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ABSTRACT

A high-precision method is presented for the extrac-
tion of the fetal electrocardiogram from multi-channel
potential recordings on the mother’s skin. First the
problem is appropriately formulated in terms of blind
source separation, where the sources can have a multi-
dimensional nature. As a summary of preceding work it
is shown how the fetal electrocardiogram can be recon-
structed by means of second-order tools. However an
extra higher-order processing step enhances the accu-
racy and allows to identify the transfer from source to
electrode. The method is illustrated with an example.

1. INTRODUCTION

The mechanical action of the heart muscle is initiated
by an electrical depolarisation wave, which is followed
by repolarisation. This quasi-periodical stimulus in-
volves an electrical current, propagating through the
body and resulting in potential differences. The po-
tential differences can be measured between electrodes
on the skin (cutaneous recordings). The registration of
these potential signals, visualized as a function of time,
is called the electrocardiogram (ECG)1.

Like for adults, it should be possible to visualize
the electrical activity of a fetal heart: the fetal elec-

trocardiogram (FECG) contains important indications
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1In medical practice this term additionally implies that the
electrodes are placed at standard locations.

about the health and condition of the fetus. As long as
the membranes protecting the child have not been bro-
ken (antepartum), the FECG should be obtained from
measurements on the mother’s skin.

The aim of this paper is to describe a high-precision
method to derive the antepartum FECG from multi-
lead cutaneous recordings.

2. MATHEMATICAL FORMULATION

Potential measurements on the mother’s skin contain
contributions from several bioelectric phenomena and
are affected by various kinds of noise. Two aspects
have to be examined here: first, the nature of the oc-
curring signals and secondly, the characteristics of the
propagation from bioelectric source to electrode.

In [12] it is shown that, at a considerable distance
from the mother heart, its activity as a bioelectric cur-
rent source can be represented in first order approxima-
tion by a three-dimensional vector signal. The three-
dimensional vector space, described by the discrete-
time evolution of the maternal ECG (MECG) after
sampling, will be denoted as the MECG-subspace. On
the other hand [11] states that the “dimension” of the
fetal heart is not necessarily equal to three, but sub-
ject to changes during the period of pregnancy. In this
paper the term FECG-subspace will be used. In com-
parison with the low-voltage range of the FECG other
electrical signals can play an important role too: elec-

tromyographic activity (electrical potentials generated
by the muscles), 50 Hz net-interference, . . .

The transfer from bioelectric current source to elec-
trode can be assumed to be linear and resistive [12].
On the other hand the frequency at which the cuta-
neous potential distribution is sampled (typically 500
Hz) can be considered as low, taking into account the



high propagation velocity of the electrical signals.
We may conclude that at time instant t the obtained

measurement values can be modelled as instantaneous
linear combinations of the source signals; noise can be
taken into account as an additive perturbation. For a
p-channel set-up, and in the presence of q bioelectric
sources (p > q), this can be formulated as:

Y (t) = MX(t) + N(t) (1)

where Y (t) = (y1(t) . . . yp(t))
t

contains the potential

recordings, X(t) = (x1(t) . . . xq(t))
t

contains the sig-
nal values of the bioelectric sources and the noise on
each channel is represented by N(t) = (n1(t) . . . np(t))

t
.

M is the transfer matrix, describing the propagation
from source to electrode. As a good approximation
the different bioelectric sources can be considered as
statistically independent. The noise components Ni(t)
(1 6 i 6 q) are assumed to be Gaussian, with variance
σ2

N , mutually independent as well as independent from
the source signals.

As a conclusion, the derivation of the antepartum
FECG from multilead cutaneous recordings can be con-
sidered as an example of blind Source Subspace Sep-

aration (SSS): given a dataset of p-channel measure-
ments, estimate the underlying source signals or source
subspaces according to the linear model (1), assuming
statistical independence of the corresponding bioelec-
tric phenomena. We stress the fact that the FECG-
extraction is formulated as a blind identification prob-
lem, since it is impossible in practice to adhere to a
more parametric approach:

• The transfer coefficients are subject to a large
uncertainty because of the significant differences
from patient to patient.

• The geometrical and resistivity parameters of the
body of a single patient are not constant in time,
e.g. because of the fetal growth.

• For the application in medical diagnosis and treat-
ment it is crucial that unexpected electrocardio-
gram patterns can be detected and examined.

3. A SECOND-ORDER APPROACH

Up till now the most effective method to tackle the
FECG-reconstruction has been derived by Callaerts [2].
It is based on the Singular Value Decomposition (SVD)
of the data-matrix.

The measurement data from time instant 1 to T are
collected in a (p×T ) data-matrix Y = (Y (t1) . . . Y (tT )).
Analogously X = (X(t1) . . . X(tT )) contains the source

signal values. Without loss of generality it can be as-
sumed that X has mutually orthonormal rows with re-
spect to the common Euclidean inner product:

• Eq. (1) shows that the unit-length scaling of the
rows simply involves the inverse scaling of the
columns of M, which is irrelevant.

