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Fetal Electrocardiogram Extraction by Blind Source
Subspace Separation

Lieven De Lathauwer*, Bart De Moor, and Joos Vandewalle

Abstract—In this paper, we propose the emerging technique
of independent component analysis, also known as blind source
separation, as an interesting tool for the extraction of the an-
tepartum fetal electrocardiogram from multilead cutaneous
potential recordings. The technique is illustrated by means of a
real-life example.

Index Terms—Blind source separation, fetal electrocardiogram,
independent component analysis, singular value decomposition.

I. INTRODUCTION

L IKE for adults, it should be possible to visualize the
electrical activity of a fetal heart: thefetal electrocar-

diogram (FECG) contains important indications about the
health and condition of the fetus. In this respect, analysis of the
(instantaneous)fetal heart rate(FHR) has become a routine
procedure for the evaluation of the well-being of the fetus. The
cardiac waveform reveals important diagnostic information as
well, e.g., for the diagnosis of arrhytmia.

During delivery accurate recordings can be made by
placing an electrode on the fetal scalp. However as long as
the membranes protecting the child have not been broken
(antepartum), one should look for noninvasive techniques.
Among the different approaches (measuring of the FHR from
a Doppler-shifted ultrasonic heart echo, processing of the fetal
magnetocardiogram, phonocardiography, examination of
the FECG from ECG-recordings measured on the mother’s
skin (cutaneousrecordings) plays an important role.
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The aim of this paper is to show that the emerging technique
of independent component analysis (ICA), often calledblind
source separation (BSS), is a promising tool for the estimation of
the FECG from recordings on the mother’s skin. We introduced
this idea in [9]; the current paper is the first elaborated version
of it. Due to lack of space, not all the aspects can be covered in
detail. A more elaborated version of this text is available [12]; it
contains links to medical applications, places the ECG-approach
against other methods for the determination of the FHR, and
gives a brief overview of existing signal processing methodolo-
gies to examine ECG-recordings.

In Section II, we motivate that cutaneous recordings con-
tain instantaneous linear mixtures of MECG and FECG. The
ICA-method itself is further discussed at a conceptual level in
Section III, and in its relation to the FECG extraction problem
in Section IV. Section V contains application examples.

II. DATA MODEL

Potential measurements on the mother’s skin contain contri-
butions from several bioelectric phenomena (maternal and fetal
heart activity, potential distributions generated by respiration
and stomach activity, and are affected by various kinds of
noise (thermal noise, noise from electrode-skin contact,
Two aspects have to be discussed here: first, the nature of the
occurring signals, and secondly, the characteristics of the prop-
agation from bioelectric source to electrode.

In [18], it is shown that, at a considerable distance from the
mother heart, its activity as a bioelectric current source can be
represented in first-order approximation by a three-dimensional
(3-D) vector signal, that can be imagined as the effect of a
rotating current dipole in the chest. The 3-D vector space,
described by the discrete-time evolution of the maternal ECG
(MECG) after sampling, will be called theMECG-subspace.
On the other hand [17] states that the observed “dimension”
of the fetal heart, i.e., the number of independent signals de-
scribing its electrical activity, is not necessarily equal to three,
but subject to changes during the period of pregnancy. In this
paper, the termFECG-subspacewill be used. In comparison
with the low-voltage range of the FECG, other electrical signals
can play an important role too: electromyographic activity
(electrical potentials generated by the muscles, the uterus, etc.),
50-Hz net-interference, etc.

The transfer from bioelectric current source to body surface
electrode can be assumed linear and resistive [18]. On the other
hand the bioelectric source signals are relatively narrow-band,
such that the frequency at which the cutaneous potential dis-
tribution is sampled (typically 250–500 Hz) can be considered
as low, taking into account the high propagation velocity of the
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electrical signals. Hence, in first approximation, cutaneous po-
tential measurements can be considered as instantaneous linear
mixtures of potential signals generated by underlying bioelec-
tric phenomena; noise can be taken into account as an additive
perturbation.

III. ICA

Assume the following basic linear statistical model:

(1)

in which is referred to as theobservation vector,
is called thesource vectorand represents additive

noise. is themixing matrix.
The goal of ICA now consists of the estimation of the transfer

matrix and/or the corresponding realizations of the source
vector given only realizations of the output vector under
the following assumptions:

• the columns of are linearly independent;
• the components of are mutually statistically indepen-

dent, as well as statistically independent from the noise
components.

Most of the current ICA-algorithms rely on the first assump-
tion for identifiability. The second assumption is the actual key
ingredient for ICA. It is a very strong hypothesis, but also quite
natural in lots of applications.

