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Abstract

We present a hashing protocol for distilling multipartite CSS states by means of local

Clifford operations, Pauli measurements and classical communication. It is shown that this

hashing protocol outperforms previous versions by exploiting information theory to a full

extent. Using the information-theoretical notion of a strongly typical set, we calculate the

asymptotic yield of the protocol as the solution of a linear programming problem.

1 Introduction

Quite recently, a number of very interesting applications of quantum entanglement have been
developed. Commonly known examples are teleportation [1], superdense coding [2] and entangle-
ment based quantum cryptography [3]. All these applications require pure entangled states that
are shared by a number of remote parties. In practice, however, by the noisy influence of the
environment (decoherence), the initial states are disrupted and no longer pure. Therefore, meth-
ods are needed to make the applications more robust against decoherence. Both quantum error
correcting codes and entanglement distillation were introduced to this purpose. We will focus on
the distillation of a particular kind of multipartite stabilizer states.

Stabilizer states and codes are an important concept in quantum information theory. Stabilizer
codes [4, 5] play a central role in the theory of quantum error correcting codes, which protect
quantum information against decoherence and without which effective quantum computation has
no chance of existing. Also in the area of quantum cryptography and quantum communication,
both bipartite as multipartite, the number of applications of stabilizer states is abundant. We cite
[6, 7, 8, 9, 10], but this is far from an exhaustive list.

Closely related to quantum error correction, entanglement distillation is a means of extracting
entanglement from quantum states that have been disrupted by the environment. Many applica-
tions require pure multipartite entangled states that are shared by remote parties. In practice, k
copies of a pure state are prepared by one party and communicated to the others by imperfect
(but stationary) quantum channels. As a result, the copies are no longer in a pure state, but in a
mixed state not suited for the application in mind. A distillation protocol then consists of local
operations combined with classical communication in order to end up with copies that approach
purity and are ready to use in the application. The total entanglement of a quantum system
cannot increase under the action of local operations together with classical communication, but it
is possible to concentrate the present entanglement in a subsystem. In this setting, this is achieved
by first performing local unitary operations such that the states of the copies become statistically
dependent, after which the measurement of mk copies yield information on the global system. As
a result, the remaining k(1 −m) copies are in a more pure state and contain more entanglement.
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Figure 1: a distillation protocol typically starts with k copies of a mixed state with entanglement,
shared by n parties. By applying local unitary operations, the states of the copies become sta-
tistically dependent. The measurement of mk copies therefore yield information on the global
system. As a result, the remaining k(1 −m) copies are in a more pure and entangled state. The
mk measured copies are separable and may be discarded. In this figure, we have n = 3, k = 3 and
m = 1/3.

The mk measured copies are in a separable, i.e. non-entangled, state and are discarded. This is
illustrated in figure 1.

An interesting entanglement distillation protocol is the well-known hashing protocol, intro-
duced for bipartite states (i.e. states involving two parties) in [11], that has its roots in classical
information theory. We present a generalization of this hashing protocol from bipartite to multi-
partite, for a particular but important kind of stabilizer states, called Calderbank-Shor-Steane or
CSS states. The basic idea of describing the protocol in a classical information theoretical setting
is the same as in [11].

Very similar multipartite hashing protocols have been discussed in [12, 13, 14, 15]. Our protocol
improves these protocols in two ways. First, we note that in [12, 13, 14, 15], by not exploiting
information theory to a full extent, their protocols result in overkill. In short, demanding that
the number of measurements exceeds particular marginal entropies [12, 13, 14] results in too
many measurements. In [15], this is partially meeted by relaxing to conditional entropies. Our
protocol is optimal in the given setting and is therefore a complete generalization of the hashing
protocol. The yield is calculated as the solution of a linear programming problem, and requires
a somewhat more involved information-theoretical treatment. A second major difference is that
the local unitary operations applied in [12, 13, 14, 15] only consist of CNOT (Controlled-NOT)
quantum gates, whereas in some cases a higher yield can be achieved by using more general local
unitary operations. However, for clarity reasons we will restrict ourselves in this paper to local
unitary operations that are identical and built only of CNOTs, as in [12, 13, 14, 15]. The more
general case is treated in [16].

This paper is organized as follows. In section 2, we define the strongly typical set, an
information-theoretical concept that is needed to calculate the yield. In section 3, we intro-
duce the binary framework of [17] in which stabilizer states and Clifford operations are efficiently
described. In section 4, we show that identical local Clifford operations built from CNOTs result
in a permutation of the 2nk k-fold tensor products of an n-qubit CSS state. In section 5, we
explain how our hashing protocol works and calculate the yield in section 6. Finally, the protocol



is illustrated and compared to others by an example in section 7. For mathematical details and
rigorous proofs, we refer to [16].