• The rows corresponding to different bioelectric
sources are mutually orthogonal. This boils down
to the fact that the calculation of the inner prod-
uct of two rows can be interpreted, up to a scaling
factor, as the computation by time-averaging of
the cross-correlation.

• The rows describing the electrical activity of the
maternal (resp. fetal) heart may be chosen mu-
tually orthogonal: only the final contribution of
the MECG (resp. FECG) to the recordings is
important - the mutual position of the MECG
(resp. FECG) source components has no physi-
cal meaning.

If the SVD of the transfer matrix M is given by
U · S · Vt, then the noise-free version of Eq. (1) shows
as:

Y = U · S · Vt · X (2)

Eq. (2) demonstrates that the matrices U and S can
be computed from an SVD of the data-matrix Y, since
V

t ·X is a matrix with mutually orthogonal unit-length
rows. This SVD-approach is a numerically reliable
way [10] of performing the Principal Component Anal-

ysis (PCA) on the covariance C
Y
2

of Y (t):

C
Y
2

= E{Y (t)Y (t)t} (3)

≃
1

T
Y · Yt (4)

= U · S̃2 · Ut (5)

where S̃ is the diagonal (q × q)-matrix containing the
singular values of (p × q)-matrix S (p > q).

In [9] it is proved that, under the noise conditions
mentioned in Section 2, U can still be estimated con-
sistently as the left singular matrix of Y. In a more-
sensors-than-sources setup the noise standard deviation
can be estimated as the mean of the “noise singular val-
ues” of Y. S can then be computed taking into account
that Eqs. (3-5) remain valid for the noise-free covari-
ance C

Y
2
−σ2

NI, which means that the squared singular
values are shifted in the same way.

From Eq. (2) it is clear that after SVD of the data
matrix Y an orthogonal factor V remains unidenti-
fied. However the right singular matrix usually reveals
pretty clear FECG-signals. This can be explained re-
sorting to the concept of oriented energy:



Definition 1 The oriented energy of a real (p × q)-
matrix A = (A1 . . . Aq) in the direction of a real p-

dimensional unit vector P is defined as:

EP {A} =

q
∑

i=1

(P tAi)
2 = ‖P t

A‖2 (6)

with ‖ · ‖ the Euclidean norm.

The directions of extremal oriented energy are mutu-
ally orthogonal and can be found as the left singular
vectors of A [8]. With respect to the data-matrix Y

it can be expected that large values of oriented energy
will be observed in the MECG-subspace. In directions
perpendicular to this subspace the oriented energy will
be much smaller since the MECG is much stronger than
the FECG (e.g. a factor 10 in amplitude). It follows
that the first left singular vectors of Y will form an
orthonormal basis for the MECG-subspace. By con-
sidering only the other singular vectors the MECG can
to a large extent be projected out of the data-set.

4. FROM PCA TO ICA

From Eq. (5) it is clear that a mere second-order ap-
proach leaves the right singular matrix V unidentified.
However V cán be determined from the higher-order
statistics of the recorded data, when the full statistical
independence of the sources is exploited. This way of
performing blind SS is sometimes referred to as Inde-

pendent Component Analysis (ICA) [5].
Our algorithm is based on fourth-order cumulants

since the third-order cumulant C
Y
3

of Y (t) is theoreti-
cally zero: all the signals involved are zero-mean. The
element-wise relationship between the fourth-order cu-
mulants of Y (t) and X(t) is given by:

(

C
Y
4

)

ijkl
=

∑

i′j′k′l′

(

C
X
4

)

i′j′k′l′
Mii′Mjj′Mkk′Mll′ (7)

The noise contribution drops out of the equation since
it was assumed to be Gaussian. Globally, Eq. (7) will
be denoted as:

C
Y
4

= C
X
4
×1 M ×2 M ×3 M ×4 M (8)

Combined with the SVD of M this yields:

Φ = C
X
4
×1 V

t ×2 V
t ×3 V

t ×4 V
t (9)

in which Φ is defined as:

Φ = C
Y
4
×1(S†

U
t)×2(S†

U
t)×3(S†

U
t)×4(S†

U
t) (10)

with † denoting the pseudo-inverse.

Eq. (9) is the fourth-order equivalent of the Eigen-
value Decomposition: Φ is super-symmetric (i.e. invari-
ant under all permutations of its indices), V is orthog-
onal and the off-diagonal elements of C

X
4

are zero when
they correspond to mutually independent sources. For
the computation of this decomposition one can resort
to a number of techniques, in recent years developed in
the framework of multilinear algebra:

• In [7] the decomposition is computed as the sym-
metric case of the Higher-Order Singular Value

Decomposition (HOSVD) [6], which is a convinc-
ing extension of the matrix SVD to tensors of
higher order. It is shown that V is revealed by
the second-order SVD of a (q × q3)-matrix with
Kronecker structure, constructed from Φ.

