,Y) ∈ HP×P × HP×P →
Γ̃(X,Y) ∈ CP×P×P×P defined by

(Γ̃(X,Y))ijkl = xijy
∗
kl + yijx

∗
kl − xiky

∗
jl − yikx

∗
jl. (1.67) eq:rank1det1

Then we have that Γ̃(X,X) = 0 if and only if X is at most rank-1.

Analogous to SOBIUM, we define a matrix H
def
= E · Λ1/2, Hermitean

matrices Hs
def
= unvec(hs) and we construct a set of N2 fourth-order ten-

sors {Prs
def
= Γ̃ (Hr,Hs)}16r,s6N . Then we look for a real symmetric matrix

M ∈ RN×N that is a solution to the following set of homogeneous linear equa-
tions:

P∑

r,s=1

MrsPrs = O. (1.68) eq:defMfoobi

We assume that the tensors Γ̃ (ata
H

t , aua
H

u), 1 6 t < u 6 N , are linearly
independent. This corresponds to the second condition of Prop. 1.11. It turns
out that, under this condition, (1.68) has N linearly independent solutions,
which can be decomposed as:

M1 = V ·D1 ·V
T

...

MN = V ·DN ·V
T, (1.69)
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in which D1, . . . ,DN ∈ RN×N are diagonal. The difference with (1.62) is that
all matrices are real, even when Cx

4 is complex, and that V is orthogonal. Note
that, in the case of exact data, the solution of the underdetermined problem
may be found by means of an EVD. Indeed, every equation in (1.69) is an
EVD of a real symmetric matrix. In the case of inexact data, it is preferable
to take all matrices in (1.69) into account. The joint approximate orthogonal
matrix diagonalization problem may be solved by means of the Jacobi iteration
presented in [11] [12]. Once matrix V has been found from (1.69), the mixing
matrix A can be found from (1.66) in a similar way as in SOBIUM.

alg:foobi Algorithm 1.6 (Foobi) 1. Estimate the quadricovariance Cx
4 of the data.

2. Compute the EVD Cx
4 = E·Λ·EH. H = E·Λ1/2. The number of sourcesN

equals rank(Cx
4 ). Normalize the eigenvectors such that Hn = unvec(hn),

1 6 n 6 N , is Hermitean.

3. Compute Pst = Γ̃(Hs,Ht), 1 6 s 6 t 6 N .

4. Compute N linearly independent real symmetric matrices Mn that (ap-

proximately) satisfy
∑N

r,s=1MrsPrs = O.

5. Compute orthogonal V that best simultaneously diagonalizes the matrices
Mn.

6. Compute F = E ·Λ1/2 ·V.

7. Estimate mixing vector an as the dominant left singular vector of
unvec(fn), n = 1, . . . , N .

Remark 1.13 In the derivation above, we have assumed that all sourcesrem:mixedsign

are strictly leptokurtic. If all the sources all have strictly negative kurtosis, then
we simply process −Cx4 . When not all kurtosis values have the same sign, (1.66)
can be replaced by

A⊙A∗ = E ·V, (1.70) eq:squareroot2

in which now V is real nonsingular instead of orthogonal. Eq. (1.69) then
becomes a nonorthogonal joint diagonalization problem, like in SOBIUM.

In the remainder of this section, we assume that all the sources are strictly
leptokurtic. (If all the sources are strictly platykurtic, then we process −Cx

4

instead of Cx
4 ).

Generically, as long as N 6 P 2 (complex case) or N 6 P (P + 1)/2 (real
case), the number of sources corresponds to the rank of Cx

4 and Theorem 1.16
still applies. We now introduce a new rank-1 detecting tool [29].

theor:rank1c Theorem 1.18 Consider the mapping Θ : (X,Y) ∈ HP×P × HP×P →
Θ(X,Y) ∈ HP×P defined by

Θ(X,Y) = XY − trace(X)Y + YX− trace(Y)X. (1.71) eq:rank1det3

Then we have that Θ(X,X) = 0 if and only if X is at most rank-1.
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Define H ∈ CP 2×N and Hs = mat(hs) ∈ CP×P , s = 1, . . . , N , as above.
Also define symmetric matrices Bp1p2

∈ CN×N by

(Bp1p2
)st = (Θ(Hs,Ht))p1p2

, 1 6 p1, p2 6 P, 1 6 s, t 6 N.

