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Fetal Electrocardiogram Extraction by Blind Source
Subspace Separation

Lieven De Lathauwer*, Bart De Moor, and Joos Vandewalle

Abstract—n this paper, we propose the emerging technique The aim of this paper is to show that the emerging technique
of independent component analysis, also known as blind source of independent component analysis (ICAjten calledblind
separation, as an interesting tool for the extraction of the an- g4 rce separation (BSS$ a promising tool for the estimation of
tepartum fetal electrocardiogram from multilead cutaneous the FECG f di th ther's skin. We introd d
potential recordings. The technique is illustrated by means of a _e ] - rom recordings on e_mo ers SKin. ¥ve Intro uc_e
real-life example. this idea in [9]; the current paper is the first elaborated version
of it. Due to lack of space, not all the aspects can be covered in
detail. A more elaborated version of this text is available [12]; it
contains links to medical applications, places the ECG-approach

against other methods for the determination of the FHR, and

Index Terms—Blind source separation, fetal electrocardiogram,
independent component analysis, singular value decomposition.

. INTRODUCTION gives a brief overview of existing signal processing methodolo-
IKE for adults, it should be possible to visualize th@ies to examine ECG-recordings. _
electrical activity of a fetal heart: théetal electrocar- !N Section I, we motivate that cutaneous recordings con-

diogram (FECG) contains important indications about théain instantaneous linear mixtures of MECG and FECG. The
health and condition of the fetus. In this respect, analysis of tHeA-method itself is further discussed at a conceptual level in
(instantaneousletal heart rate(FHR) has become a routineSection 11, and in its relation to the FECG extraction problem
procedure for the evaluation of the well-being of the fetus. THB Section IV. Section V contains application examples.
cardiac waveform reveals important diagnostic information as

well, e.g., for the diagnosis of arrhytmia. Il. DATA MODEL

During delivery accurate recordings can be made by potential measurements on the mother's skin contain contri-
placing an electrode on the fetal scalp. However as long @stions from several bioelectric phenomena (maternal and fetal
the membranes protecting the child have not been brokggart activity, potential distributions generated by respiration
(antepartun), one should look for noninvasive techniquesand stomach activity,..) and are affected by various kinds of
Among the different approaches (measuring of the FHR frofdise (thermal noise, noise from electrode-skin contacy,

a Doppler-shifted ultrasonic heart echo, processing of the fefglo aspects have to be discussed here: first, the nature of the

magnetocardiogram, phonocardiography,, examination of occurring signals, and secondly, the characteristics of the prop-

the FECG from ECG-recordings measured on the motheggation from bioelectric source to electrode.

skin (cutaneousecordings) plays an important role. In [18], it is shown that, at a considerable distance from the
mother heart, its activity as a bioelectric current source can be
represented in first-order approximation by a three-dimensional
(3-D) vector signal, that can be imagined as the effect of a
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electrical signals. Hence, in first approximation, cutaneous pas is well known,U andS might be found directly, in a numer-
tential measurements can be considered as instantaneous lirazdlly more reliable way, from the SVD of the observed dataset
mixtures of potential signals generated by underlying bioeled-3].
tric phenomena; noise can be taken into account as an additiv@ he solution to the ICA-problem lies in the fact that the as-
perturbation. sumption ofstatistical independencis stronger than the no-
tion of uncorrelatedsignals. Statistical independence is not only
1. ICA a claim on the second-order statistics of the signals, but also
on their higher order statistics (HOS) [16]. More precisely, it
is not sufficient that the source covarian€k, is a diagonal
o matrix—in addition, the higher order cumulants of the source
Y=MX+N @) vector should be diagonal higher order tensors. (A higher order
tensor can intuitively be imagined as a multi-way matrix, of
R’ is called thesource vectornd N € IR? represents additive yvhic.h the eljtries are characterizgd by more than two _indexes;
noise M € R?*” is themixing matrix its diagonal is defined as the entries for which all the indexes

The goal of ICA now consists of the estimation of the transfé@'€ €aual.) ,
matrix M and/or the corresponding realizations of the source T We focus at the fourth-order level (third-order cumulants
vector X, given only realizations of the output vectisr under vamsh for even probability density furgf)nons), then we have the
the following assumptions: following. The fourth-order cumulartty’ of a real zero-mean
stochastic vectoX is defined by