• In [5] a very promising technique is developed by
Comon: the orthogonal matrix V is obtained as
the product of elementary Jacobi-rotations min-
imizing the off-diagonal energy (i.e. the sum of
squared values) of Φ. Each elementary rotation
involves the computation of the zeros of a fourth-
order polynomial.

• Also interesting is the approach by Cardoso, who
formulates the decomposition of Eq. (9) as a si-
multaneous diagonalization problem [4]. The “si-
multaneous eigenmatrix” V can also be obtained
as the product of elementary Jacobi-rotations,
where each rotation involves the computation of
the best rank-1 approximation of a real symmet-
ric (3 × 3)-matrix.

For all these methods the computational cost can
substantially be reduced without loss of medical infor-
mation: the fact that only the different source sub-
spaces have to be separated, instead of all the source
components, limits the number of Jacobi-rotation an-
gles that have to be identified.

The higher-order processing step adds the following
advantages to the second-order approach:

• It is possible to enhance the quality of separation.
A first reason is that more available information
is resorted to, by exploiting the higher-order sta-
tistical properties of the data-set. On the other
hand part of the medical information concerning
the fetus is lost in the second-order method: the
computation of the SVD of the data-matrix im-
plies that the FECG-subspace components that
are parallel to the MECG-subspace, are orthogo-
nally projected out of the FECG-estimate.

• The propagation of the electrical signals can be
characterized in an essentially unique way. We
mention two important implications:



- The transfer vectors indicate how strongly the
different electrodes capture each source signal,
from which better measurement positions may be
deduced. It should be mentioned that the posi-
tioning of the electrodes is still the most crucial
factor for the success of the PCA-method [3].

- An important aspect in the evaluation of the fe-
tal well-being is the quantification of fetal move-
ments [2]. The number of significant changes
in the FECG-subspace, which can be obtained
from an on-line adaptive implementation of our
method, can be very useful information here.

• The physician can resort to a more intuitive in-
terpretation of the results: the separation of the
measured signals into statistically independent
source signals with a physical meaning, is eas-
ier to interpret than a decomposition in time-
orthogonal principal components.

5. EXAMPLE
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Figure 1: 8-channel set of cutaneous data recordings.

Fig. 1 shows the potential signals measured during
an 8-channel experiment. The horizontal axis displays
the time in seconds; concerning the vertical axes only
the relative values are important. The sampling fre-
quency was 500 Hz. Channels 1 to 5 show abdomi-

nal signals, measured near the fetus. Channels 1 and
3 clearly contain weak fetal contributions. For chan-
nels 6 to 8 the electrodes had been placed near the
mother’s heart, e.g. on the thorax (chest). Due to the
large amplitudes of the MECG in the thoracic signals,
the FECG is less visible. However the strong pick-up
of MECG allows an accurate modelling of the electrical
activity of the mother heart and realizes a large gap be-
tween the oriented energy in the MECG-subspace and
the FECG-subspace (see Section 3).
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Figure 2: Source estimates obtained via PCA.

The source estimates after PCA are displayed in
Fig. 2. Two MECG-free FECG-components have been
obtained as resp. the 6th and the 7th right singular
vector of the data-matrix. The signals 1 and 2 partly
describe the MECG-subspace; the MECG also appears
in signals 3 and 5. Channels 4 and 8 mainly show noise
contributions.

The result after SSS is shown in Fig. 3. Although
the statistics of the non-stationary signals have been
estimated by time-averaging, the result is an excellent
source separation. Where the PCA-method obtains
only two clear MECG-components (the 3rd signal is
heavily perturbated by noise and the fifth principal
component contains important FECG-contributions),
SSS accurately reconstructs the full three-dimensional
MECG-subspace (signals 1 to 3 in Fig. 3). As far as
the FECG is concerned, the quality of the 7th princi-
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Figure 3: Source estimates obtained via SSS.

pal component and the 8th SSS-signal are comparable,
but in the 6th SSS-signal the signal-to-noise ratio is
somewhat higher than in the 6th PCA-estimate. In
addition, the off-set in the 6th PCA-signal is identified
as an extra source signal (the low-periodic 7th signal
in Fig. 3), which probably arises from respiration. The
5th SSS-signal mainly shows noise contributions.

6. CONCLUSIONS

The extraction of the fetal electrocardiogram from mul-
tilead potential recordings on the mother’s skin has
been tackled by a combined use of second-order and
higher-order techniques. The higher-order processing
requires that the fourth-order cumulant tensor of the
data is estimated, and consists of the computation of an
orthogonal matrix that partially diagonalizes a related
fourth-order tensor.

The resulting method yields very accurate results
and therefore promises to be a valuable help in the med-
ical diagnosis. Moreover it allows to reconstruct other
significant bioelectric source signals, as well as the char-
acteristics of their propagation to the electrodes.

The method is already partly implemented in a real-
time data acquisition and signal processing platform,
which will allow a further evaluation of its qualities
with respect to the application in practice.
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