The following theorem leads to a new algorithm for the computation of V [29].

theor:simoff Theorem 1.19 The matrix V in Eq. (1.66) satisfies

diag(VT ·Real(Bp1p2
) ·V) = 0, 1 6 p1 6 p2 6 P,

diag(VT · Imag(Bp1p2
) ·V) = 0, 1 6 p1 < p2 6 P. (1.72)

This theorem shows that the matrix V can be computed by means of simul-
taneous off-diagonalization of a number of real symmetric matrices. One can
use a simple variant of the Jacobi algorithm derived in [11, 12], the difference
being that one should chose in each step the Jacobi rotation that minimizes
(instead of maximizes) the sum of the squared diagonal entries. Simultaneous
orthogonal off-diagonalization was also used in [4].

alg:foobi2 Algorithm 1.7 (Foobi-2) 1. Estimate the quadricovariance Cx
4 of the

data.

2. Compute the EVD Cx
4 = E·Λ·EH. H = E·Λ1/2. The number of sourcesN

equals rank(Cx
4 ). Normalize the eigenvectors such that Hn = unvec(hn),

1 6 n 6 N , is Hermitean.

3. Compute Θ(Hs,Ht), 1 6 s 6 t 6 N . Stack the results in Bp1p2
, 1 6 p1 6

p2 6 P .

4. Compute orthogonal V that best simultaneously off-diagonalizes the ma-
trices {Real(Bp1p2

)} and {Imag(Bp1p2
)}.

5. Compute F = E ·Λ1/2 ·V.

6. Estimate mixing vector an as the dominant left singular vector of
unvec(fn), n = 1, . . . , N .

1.5.5 BIOME family
subsect:biome

.
The algorithm we describe in this section, Birth, is using 6th order cu-

mulants as in [2], but other orders can be considered as shown in [3], where a
general family of algorithms called Biome−2q is described. We shall restrict
our attention to the former, which actually corresponds to Biome−6.

The basic idea is that the hexacovariance Cy
6 defined in (1.42) enjoys the

property below
Cy

6 = A⊙ 3 ∆6 A⊙ 3H

where ∆6 is the N×N diagonal matrix containing the 6th order source marginal
cumulants. In fact, this is another way of writing the multi-linearity property
1.5, with the help of the Khatri-Rao product. If we define a full rank square root
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matrix of Cy
6 , denoted C

y 1/2
6 , then it is related to A⊙ 3 up to an (unknown)

unitary matrix V:

C
y 1/2
6 = A⊙ 3∆

1/2
6 V.

The problem is that none of the three matrix factors in the right hand side is
known. But there is a redundancy in the left-hand side, which can be exploited.
This is done in the algorithm below, by rewriting the above equation for each

P 2 ×N submatrix Γ[n] of C
y 1/2
6 , as:

Γ[n] = (A⊙AH)D[n]∆
1/2
6 V

where D[n] is the diagonal matrix containing te nth row of A, 1 6 n 6 P .
Hence matrices Γ[n] share the same common right singular subspace defined by
V. Yet, if we notice that we can get rid of the unknown factor (A⊙AH) by
computing the product between a pseudo-inverse Γ†[m] and Γ[n], then we see
that V can be eventually obtained via the EVD of the Hermitian matrix

Θm,n
def
= Γ†

mΓn = VH
(
D[m]−1D[n]

)
V.

This can be done for any pair of indices (m,n), m 6= n. But it is more stable
to do it for all of them simultaneously. Once matrix V has been obtained this

way, matrix A⊙ 3 is obtained up tio a scale factor with the product C
y 1/2
6 VH.

As a conclusion, the whole Birth algorithm can be described as follows

alg:birth Algorithm 1.8 (Birth) 1. Estimate 6th order cumulants of observation y
and store them in the hexacovariance matrix Cy

6 , of size P 3×P 3 as defined
in (1.42).

2. Compute a square root C
y 1/2
6 of Cy

6 , of size P 3 ×N , e.g. via an EVD.

3. Cut C
y 1/2
6 into P blocks Γn each of size P 2N .

4. Compute the P (P −1)/2 products Θm,n
def
= Γ†

mΓn and jointly diagonalize
them (approximately), so that Θm,n ≈ VΛ[m,n]VH, where V is N ×N
unitary.

5. Compute Â⊙ 3 = (Cy
6 )1/2VH.

6. Store each of the N columns of Â⊙ 3 in a vector bn of size P 3.

7. Transform each vector bn in a family of P matrices of size P×P . Compute
the common dominant eigenvector, ân, of these Hermitian matrices.