It is impossible to determine the norm of columns ofin (1),
since a rescaling of these vectors can be compensated by the in-
verse scaling of the source signal values. Similarly the ordering
of the source signals, having no physical meaning, cannot be
identified. For non-Gaussian sources, these indeterminacies are
the only way in which an ICA-solution is not unique [8], [20].

The ICA-assumptions do not allow to distinguish between the
signal and the noise term in (1). Hence, the source signals will
be estimated as by a simple matrix multiplication

(2)

As an example, can take the form of the pseudoinverse
with an estimate of the mixing matrix. More generally,

various beamforming strategies [22] can be applied.
Exploitation of the fact that the source signals are uncorre-

lated leads to a classicalprincipal component analysis(PCA),
which only allows to estimate the sources as well as the mixing
matrix up to an orthogonal transformation. To illustrate this, let
us assume that the sources have unit variance. Then we have (we
omit the noise term at this point, for clarity)

(3)

in which is the covariance matrix of Substitution of the
singular value decomposition (SVD) of the mixing matrix

shows that the eigenvalue decomposition (EVD) of the
observed covariance allows to estimate the column space of
while the factor remains unknown

(4)

As is well known, and might be found directly, in a numer-
ically more reliable way, from the SVD of the observed dataset
[13].

The solution to the ICA-problem lies in the fact that the as-
sumption ofstatistical independenceis stronger than the no-
tion ofuncorrelatedsignals. Statistical independence is not only
a claim on the second-order statistics of the signals, but also
on their higher order statistics (HOS) [16]. More precisely, it
is not sufficient that the source covariance is a diagonal
matrix—in addition, the higher order cumulants of the source
vector should be diagonal higher order tensors. (A higher order
tensor can intuitively be imagined as a multi-way matrix, of
which the entries are characterized by more than two indexes;
its diagonal is defined as the entries for which all the indexes
are equal.)

If we focus at the fourth-order level (third-order cumulants
vanish for even probability density functions), then we have the
following. The fourth-order cumulant of a real zero-mean
stochastic vector is defined by

(5)

for all index values; denotes the expectation. For every com-
ponent of that has a nonzero mean, has to be replaced
by It can be proven that the link between the cu-
mulant of the observations and the cumulant of the sources is a
straight generalization of its second-order counterpart, (3)

(6)

for all index values, in which is diagonal. A nice property is
that higher order cumulants are insensitive to additive Gaussian
noise. Equation (6) means that the unknown mixing matrix
is not only a diagonalizer of the covariance matrix but also
of the cumulant tensor which leads to a sufficient amount
of constraints to solve the problem. From an algebraic point of
view, this means that the ICA-solution can be obtained by means
of multilinear generalizations of the EVD (see e.g., [6], [8], and
[10]). Actually, since the first paper on the subject [14], ICA has
become a hot topic in the signal processing world. Apart from
multilinear algebra, solutions have been based on principles of
neural networks, information theory, etc. Instead of discussing
one particular algorithm, we refer the reader to [7], [15] and the
references therein.

Although generally PCA does not allow to identify the mixing
matrix nor the source signals, there are some cases in which it
does lead to a reasonably good source separation. A straight-
forward example consists of the situation in which the mixing
matrix has mutually orthogonal columns (having mutually dis-
tinct norms, if we assume that the sources have unit variance),
as is clear from (4). A second example is the situation in which
the source variances are very different (assuming that the norms
of the corresponding columns of have a comparable magni-
tude). Next, consider a setup with, e.g., two sources, of which
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the variances are given by and with Refer-
ence [21] proved that in this case PCA yields, for both source
estimates, an interference-to-signal ratio of the order of
This corresponds to the fact that the dominant eigenvector of

turns out to be an accurate estimate of the first column of
in this scenario; the second eigenvector however, is not nec-

essarily a good estimate of the second column ofbut it is
approximately orthogonal to the first one. In the context of re-
search on ICA, similar results have independently been obtained
in [11] and [19].

IV. EXTRACTION OF THEFECGBY MEANS OFBSSS

As explained in Section II, the propagation ofbioelectric
sources to an array ofbody surface electrodes can be
formulated as

(7)

where contains the potential record-
ings, contains the signal values of
the bioelectric sources, and the noise on each channel is repre-
sented by The matrix describes
the propagation from source to electrode, i.e., its entry with
row number and column number gives the gain of theth
bioelectric source signal with respect to theth channel data

It is natural to assume that the dif-
ferent bioelectric sources—since they originate at different loca-
tions, correspond to different mechanisms, etc.—can be approx-
imately modeled as statistically independent. The noise compo-
nents are assumed to be Gaussian, with vari-
ance mutually independent as well as independent from the
source signals.