2 Strongly typical set

In this section, we introduce the information-theoretical notion of a strongly typical set. For an
introduction to information theory, we refer to [18].

LetX = (X1, . . . , Xk) be a sequence of independent and identically distributed discrete random
variables, each having event set Ω with probability function p : Ω 7→ [0, 1] : a 7→ p(a). The strongly

typical set T (k)
ǫ is defined to be the set of sequences x = (x1, . . . , xk) ∈ Ωk for which the sample

frequencies fa(x) = |{xi | xi = a}|/k are close to the true values p(a), or:

x ∈ T (k)
ǫ ⇔ |fa(x) − p(a)| < ǫ, ∀a ∈ Ω.

It can be verified that p(T (k)
ǫ ) ≥ 1−δ, where δ = O(k−1ǫ−2), or p(T (k)

ǫ ) ≈ 1 for k → ∞. In words,
a random sequence x will almost certainly be contained in the strongly typical set.

Let Ω be partitioned into subsets Ωj (j = 1, . . . , q). We define the function

y(x) = (Ωj1 , . . . ,Ωjk
), where xi ∈ Ωji

, for i = 1, . . . , k.

In section 6, we will encounter the following problem. Given some u ∈ T (k)
ǫ , calculate the number

|Nu| of sequences v ∈ T (k)
ǫ that satisfy y(v) = y(u), or

Nu = {v ∈ T (k)
ǫ | y(v) = y(u)}.

It can be verified [16] that
|Nu| ≈ 2k[H(X)−H(Y )],

where H(X) = −∑

a p(a) log2 p(a) is the entropy of X and H(Y ) = −∑

j p(Ωj) log2 p(Ωj) the
entropy of y(X).

3 Stabilizer states, CSS states and Clifford operations

In this section, we present the binary matrix description of stabilizer states and Clifford operations.
We show how Clifford operations act on stabilizer states in the binary picture. CSS states are
then defined as a special kind of stabilizer states. We will restrict ourselves to definitions and
properties that are necessary to the distillation protocols presented in the next sections. In the
following, all addition and multiplication is performed modulo 2. For a more elaborate discussion
on the binary matrix description of stabilizer states and Clifford operations, we refer to [17].

We use the following notation for Pauli matrices.

σ00 = I2 =

[

1 0
0 1

]

, σ01 = σx =

[

0 1
1 0

]

,

σ10 = σz =

[

1 0
0 −1

]

, σ11 = σy =

[

0 −i
i 0

]

.

Let v, w ∈ Z
n
2 and a =

[

v
w

]

, then we denote

σa = σv1w1 ⊗ . . .⊗ σvnwn
.

The Pauli group on n qubits is defined to contain all tensor products σa of Pauli matrices with an
additional complex phase factor in {1, i,−1,−i}. We will only consider Hermitian Pauli operators,



so we may exclude imaginary phase factors. It can also be easily verified that Pauli operators satisfy
the following commutation relation:

σaσb = (−1)aT Pbσbσa, where P =

[

0 In
In 0

]

. (1)

A stabilizer state |ψ〉 on n qubits is the simultaneous eigenvector, with eigenvalues 1, of n
commuting Hermitian Pauli operators (−1)biσsi

, where si ∈ Z
2n
2 are linearly independent and

bi ∈ Z2, for i = 1, . . . , n. The n Hermitian Pauli operators generate an Abelian subgroup of
the Pauli group on n qubits, called the stabilizer S. We will assemble the vectors si as the
columns of a matrix S ∈ Z

2n×n
2 and the bits bi in a vector b ∈ Z

n
2 . Note that it follows from

(1) that commutativity of the stabilizer is reflected by STPS = 0. The representation of S by S
and b is not unique, as every other generating set of S yields an equivalent description. In the
binary picture, a change from one generating set to another is represented by an invertible linear
transformation R ∈ Z

n×n
2 acting on the right on S and acting appropriately on b. We have

S′ = SR
b′ = RT b+ d

(2)

where d ∈ Z
n
2 is a function of S and R but not of b [17]. It can be show that in the context of

distillation protocols, d can always be made zero [16].
Each S defines a total of 2n orthogonal stabilizer states, one for each b ∈ Z

n
2 . As a consequence,

all stabilizer states defined by S constitute a basis for H⊗n, where H is the Hilbert space of one
qubit. In the following, we will refer to this basis as the S-basis.