8. Stack column vectors ân to form matrix Â.

Several variants are described in [2], each allowing to obtain vectors ân with
better accuracy levels, to the price of an increased computational complexity.
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1.5.6 ALESCAF and LEMACAF
alescaf-sec

In this section, we elaborate on the calculation of the solution of (1.7). The goal
is to minimize the fitting error [25] [24]:

Υ = ||T−

rank{T}∑

n=1

λn an ⊗⊗⊗ an ⊗⊗⊗an ⊗⊗⊗ bn||
2 (1.73) optimCAF-eq

where Λ is a N ×N ×N ×N diagonal tensor containing ones in its diagonal.

Beside the fact that this tensor has a partial symmetry (in fact in the first
three modes), this minimization problem is similar to that for general tensors:

Υ = ||T−

rank{T}∑

n=1

λn an ⊗⊗⊗ bn ⊗⊗⊗ cn ⊗⊗⊗dn||
2. (1.74) optimGene-eq

So let’s look at this slightly more general problem first and solve it by means of
an ALS scheme.

ALESCAF-alg Algorithm 1.9 (Alescaf) [25]

1. Define a grid G containing L points of CP .

2. For every point u of G, compute the derivative tensor T(u).

3. Initialize, possibly randomly, quantites a(k). Denote A[1], A[2] and A[3]
matrices containing initial values.

4. Execute the ALS algorithm from t = 1 and until stopping criterion is
reached:
BT[3t] = (A[3t]⊙A[3t− 1]⊙A[3t− 2])−1 TN3×L

AT[3t+ 1] = (A[3t]⊙A[3t− 1]⊙B[3t])−1 TN2L×N

AT[3t+ 2] = (A[3t+ 1]⊙A[3t]⊙B[3t])−1 TN2L×N

AT[3t+ 3] = (A[3t+ 2]⊙A[3t+ 1]⊙B[3t])−1 TN2L×N .

One could also regularize the optimization criterion by adding a penalty term
involving the norm of the columns, as in [58], which yields the new objective:

ΥR = ||T−

rank{T}∑

p=1

λp ap ⊗⊗⊗ bp ⊗⊗⊗ cp ⊗⊗⊗dp||
2 + η

N∑

p=1

||ap||
2+ ||bp||

2+ ||cp||
2+ ||dp||

2

(1.75) optimRegul-eq

if we decide to assign the same weight η to every penalty term.
Another way is to leave the diagonal tensor Λ take free values, but to con-

straint loading matrices {A,B,C,D} to have a unit norm. It is easy to see that
the two latter approaches are the same, as pointed out in [52].

Now let’s go back to our original problem (1.73) and give the example of the
Levenberg-Marquardt implementation presented in [22].
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LEMACAF-alg Algorithm 1.10 (Lemacaf) 1. Define a grid G containing L points of CP .

2. For every point u of G, compute the derivative tensor T(u).

3. Initialize, possibly randomly, quantities βk(u) and a(k). Denote B[0] and
A[0] the matrices containing these initial values.

4. Arrange all values of βk(u) and a(k) in a vector p of size (P +L)N . The
penalty term in (1.75) is now just η ||p||2. For t=1 and until stop, do:

• Compute the gradient g[t] of ΥR at p[t].
• Compute the Jacobian J[t] of ΥR at p[t].
• Compute p[t+ 1] = p[t]− [J[t]HJ[t] + λ[t] I]−1 g[t].

The delicate issue in such algorithms is the choice of parameter λ[t]. We refer
to optimization textbooks for this important question [53] [39].

1.5.7 Other algorithms

We have reviewed algorithms that exploit the mutual statistical independence
between sources. All these algorithms are based on the fact that the problem
can be formulated in terms of a CanD of a tensor that enjoys symmetries. In
some cases there exist closed form solutions.

Other algorithms have not been mentioned. In particular, the decomposition
of symmetric tensors in the complex field has been addressed in [7] for dimen-
sions larger than 2. Bayesian approaches are addressed in Chapter ??. Algo-
rithms exploiting sparseness properties or nonnegativity constraints are studied
in Chapters ?? and ??, respectively.

An important class of approaches, which we consider as quite promising,
consists of working directly on the data arranged in tensor format. This avoids
to resort to statistics of the data, and hence does not need the assumption of
source independence. On the other hand, the availability of some diversity in
the measurements is required. To build a data tensor from measurements is
often the actual challenge, but it has been successfully addressed in a number
of applications [64] [65] [66].

In this context, several deterministic algorithms devoted to blind identifi-
cation have been developed. They range from descent or Newton algorithms,
Alternating Least Squares (ALS) [42] [66] [22], Levenberg-Marquardt [56] [22]
[73] or conjugate gradient [59], to global line search techniques, e.g., the so-
called Enhanced Line Search (ELS) algorithm [62] [57]. Note that uniqueness
conditions, already tackled in Section 1.4.2, and reported in [22], can sometimes
be improved [27] [26].