Assume the following basic linear statistical model:

in whichY € IR/ is referred to as thebservation vectorX €

* the columns oM are linearly independent;

* the components ok” are mutually statistically indepen-  ,(a), ~ def v vovo1 . -
dent, as well as statistically independent from the nois§ X Jiti=isis E{Xh{(Zz{(Zqu% ?{XZIXZZ}E{XZSXZ4}
components. — E{X;, Xi, JE{X;, X, }

- E{XHXM }E{Xlz XZS} )

Most of the current ICA-algorithms rely on the first assumpf- ¢ all index val denotes the expectation. For ever m
tion for identifiability. The second assumption is the actual keg a €X valuesk. denotes the expectation. -or every com-

ingredient for ICA. Itis a very strong hypothesis, but also qui onentX; of X that has a nonzero meaki; has o be replaced
natural in lots of applications. y X; — E{X,}. It can be proven that the link between the cu-

Itis impossible to determine the norm of columnain (1), mulant of the observations and the cumulant of the sources is a

since a rescaling of these vectors can be compensated by thé %ayght generalization of its second-order counterpart, (3)

verse scaling of the source signal values. Similarly the orderi (4))‘ o Z (M);, ;, (M), ;
of the source signals, having no physical meaning, cannot be """ A
identified. For non-Gaussian sources, these indeterminacies are 4
: . o ; (M), ;, (M), '(C( )). i (6)

the only way in which an ICA-solution is not unique [8], [20]. 33 t4Ja\¥X JJ1jziaja

The ICA-assumptions do not allow to distinguish between tl}
signal and the noise term in (1). Hence, the source signals
be estimated aX, by a simple matrix multiplication

Ji1j2d3da

ﬁ[ allindex values, in whiclrj,’gf) is diagonal. A nice property is
What higher order cumulants are insensitive to additive Gaussian
noise. Equation (6) means that the unknown mixing mavix
A — is not only a diagonalizer of the covariance maftlx, but also
X =W'Y. 2 (4) . .
of the cumulant tensaf,”, which leads to a sufficient amount

As an exampleW” can take the form of the pseudoinvers@f constraints to solve the problem. From an algebraic point of
M. with M an estimate of the mixing matrix. More generaIIyVieW’ this means that the ICA-solution can be obtained by means

various beamforming strategies [22] can be applied. of multilinear generalizati_ons of the EVD (see.e.g., [6], [8], and
Exploitation of the fact that the source signals are uncorrg-0])- Actually, since the first paper on the subject [14], ICA has
lated leads to a classicpfincipal component analysi@®CA), becqme a hot topic in th(_a signal processing world. Apart from
which only allows to estimate the sources as well as the mixifigHltilinear algebra, solutions have been based on principles of
matrix up to an orthogonal transformation. To illustrate this, |&€ural networks, information theory, etc. Instead of discussing
us assume that the sources have unit variance. Then we haveQ@fgParticular algorithm, we refer the reader to [7], [15] and the

omit the noise term at this point, for clarity) references therein. o o
Although generally PCA does not allow to identify the mixing
Cy = MM” (3) matrix nor the source signals, there are some cases in which it

does lead to a reasonably good source separation. A straight-
in which Cy is the covariance matrix df. Substitution of the forward example consists of the situation in which the mixing
singular value decomposition (SVD) of the mixing mafkik= matrix has mutually orthogonal columns (having mutually dis-
USV? shows that the eigenvalue decomposition (EVD) of tHénct norms, if we assume that the sources have unit variance),
observed covariance allows to estimate the column spab# ofas is clear from (4). A second example is the situation in which
while the factorV remains unknown the source variances are very different (assuming that the norms

of the corresponding columns B have a comparable magni-

Cy = US?U” = (US) (US)”. (4) tude). Next, consider a setup with, e.g., two sources, of which
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the variances are given by ando3?, with 0% >> o32. Refer-

ence [21] proved that in this case PCA yields, for both source
estimates, an interference-to-signal ratio of the ordersgt-?.

This corresponds to the fact that the dominant eigenvector of
Cy turns out to be an accurate estimate of the first column of
M in this scenario; the second eigenvector however, is not nec-
essarily a good estimate of the second columivbbut it is .
approximately orthogonal to the first one. In the context of re-
search on ICA, similar results have independently been obtained
in [11] and [19].