As a conclusion, the derivation of the antepartum FECG
from multilead cutaneous recordings can be considered as an
example of BSS, as discussed in Section III, in which however
the sources are of a multidimensional nature; we will use
the termblind source subspace separation(BSSS). The fact
that only the different source subspaces have to be separated,
instead of all the source components allows to reduce the com-
putational cost, in comparison to conventional ICA, without
loss of medical information. For example, in the Jacobi-type
algebraic algorithms of [6], [8], [10] the multidimensional
character of the sources limits the number of Jacobi-rotation
angles that have to be identified, since rotations of the basis
vectors within one and the same source subspace are irrelevant.

Since there is a large gap between the amplitudes of the
MECG and the FECG, a good separation can already be
expected from merely PCA, as explained in Section III. This is
the philosophy behind the important class of SVD-techniques
for the extraction of the FECG [3]–[5]. To enhance the perfor-
mance, one often tries to choose the electrode positions in a
way that is more or less likely to correspond to an orthogonal
transfer (see also Section III), but this is still a matter of
heuristic rules and trial-and-error.

Conceptually, the higher order processing step in ICA may
add the following advantages to the second-order approach.

• It is possible to enhance the quality of separation: whereas
the PCA-error only decreases proportionally to the ratio of

the power of the weak source vs the power of the strong
source, ICA directly aims at a correct reconstruction of the
mixing matrix. Section V contains an illustration. In case
the higher order ICA-step would fail, one can still resort to
the results of the PCA, which forms the first step in many
ICA-algorithms.

• The propagation of the electrical signals can be character-
ized in an essentially unique way. We mention three im-
portant implications:

The transfer vectors indicate how strongly the dif-
ferent electrodes capture each source signal; from
this information, better measurement positions might
be deduced. We mention that the positioning of the
electrodes is still the most crucial factor for the success
of the PCA-method [5].
An important aspect in the evaluation of the fetal well-
being is the quantification of fetal movements [4]. At
this moment the required information can only be ob-
tained by echography or, simply, by asking the mother.
The number of significant changes in the FECG-sub-
space, which could be obtained from an on-line adaptive
ICA-implementation, could be very useful information
here.
The properties of the human body as a conducting
medium are, in their own, subject of medical research
[18]. The study of the propagation of the fetal heart
signal to the mother’s skin is an important subaspect
[17]. The transfer matrix can provide more under-
standing with respect to the propagation of electrical
signals through the body.

• The physician can resort to a more intuitive interpreta-
tion of the results: the separation of the measured signals
into statistically independent source signals with a phys-
ical meaning, is easier to interpret than a decomposition in
time-orthogonal principal components.

We stress the fact that the FECG-extraction is formulated as a
blind identificationproblem, since it is less meaningful in prac-
tice to resort to a more parametric approach.

• The transfer coefficients are subject to a large uncertainty:
the development of propagation models is still in its in-
fancy. Moreover, it is clear that length, weight, contour,
etc. are significantly different from patient to patient.

• The geometrical and resistivity parameters of the body of
a single patient are not constant in time. Fetal growth, a
different position of the fetus in the uterus, the variation in
the characteristics of the amniotic fluid and the placenta
during pregnancy, the changing geometry, imply im-
portant changes of the transfer matrix.

• For the application in medical diagnosis and treatment it
is crucial thatunexpected ECG-patterns can be detected
and examined. For example, the parametric formulation of
the quasiperiodicity of a regular heart rate pattern would
hamper the detection of extrasystoles (extra heartbeats be-
tween the regular beat-to-beat pattern).

• Potentially interesting is also the application of BSSS to
cardiac electrical imaging, a recent generalization of the
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ECG, in which more information is acquired by using a
larger array of (e.g., 200) electrodes to record a sequence
of “electrical images” of the body [2]. This technique can
be seen as an emerging modality for medical imaging,
complementary to, e.g., computed tomography and mag-
netic resonance imaging; it is worth mentioning that in
Japan the technique is already common practice.

We may conclude that conceptually BSSS is a very promising
technique to tackle the problem of FECG-extraction. Section V
contains a real-life example. At this moment however, our data-
base is too limited to assess to which extent the assumptions,
underlying the ICA-model, are valid in medical practice. With
this respect, hard conclusions on the merits and drawbacks of
the method can only be drawn after intensive medical testing.

V. EXAMPLES

Fig. 1 shows the first 5 seconds of a set of potential signals
measured in a 1 min eight-channel experiment. The horizontal
axis displays the time in seconds; with respect to the vertical
axes only the relative values are important. The sampling fre-
quency was 500 Hz. For details about the data acquisition we
refer to [5]. Channels 1–5 show abdominal signals; for chan-
nels 6–8 the electrodes have been placed further away from the
fetus, e.g., on the thorax. Channels 1 and 3 clearly contain weak
fetal contributions. Due to the large amplitudes of the MECG in
the thoracic signals, the FECG is less visible.