A Clifford operation Q, by definition, maps the Pauli group to itself under conjugation:

QσaQ
† = (−1)δσb.

In the binary picture, a Clifford operation is represented by a matrix C ∈ Z
2n×2n
2 and a vector

h ∈ Z
2n
2 , where C is symplectic or CTPC = P [17]. The image of a Hermitian Pauli operator σa

under the action of a Clifford operation is then given by (−1)ǫσCa, where ǫ is function of C, h and
a. A Clifford operation that is entirely built of CNOT operations, is represented by [17]

C =

[

A 0
0 A−T

]

. (3)

If a stabilizer state |ψ〉, represented by S and b, is operated on by a Clifford operation Q,
represented by C and h, Q|ψ〉 is a new stabilizer state whose stabilizer is given by QSQ†. As a
result, this stabilizer is represented by

S′ = CS
b′ = b+ f

(4)

where f is independent of b and can always be made zero, by performing an extra Pauli operator
before the Clifford operation [16].

Let |ψ1〉 and |ψ2〉 be two stabilizer states represented by S1 =

[

S1(z)

S1(x)

]

, b1 and S2 =
[

S2(z)

S2(x)

]

, b2 respectively. Then |ψ1〉 ⊗ |ψ2〉 is a stabilizer state represented by









S1(z) 0
0 S2(z)

S1(x) 0
0 S2(x)









,

[

b1
b2

]

. (5)



Let Q1 and Q2 be two Clifford operations represented by

[

A1 B1

C1 D1

]

and

[

A2 B2

C2 D2

]

respec-

tively, where all blocks are in Z
n×n
2 . Then Q1 ⊗Q2 is a Clifford operation represented by









A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2









. (6)

A CSS state is a stabilizer state |ψ〉 whose stabilizer can be represented by

S =

[

Sz 0
0 Sx

]

, b (7)

where Sz ∈ Z
n×nz

2 , Sx ∈ Z
n×nx

2 and nz +nx = n. The stabilizer condition STPS = 0 is equivalent
to ST

z Sx = 0. As S is full rank, Sz and Sx are also full rank. Therefore, once Sz (or Sx) is known,
we know S, up to right multiplication with some R.

If the phase factors (−1)bi , for i = 1, . . . , n, of a CSS state represented by (7) are unknown,
a σz measurement on every qubit reveals bi, for i = 1, . . . , nz. Indeed, the measurements project

the state on the joint eigenspace of observables σ
(j)
z = I⊗j−1

2 ⊗ σz ⊗ I⊗n−j
2 , for j = 1, . . . , n, with

eigenvalues (−1)aj that are determined by the measurements. By linearity, we then have

b =

[

ST
z a
∗

]

.

After the measurements, the state of each qubit j is no longer part of the original CSS state, but
is the eigenstate of σz with eigenvalue (−1)aj . Therefore, the last nx phase factors ∗ are lost due

to the fact that all σsi
, for i = nz + 1, . . . , n, anticommute with at least one σ

(j)
z . On the other

hand, by σx measurements on every qubit, with outcomes (−1)aj , we learn that

b =

[

∗
ST

x a

]

.

4 Local permutations of products of CSS states

In this section, we consider n-qubit CSS states that are all represented by the same S. We have k
states that are shared by n remote parties, each holding corresponding qubits of all k states. We
study local Clifford operations (local with respect to the partition into n parties) that are identical
and built of CNOTs. They result in a permutation of all 2nk possible tensor products of such CSS
states.

If |ψi〉 (i = 1, . . . , k) are represented by

S =

[

Sz 0
0 Sx

]

, bi

according to (5), |ψ1〉 ⊗ . . .⊗ |ψk〉 is represented by

[

Ik ⊗ Sz 0
0 Ik ⊗ Sx

]

, b̃′ =







b1
...
bk






.

However, since it is more convenient to arrange all qubits per party, we rewrite the stabilizer
matrix by permuting rows and columns as

[

Sz ⊗ Ik 0
0 Sx ⊗ Ik

]

= S ⊗ Ik, b̃ (8)



where the entries of b̃′ are permuted appropriately into b̃ ∈ Z
nk
2 . All parties perform identical local

Clifford operations, built of CNOTs. According to (3) and (6), the overall Clifford operation is
generally represented by

[

In ⊗A 0
0 In ⊗A−T

]

, (9)

where A ∈ Z
k×k
2 is invertible.