IV. EXTRACTION OF THEFECGBY MEANS OFBSSS

As explained in Section I, the propagation pbioelectric
sources to an array pfbody surface electrodés > q), can be
formulated as

Y(t) = MX(¢) + N(t) @)
whereY (t) = (y1(¢) - - -, y,(¢))T contains the potential record-
ings, X(t) = (z1(t)---,z,(¢))* contains the signal values of
the bioelectric sources, and the noise on each channel is repre-
sented byV (¢) = (n1(¢) - -n,(¢))*. The matrixM describes
the propagation from source to electrode, i.e., its entry with
row numberi and column numbej gives the gain of thgth
bioelectric source signal with respect to tite channel data
(1<i<p;1<yj < q).ltisnatural to assume that the dif-
ferent bioelectric sources—since they originate at different loca-
tions, correspond to different mechanisms, etc.—can be approx-
imately modeled as statistically independent. The noise compo-
nentsn,(t) (1 < ¢ < p) are assumed to be Gaussian, with vari-
anceo?;, mutually independent as well as independent from the «
source signals.

As a conclusion, the derivation of the antepartum FECG
from multilead cutaneous recordings can be considered as an
example of BSS, as discussed in Section Ill, in which however
the sources are of a multidimensional nature; we will use
the termblind source subspace separatigBSSS). The fact
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the power of the weak source vs the power of the strong
source, ICA directly aims at a correct reconstruction of the
mixing matrix. Section V contains an illustration. In case
the higher order ICA-step would fail, one can still resort to
the results of the PCA, which forms the first step in many
ICA-algorithms.
The propagation of the electrical signals can be character-
ized in an essentially unique way. We mention three im-
portant implications:
The transfer vectors indicate how strongly the dif-
ferent electrodes capture each source signal; from
this information, better measurement positions might
be deduced. We mention that the positioning of the
electrodes is still the most crucial factor for the success
of the PCA-method [5].
An important aspect in the evaluation of the fetal well-
being is the quantification of fetal movements [4]. At
this moment the required information can only be ob-
tained by echography or, simply, by asking the mother.
The number of significant changes in the FECG-sub-
space, which could be obtained from an on-line adaptive
ICA-implementation, could be very useful information
here.
The properties of the human body as a conducting
medium are, in their own, subject of medical research
[18]. The study of the propagation of the fetal heart
signal to the mother’s skin is an important subaspect
[17]. The transfer matrix can provide more under-
standing with respect to the propagation of electrical
signals through the body.
The physician can resort to a more intuitive interpreta-
tion of the results: the separation of the measured signals
into statistically independent source signals with a phys-
ical meaning, is easier to interpret than a decomposition in
time-orthogonal principal components.

that only the different source subspaces have to be separateéfve stress the fact that the FECG-extraction is formulated as a

instead of all the source components allows to reduce the ¢

OpH_n’d identificationproblem, since it is less meaningful in prac-

putational cost, in comparison to conventional ICA, withod{Ce O resort to a more parametric approach.

loss of medical information. For example, in the Jacobi-type «
algebraic algorithms of [6], [8], [10] the multidimensional
character of the sources limits the number of Jacobi-rotation
angles that have to be identified, since rotations of the basis
vectors within one and the same source subspace are irrelevants

Since there is a large gap between the amplitudes of the
MECG and the FECG, a good separation can already be
expected from merely PCA, as explained in Section Ill. This is
the philosophy behind the important class of SVD-techniques
for the extraction of the FECG [3]-[5]. To enhance the perfor-
mance, one often tries to choose the electrode positions in ae
way that is more or less likely to correspond to an orthogonal
transfer (see also Section Ill), but this is still a matter of
heuristic rules and trial-and-error.

Conceptually, the higher order processing step in ICA may
add the following advantages to the second-order approach.

* |tis possible to enhance the quality of separation: whereas
the PCA-error only decreases proportionally to the ratio of

The transfer coefficients are subject to a large uncertainty:
the development of propagation models is still in its in-
fancy. Moreover, it is clear that length, weight, contour,
etc. are significantly different from patient to patient.

The geometrical and resistivity parameters of the body of
a single patient are not constant in time. Fetal growth, a
different position of the fetus in the uterus, the variation in
the characteristics of the amniotic fluid and the placenta
during pregnancy, the changing geometry, imply im-
portant changes of the transfer matrix.