1.6 Appendix: expressions of complex cumu-

lants
cumulants-app

In this appendix, we only give expressions of cumulants for zero-mean complex
variables that are distributed symmetrically with respect to the origin. However,
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they do not need to be circularly distributed. Below, cumulants are denoted
with κ and moments with µ. As before, superscripts correspond to variables that
are complex conjugated, and McCullagh’s bracket notation [54] is used, with
an obvious extension to the complex case [1]; note that in [10] the cumulant
expressions are incomplete, and assume that random variables are circularly
distributed. The notation [2̄] means twice the real part of the argument. We
have for orders 4 and 6:

κijkℓ = µijkℓ − [3]µijµkℓ,

κℓ
ijk = µℓ

ijk − [3]µijµ
ℓ
k,

κkℓ
ij = µkℓ

ij − [2]µk
i µ

ℓ
j − µijµ

kℓ,

κijkℓmn = µijkℓmn − [15]µijkℓµmn + 2[15]µijµkℓµmn,
κn

ijkℓm = µn
ijkℓm − [5]µijkℓµ

n
m − [10]µn

ijkµℓm

+2[15]µijµkℓµ
n
m,

κmn
ijkℓ = µmn

ijkℓ − µijkℓµ
mn − [8]µm

ijkµ
n
ℓ − [6]µmn

ij µkℓ

+[6]µijµkℓµ
mn + 2[12]µijµ

m
k µ

n
ℓ ,

κℓmn
ijk = µℓmn

ijk − [3]µℓ
ijkµ

mn − [9]µℓm
ij µ

n
k − [3]µijµ

ℓmn
k

+2[9]µijµ
ℓ
kµ

mn + 2[6]µℓ
iµ

m
j µ

n
k ,

and eventually for order 8:

κijkℓmnpq = µijkℓmnpq − [28]µijkℓmnµpq − [35]µijkℓµmnpq

+2[210]µijkℓµmnµpq − 6[105]µijµkℓµmnµpq,
κq

ijkℓmnp = µq
ijkℓmnp − [7]µijkℓmnµ

q
p − [21]µq

ijkℓmµnp

−[35]µijkℓµ
q
mnp + 2[105]µq

ijkµℓmµnp

+2[105]µijkℓµmnµ
q
p − 6[105]µijµkℓµmnµ

q
p,

κpq
ijkℓmn = µpq

ijkℓmn − µijkℓmnµ
pq − [12]µp

ijkℓmµ
q
n

−[15]µpq
ijkℓµmn − [15]µijkℓµ

pq
mn − [20]µp

ijkµ
q
ℓmn

+2[15]µijkℓµmnµ
pq + 2[30]µijkℓµ

p
mµ

q
n

+2[120]µp
ijkµℓmµ

q
n + 2[45]µpq

ij µkℓµmn

−6[15]µijµkℓµmnµ
pq − 6[90]µijµkℓµ

p
mµ

q
n,

κnpq
ijkℓm = µnpq

ijkℓm − [3]µn
ijkℓmµ

pq − [15]µnp
ijkℓµ

q
m

−[10]µnpq
ijk µℓm − [5]µijkℓµ

npq
m − [30]µn

ijkµ
pq
ℓm

+2[15]µijkℓµ
n
mµ

pq + 2[30]µn
ijkµℓmµ

pq

+2[60]µn
ijkµ

p
ℓµ

q
m + 2[90]µnp

ij µkℓµ
q
m

+2[15]µnpq
i µjkµℓm

−6[45]µijµkℓµ
n
mµ

pq − 6[60]µijµ
n
kµ

p
ℓµ

q
m,

κmnpq
ijkℓ = µmnpq

ijkℓ − [6]µmn
ijkℓµ

pq − [6]µmnpq
ij µkℓ − [16]µmnp

ijk µq
ℓ

−[16]µm
ijkµ

npq
ℓ − [18]µmn

ij µpq
kℓ − µijkℓµ

mnpq

+2 [2̄]([3]µijkℓµ
mnµpq + [48]µm

ijkµ
n
ℓ µ

pq)

+2[36]µmn
ij µkℓµ

pq + 2[72]µmn
ij µp

kµ
q
ℓ

−6[72]µijµ
m
k µ

n
ℓ µ

pq − 6[24]µm
i µ

n
j µ

p
kµ

q
ℓ

−6[9]µijµkℓµ
mnµpq.
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