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Abstract— In this paper we consider higher-order cumulant
based methods for the blind estimation of a single-input
single-output finite impulse response system driven by a non-
Gaussian signal. This problem can be interpreted as a particular
polynomial optimization problem. Using the link between this
problem and the parallel factor decomposition of a third-order
tensor we present a new representation of the cost function
and give an explicit expression for its complex gradient. Then
we explore convergence/non convergence of the single-step least-
squares algorithm and improve it by enhanced line/plane search
procedures.

I. INTRODUCTION

Consider a Single-Input Single-Output (SISO) Finite Im-
pulse Response (FIR) communication channel for which the
output signal y(n), after sampling at the symbol rate, is
written as follows:

y(n) = x(n) + v(n), x(n) =
L∑

l=0

hls(n− l),

where s(n) is the input sequence and v(n) is additive
Gaussian noise.

Numerous blind FIR system identification methods have
been proposed in the literature. These methods are widely
used in signal processing applications such as channel
equalization in data communication, time delay estimation,
array processing, source separation, etc. An important family
of blind equalization algorithms identify a communication
channel model based on fitting higher-order cumulants. An
interesting property of Higher-Order Statistics (HOS) tech-
niques is that they are insensitive to additive (possibly col-
ored) Gaussian noise. HOS based methods are very useful in
dealing with non-Gaussian and/or non-minimum phase linear
systems. HOS-based methods pose a nonlinear optimization
problem that can be reformulated in multilinear algebra terms
as follows [3]:

find the Canonical or Parallel Factor Decomposition
(CANDECOMP/PARAFAC) of a third-order tensor
composed of fourth-order output cumulant values.
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This third-order tensor has certain symmetry properties,
and its factors in the PARAFAC decomposition have a
Hankel structure, see Eqs. (polysys–cost function 3) below.

The algorithms used to find the PARAFAC decomposition
are most often based on Alternating Least Squares (ALS)
initialized by either random values or values calculated by
a direct trilinear decomposition based on the generalized
eigenvalue problem [2], [4].

ALS has two main drawbacks. First, ALS may take a
long time to converge. Second, ALS does not preserve the
symmetry properties of the original tensor.

Recently, it has been shown in [7], [8] that ALS-based
PARAFAC algorithms can be significantly improved by ap-
plying an Enhanced Line Search (ELS) procedure. Namely,
new ELS algorithms are less sensitive to local optima and
have higher convergence speed. It was also mentioned in [7],
[8] that ELS can be combined with any search direction (not
necessarily the ALS direction).

On the other hand, a Single-Step Least-Squares (SS-LS)
algorithm was proposed to solve (1) [3]. This algorithm pre-
serves the symmetry of the tensor that we need to decompose
but it does not necessarily converge monotonically.

We compute the PARAFAC decomposition by means of
an ELS algorithm. This method converges monotonically.
It preserves the symmetry and the Hankel structure. We
derive an explicit solution for the optimal complex step. We
compare the computation of the optimal complex step with
alternating between updates of the real and imaginary part of
the complex step. Moreover, we give a new representation
of the cost function and find an explicit expression of its
complex gradient. This allows us to design several cheap
gradient based optimization algorithms.

Notation:
• 〈a, b〉 is the scalar product of vectors a and b;
• e(N)

1 , . . . , e(N)
N is the canonical basis in CN ;

• VN ∈ MN×N is the shift matrix defined by
VN : e(N)

N → e(N)
N−1 → · · · → e(N)

1 → 0;
• (·)∗, (·)T , (·)H and (·)# denote the conjugate, trans-

pose, conjugate transpose and Moore-Penrose pseudoin-
verse, respectively;

• A ¯ B denotes the Khatri-Rao product of matrices A
and B: the columns of A ¯ B are the tensor products
of the corresponding columns of A and B;

• E(·) denotes the mathematical expectation.

II. PROBLEM FORMULATION

We assume that the output signal y(n) is known. We
assume for simplicity that y(n) is zero-mean. For triples
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of integers (τ1, τ2, τ3) ∈ [−L,L] × [−L,L] × [−L,L] =:
[−L,L]3 define cτ1,τ2,τ3 := cum[y∗(n), y(n + τ1), y∗(n +
τ2), y(n+τ3)], where cum(y1, y2, y3, y4) denotes the fourth-
order cumulant of y1, y2, y3, y4 [6]:

cum(y1, y2, y3, y4) := E(y∗1y2y
∗
3y4)− E(y∗1y2)E(y∗3y4)−

E(y∗1y∗3)E(y2y4)− E(y∗1y4)E(y2y
∗
3).