For the application in medical diagnosis and treatment it
is crucial thatunexpected ECG-patterns can be detected
and examined. For example, the parametric formulation of
the quasiperiodicity of a regular heart rate pattern would
hamper the detection of extrasystoles (extra heartbeats be-
tween the regular beat-to-beat pattern).

Potentially interesting is also the application of BSSS to
cardiac electrical imaging, a recent generalization of the
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ECG, in which more information is acquired by using ‘°°8

larger array of (e.g., 200) electrodes to record a sequer-}5%
of “electrical images” of the body [2]. This technique car o
be seen as an emerging modality for medical imagin'?ggg
complementary to, e.g., computed tomography and me woo
netic resonance imaging; it is worth mentioning that i 300

Japan the technique is already common practice. 500

We may conclude that conceptually BSSS is a very promisil 2008
technique to tackle the problem of FECG-extraction. Section a0

5000
contains a real-life example. At this moment however, our dat _ MMMMMWW
base is too limited to assess to which extent the assumptio 2000
underlying the ICA-model, are valid in medical practice. Wit 5000% \/ " t’ ) L‘ s b - l’ ! L‘ i L’
this respect, hard conclusions on the merits and drawbacks **% q
the method can only be drawn after intensive medical testmg-sooo

s]

Fig. 1. Eight-channel set of cutaneous data recordings.
V. EXAMPLES d g g

Fig. 1 shows the first 5 seconds of a set of potential signe b2
measured in a 1 min eight-channel experiment. The horizon_o,g
axis displays the time in seconds; with respect to the vertic 0-3
axes only the relative values are important. The sampling fro2—
guency was 500 Hz. For details about the data acquisition °'§
refer to [5]. Channels 1-5 show abdominal signals; for cha-02

nels 6-8 the electrodes have been placed further away from o%ww,;~:~ " ",, " “m.% o L :;.‘ y ,:“ ,Weﬁ‘
fetus, e.g., on the thorax. Channels 1 and 3 clearly contain wes s ‘ ; ' ‘ ‘ , ‘ ‘ ‘ ]
fetal contributions. Due to the large amplitudes of the MECG i 2\\ vt sishmrnlpermdnetdsp ettt
the thoracic signals, the FECG is less visible. o ‘

The source estimates after PCA are displayed in Fig. 2. T\_OA?

MECG-free FECG-components were obtained as, respective °‘§L et ‘ ety ‘

the sixth and the seventh right singular vector of the data-matroz ' "0 P T

The signals 1 and 2 partially describe the MECG-subspace; ! 0‘2) ‘ ' \ '
MECG also appears in signals 3 and 5. Channels 4 and 8 mai-t-;
show noise contributions.

The result after BSSS is shown in Fig. 3 (we used the algg- 2. Source estimates obtained by means of PCA.
rithm proposed in [8], which is an approximate maximum-like-
lihood solver; e.g., the methods reported in [6], and [10] yiel ® o2 I TR P ) N I
comparable results). The resultis an excellent source separat- 0 2 : : : : : : :
We remark that, just like in the PCA-approach [3]-[5], the statit '0} “A‘ et Lt ; o Jl
tics of the nonstationary signals have been estimated “rough-J2
by simple time-averaging. Whereas the PCA-method obtain o
only two clear MECG-components (the third signal is heavil‘8'12
perturbated by noise and the fifth principal component Contal
important FECG-contributions), BSSS accurately reconstruct’ 02
the full 3-D MECG-subspace (signals 1-3 in Fig. 3). As far ¢ c_oAz ‘ : . ‘ . ‘ ‘
the FECG is concerned, the quality of the seventh principal col °~§ R P
ponent and the eighth BSSS-signal are comparable, but in -o.2 : ARAN ‘ : : : : :
sixth BSSS-signal the signal-to-noise ratio is somewhat bet ‘T“ A WWWWWWM
than in the sixth PCA-estimate. The off-set in the sixth PCA-2; —_—
signal is found back as an extra source signal (the seventh sic o
in Fig. 3; this sequence continues as a low-periodic signal a™®
deserves further medical interpretation—it might, e.g., be due
to respiration). The fifth BSSS-signal mainly shows noise cohid- 3 Source estimates obtained by means of BSSS.
tributions.