The source estimates after PCA are displayed in Fig. 2. Two
MECG-free FECG-components were obtained as, respectively,
the sixth and the seventh right singular vector of the data-matrix.
The signals 1 and 2 partially describe the MECG-subspace; the
MECG also appears in signals 3 and 5. Channels 4 and 8 mainly
show noise contributions.

The result after BSSS is shown in Fig. 3 (we used the algo-
rithm proposed in [8], which is an approximate maximum-like-
lihood solver; e.g., the methods reported in [6], and [10] yield
comparable results). The result is an excellent source separation.
We remark that, just like in the PCA-approach [3]–[5], the statis-
tics of the nonstationary signals have been estimated “roughly”
by simple time-averaging. Whereas the PCA-method obtained
only two clear MECG-components (the third signal is heavily
perturbated by noise and the fifth principal component contains
important FECG-contributions), BSSS accurately reconstructed
the full 3-D MECG-subspace (signals 1–3 in Fig. 3). As far as
the FECG is concerned, the quality of the seventh principal com-
ponent and the eighth BSSS-signal are comparable, but in the
sixth BSSS-signal the signal-to-noise ratio is somewhat better
than in the sixth PCA-estimate. The off-set in the sixth PCA-
signal is found back as an extra source signal (the seventh signal
in Fig. 3; this sequence continues as a low-periodic signal and
deserves further medical interpretation—it might, e.g., be due
to respiration). The fifth BSSS-signal mainly shows noise con-
tributions.

Figs. 4 and 5 visualize some information extracted from the
sixth ICA-component. Fig. 4 plots the evolution of the instanta-
neous beat-to-beat FHR. Fig. 5 shows the average FECG wave-
form. In short, we first determined the position of the fetal heart-
beats by developing a high-precision robust fetal QRS-complex

Fig. 1. Eight-channel set of cutaneous data recordings.

Fig. 2. Source estimates obtained by means of PCA.

Fig. 3. Source estimates obtained by means of BSSS.

detector (the QRS-complex is the central part of the cardiac
waveform, with high potential values); both an expert-system
and a pattern classification approach were followed. In a second
step, the instantaneous FHR and the average waveform were cal-
culated as accurately as possible by maximizing the correlation
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Fig. 4. Evolution of the instantaneous FHR.

Fig. 5. Average waveform of the fetal heartbeat in the sixth ICA component
(Fig. 3).

Fig. 6. Source estimates obtained by means of BSSS from data, containing an
extrasystole aroundt = 3.5 s and missing a fetal heartbeat aroundt = 2 s.

Fig. 7. Eight-channel set of observations containing heartbeats of fetal twins.

Fig. 8. Source estimates obtained from the data in Fig. 7 by means of BSSS.

between consecutive pulses. For details about the procedure we
refer to [1].

Figs. 7 and 8 show an artificially constructed situation of fetal
twins. The data of Fig. 7 were obtained as follows. First, the two
fetal ICA-components of Fig. 3 were shifted over approximately

s to artificially generate an independent heartbeat,
to be attributed to a second fetus. These signals were added to
the original dataset after multiplication by mixing vectors, ob-
tained by independent random permutations of the abdominal
and the thoracic entries of the original mixing vectors; the per-
mutations are meant to ensure that the dimensionality of the in-
tersection of both FECG-subspaces is zero. Fig. 8 shows that
eight-channel data were sufficient for the extraction of a two-di-
mensional FECG-subspace (channels 6 and 8; first fetus) and an
additional FECG signal (channel 7; second fetus).

Fig. 6 illustrates what happens in the case of an atypical FHR
and shows the importance of a blind approach, as already moti-
vated in Section IV. The input for the ICA algorithm was con-
structed as follows. A small piece of data around 0.75 s in
Fig. 1 was copied to 3.5 s, to simulate an extrasystolic fetal
heartbeat. In addition, the fetal heartbeat around 2 s was
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skipped by setting the five abdominal signals to zero. Neverthe-
less, Fig. 6 still shows an excellent BSSS.

VI. CONCLUSION

In this paper, we have proposed BSSS as an innovating way to
solve a classical problem in biomedical engineering, namely the
extraction of the FECG from multilead potential recordings on
the mother’s skin. In comparison to the important class of SVD-
based methods, proposed earlier, the higher order ICA-step ad-
ditionally requires the estimation and the (partial) diagonaliza-
tion of the fourth-order cumulant tensor of the data. From a con-
ceptual point of view, ICA is a very ambitious approach: it aims
at the direct reconstruction of the different statistically inde-
pendent bioelectric source signals, as well as the characteristics
of their propagation to the electrodes, each revealing important
medical information. It is nonparametric and is not based on pat-
tern averaging, which could hamper the detection and analysis
of atypical fetal heartbeats.
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