HOS-based blind channel identification methods are based
on the Barlett-Brillinger-Rosenblatt formula [1]:

cτ1,τ2,τ3 = γ4,s

L∑

l=0

h∗l hl+τ1h
∗
l+τ2

hl+τ3 , (2)

where (τ1, τ2, τ3) ∈ [−L,L]3 and γ4,s is the kurtosis of s(n).
The unknown channel h is defined as the least squares

solution of the polynomial system (2). In other words, the
goal is to solve the following optimization problem

min
h∈CL+1

f(h), (3)

where

f(h) =

∑

|τ1|,|τ2|,|τ3|<L

|cτ1,τ2,τ3 − γ4,s

L∑

l=0

h∗l hl+τ1h
∗
l+τ2

hl+τ3 |2.

(4)

III. ALGORITHMS AND ANALYSIS

The PARAFAC interpretation of (4) was obtained in [3].
We recall the vectorized version of this interpretation:

f(h) := ‖γ4,sG(h)h∗ − vec(C[1])‖2, (5)

where
G = G(h) = H¯H¯H∗,

H = H(h) =




0 0 . . . h0

...
...

. . .
...

0 h0 . . . hL1

h0 h1 . . . hL

...
...

. . .
...

hL−1 hL . . . 0
hL 0 . . . 0




and vec(C[1]) ∈ C(2L+1)3 denotes the vector whose (2L +
1)2(τ1 + L) + (2L + 1)(τ3 + L) + τ2 + L + 1 coordinate is
equal to cτ1,τ2,τ3 .

Based on representation (5) Fernandes et al. [3] proposed
the following algorithm for the minimization of f :

Algoritm 1. (SS-LS algorithm)

1. build Ĥ(r−1) = H(ĥ(r−1)/ĥ0
(r−1)

)
2. Compute Ĝ(r−1) using

Ĝ(r−1) = Ĥ(r−1) ¯ Ĥ(r−1) ¯ Ĥ(r−1)∗.

3. Minimize the cost function

ψ(h∗,h(r−1)) = ‖vec(C[1])− γ4,sĜ(r−1)h∗‖2

so that

ĥ(r) = (γ−1
4,sĜ

(r−1)#vec(C[1])∗.

4. Iterate until ‖ĥ(r) − ĥ(r−1)‖/‖ĥ(r)‖ ≤ ε.
The SS-LS algorithm is very cheap, but its convergence is
not guaranteed. We found that there exist values of C[1] so
that for some initial guesses the algorithm does not converge.

The proofs of the following results strongly exploit the
symmetry properties of the cumulant. They are based on
representation (5).

Proposition 1. Another representation of the cost function
is

f(h) = γ2
4,s

(
‖h‖8 + 2

L∑

k=1

|〈h, V k
L+1h〉|4

)

−2γ4,svec(C[1])HG(h)h∗ + ‖vec(C[1])‖2.
(6)

To describe the critical points of f we will use the notion of
the complex gradient operator ∂f

∂h∗ , see [5] and references
therein. Since f is a polynomial in h and h∗ it follows that
f is a real-valued function that is analytic with respect to h
and h∗. Hence, h is a critical point of f iff ∂f

∂h∗ = 0 [5].
Now we are ready to present the expression of the complex
gradient of the cost function.

Proposition 2. The complex gradient of cost function f is

∂f
∂h∗

= 4γ2
4,s

[
G(h)HG(h)

]∗
h−

4γ4,s

[
G(h)Hvec(C[1])

]∗
.

(7)

Applying Proposition 2 to step 3 of Algorithm 1 we obtain
the following result.

Corollary 1. Let Algorithm 1 converge to h∞. Then h∞

is proportional to some critical point of f .
Based on Propositions 1-2 we designed ELS and Enhanced

Plane Search (EPS) versions of Algorithm 1 and several
gradient optimization algorithms. Our algorithms are cheap
and always converge monotonically. We also show that the
ELS and EPS algorithms have the same computational cost.
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