Figs. 4 and 5 visualize some information extracted from thdetector (the QRS-complex is the central part of the cardiac
sixth ICA-component. Fig. 4 plots the evolution of the instantavaveform, with high potential values); both an expert-system
neous beat-to-beat FHR. Fig. 5 shows the average FECG waaed a pattern classification approach were followed. In a second
form. In short, we first determined the position of the fetal hearstep, the instantaneous FHR and the average waveform were cal-
beats by developing a high-precision robust fetal QRS-complewlated as accurately as possible by maximizing the correlation

5]
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Fig. 7. Eight-channel set of observations containing heartbeats of fetal twins.

02 . . : .
b A A ) ) ) A ]
L ) . ‘ . |
02 : : : :
OF““‘U M i et [ “VW"'{
o2 . . ‘ .
0.1 . . : .
0
o1 ! A \ .
02 . . : .
0
02 . . \ .
02 : : : :
O%MM‘ e aatater RS ¥ frresenf +f ‘(“{
o2 . . \ .
02 . . ‘ .
O‘F"l' v' ¢ y e o e Y} v' W "||
o2 . . ‘ .
02 : . . . : : . . .
OWWWMWWWWWWP{
02 \ . . . \ \ : . .
) 05 1 15 2 25 3 35 4 45 5 s

Fig. 8. Source estimates obtained from the data in Fig. 7 by means of BSSS.

Fig. 5. Average waveform of the fetal heartbeat in the sixth ICA componehetween consecutive pulses. For details about the procedure we
(Fig. 3).

Fig. 6. Source estimates obtained by means of BSSS from data, containin

extrasystole arountl= 3.5 s and missing a fetal heartbeat arotird 2 s.

refer to [1].

Figs. 7 and 8 show an artificially constructed situation of fetal
twins. The data of Fig. 7 were obtained as follows. First, the two
fetal ICA-components of Fig. 3 were shifted over approximately
t = —0.25 s to artificially generate an independent heartbeat,
to be attributed to a second fetus. These signals were added to
the original dataset after multiplication by mixing vectors, ob-
tained by independent random permutations of the abdominal
and the thoracic entries of the original mixing vectors; the per-
mutations are meant to ensure that the dimensionality of the in-
tersection of both FECG-subspaces is zero. Fig. 8 shows that
eight-channel data were sufficient for the extraction of a two-di-
mensional FECG-subspace (channels 6 and 8; first fetus) and an
additional FECG signal (channel 7; second fetus).

Fig. 6 illustrates what happens in the case of an atypical FHR
and shows the importance of a blind approach, as already moti-
vated in Section IV. The input for the ICA algorithm was con-
structed as follows. A small piece of data around 0.75 s in
{ ig. 1 was copied to = 3.5 s, to simulate an extrasystolic fetal

eartbeat. In addition, the fetal heartbeat arotind 2 s was
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skipped by setting the five abdominal signals to zero. Neverthe{6] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for

less,

Fig. 6 still shows an excellent BSSS.

non-Gaussian signals,hst. Elect. Eng. Proc.-F.vol. 140, no. 6,
pp. 362-370, 1994.

[7] J.-F. Cardoso, C. Jutten, and P. Loubaton, EdsProt. 1st Int. Work-

VI. CONCLUSION

In this paper, we have proposed BSSS as an innovating way t(I)S]
solve a classical problem in biomedical engineering, namely the
extraction of the FECG from multilead potential recordings on [
the mother’s skin. In comparison to the important class of SVD-
based methods, proposed earlier, the higher order ICA-step ad-
ditionally requires the estimation and the (partial) diagonalizall0]
tion of the fourth-order cumulant tensor of the data. From a con-
ceptual point of view, ICA is a very ambitious approach: it aims[11]
at the direct reconstruction of the different statistically inde-
pendent bioelectric source signals, as well as the characteristif:lsz]
of their propagation to the electrodes, each revealing important

medical information. Itis nonparametric and is not based on pat[-
tern averaging, which could hamper the detection and analysis
of atypical fetal heartbeats.

(1]

(2]

(4

(5]

13]
[14]

REFERENCES

[15]
B. Bastijns and L. De Lathauwer, “Real-time Extractie van Medische
Informatie uit Foetale Hartzignalen,” master’s thesis, Elect. Eng. Dept[16]
(ESAT), K. U. Leuven (in Dutch), Leuven, Belgium, July 1992.
D. H. Brooks and R. S. McLeod, “Electrical imaging of the healEEE
Signal Processing Magpp. 24-42, Jan. 1997.
D. Callaerts, J. Vanderschoot, J. Vandewalle, W. Sansen, G. Vantrappefi 8]
and J. Janssens, “Fetal electrocardiogram measuring method and equifi9]
ment (FMME),” J. Perinatal Medicine, World Symp. on Computers in
the Care of Mother, Fetus, and Newbormol. 15, supp. 1, no. 4, p. 33,
Mar. 1987.
D. Callaerts, “Signal Separation Based on Singular Value Decomposi-
tion and their Application to the Real-time Extraction of the Fetal Elec- [21]
trocardiogram from Cutaneous Recordings,” Ph.D. dissertation, K. U.
Leuven, E. E. Dept., Dec. 1989.
D. Callaerts, J. Vandewalle, W. Sansen, J. Janssens, and G. Vantrappen,
“Acquisition and processing of the antepartum FECG,AirCritical
Appraisal of Fetal SurveillangeH. P. van Deijn and F. J. A. Copray, [22]
Eds. Amsterdam, The Netherlands: Elsevier Science B.V., 1994, pp.
371-380.

(17]

(20]

shop Independent Component Analysis and Blind Signal Separation
(ICA'99), Aussois, France, Jan. 1999.

P. Comon, “Independent component analysis, a new concepigpial
Processing (Special Issue Higher Order Statisties). 36, no. 3, pp.
287-314, Apr. 1994.

L. De Lathauwer, D. Callaerts, B. De Moor, and J. Vandewalle, “Fetal
electrocardiogram extraction by source subspace separatioRfomn
IEEE SP/ATHOS Workshop on HOGirona, Spain, June 1995, pp.
134-138.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “Blind source sepa-
ration by simultaneous third-order tensor diagonalizationPrioc. EU-
SIPCO-96 vol. 3, Trieste, Italy, Sept. 13, 1996, pp. 2089-2092.

L. De Lathauwer, “Signal Processing Based on Multilinear Algebra,”
Ph.D. dissertation, Elect. Eng. Dept, K. U. Leuven, (ESAT), Leuven,
Belgium, Sept. 1997.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetal electrocar-
diogram extraction by blind source subspace separation,” ESAT/SISTA,
Leuven, Belgium, Tech. Rep. 98-127, 1998.

G. H. Golub and C. F. Van LoanMatrix Computations 3rd

ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996.

J. Hérault, C. Jutten, and B. Ans, “Détection de grandeurs primitives
dans un message composite par une architecture neuromimétique en ap-
prentissage non supervisé,” Rroc. 10th GRETSI ColloquiunNice,
France, May 24, 1985, pp. 1017-1022.

T.-W. Lee, Independent Component Analysis: Theory and Applica-
tions Norwell, MA: Kluwer Academic, Sept. 1998.

C. L. Nikias and J. M. Mendel, “Signal processing with higher order
spectra,”|EEE Signal Processing Magpp. 10-37, July 1993.

T. Oostendorp, “Modeling the Fetal ECG,” Ph.D. dissertation, K. U.
Nijmegen, The Netherlands, 1989.

R. PlonseyBioelectric Phenomendew York: McGraw-Hill, 1969.

N. Thirion, “Séparation d’Ondes en Prospection Sismique,” Ph.D. dis-
sertation, CEPHAG, Grenoble, France, Sept. 1995.

L. Tong, R. Liu, V. Soon, and Y.-F. Huang, “Indeterminacy and identi-
fiability of blind identification,” IEEE Trans. Circuits Systvol. 38, pp.
499-509, May 1991.

J. Vanderschoot, G. Vantrappen, J. Janssens, J. Vandewalle, and W.
Sansen, “A reliable method for fetal ECG extraction from abdominal
recordings,” inMedical Informatics Europe 84, Lecture Notes in Med-
ical Informatics F. H. Rogeret al, Eds. Berlin, Germany: Springer
Verlag, 1984, vol. 24, pp. 249-254.

B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,”IEEE Acoust. Speech, Signal Processing Mpg.
4-24, Apr. 1988.