The local Clifford operations acting on the given state result in a permutation of all 2nk possible
tensor products (defined by b̃) if and only if the resulting stabilizer matrix can be transformed
into the original form of (8) by multiplication with an invertible R ∈ Z

nk×nk
2 on the right, or

[

In ⊗A 0
0 In ⊗A−T

]

(S ⊗ Ik)R = S ⊗ Ik. (10)

Using (2) and (4), the corresponding permutation of the tensor products is then defined by the
transformation

b̃ 7→ RT b̃. (11)

It is easily verified that (10) holds for

R =

[

Inz
⊗A−1 0
0 Inx

⊗AT

]

. (12)

5 Protocol

In this section, we show how the hashing protocol for CSS states is carried out. As noted in
section 3, all 2n stabilizer states represented by the same S ∈ Z

2n×n
2 constitute a basis for H⊗n,

which we call the S-basis. The protocol starts with k identical copies of a mixed state ρ that is
diagonal in this basis. This mixed state could for instance be the result of distributing k copies
of a pure CSS state, represented by S and b = 0, via imperfect quantum channels. If ρ is not
diagonal in the S-basis, it can always be made that way by performing a local POVM [13]. We
have

ρ =
∑

b∈Z
n
2

p(b)|ψb〉〈ψb|,

where |ψb〉 is the CSS state represented by S and b. The mixed state ρ can be regarded as a
statistical ensemble of pure states |ψb〉 with probabilities p(b). Consequently, k copies of ρ are an
ensemble of pure states represented by (8) with probabilities

p(b̃) = p(b̃′) =

k
∏

i=1

p(bi). (13)

Recall that the entries of b̃ correspond to the nk phase factors ordered per party instead of per
copy like b̃′.

The protocol now consists of the following steps (this is schematically depicted in figure 2):

1. Each party applies local Clifford operations (9) that result in the transformation (11) of b̃.
Consequently, all 2nk tensor products represented by the 2nk different b̃ in the ensemble are
permuted.

2. A fraction mk of all k copies are measured locally. These copies are divided in two sets with
mzk and mxk copies respectively (mz + mx = m). Each of the n parties performs a σz

measurement on every qubit they have of the first set of copies, and a σx measurement on
every qubit of the second set.
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Figure 2: in the first step, local Clifford operations (local with respect to the parties) result in
statistically dependent copies. In the second step, some of the copies are measured, providing
information on the global state. Afterwards, the measured copies are separable.

The local Clifford operations result in a permutation b̃ 7→ RT b̃ of all tensor products such that
the ensembles of the different copies become statistically dependent. The measurements provide
information on the overall state. The measurement outcomes should contain as much information
as possible. Therefore, the outcome probabilities should be uniform. It will be shown in the next
section that this is achieved by randomly picking an element of the set of all possible R given by
(12). The goal of the protocol is to collect enough information for the (1 −m)k remaining copies
to approach a pure state (i.e. zero entropy). The yield γ = 1 −m of the protocol is the fraction
of pure states that are distilled out of k copies, if k goes to infinity.

A way of looking at the ensemble is to regard it as an unknown pure state. The probability that
the state is represented by b̃ is then equal to p(b̃). Suppose the unknown pure state is represented

by ũ. With probability ≈ 1, ũ is contained in the set T (k)
ǫ , defined as in section 2. Here, Ω is the

set of all b ∈ Z
n
2 . So with negligible error probability, we may assume that ũ ∈ T (k)

ǫ . After each

measurement, we eliminate every b̃ ∈ T (k)
ǫ that is inconsistent with the measurement outcome.

The protocol ends when all b̃ 6= ũ are eliminated from T (k)
ǫ and only ũ is left.

In the next section, we will calculate the yield of the protocol as the solution of the following
linear programming problem: γ = 1 −m, where m is the solution to

minimize m = mz +mx

subject to dzmz + dxmx ≥ H −H[dz,dx],
for all [dz, dx] 6= [0, 0] where 0 ≤ dz ≤ nz and 0 ≤ dx ≤ nx.

H is the entropy of the initial mixed state, or

H = −
∑

b∈Z
n
2

p(b) log2 p(b).

The calculation of H[dz,dx] is more involved. Define the subspace J⊥ = {w ∈ Z
n
2 |JTw = 0} of Z

n
2 ,

where J is a matrix with n rows and defined below. The cosets Ωj (j = 1, . . . , q) of this subspace
constitute a partition of Z

n
2 . This partition has entropy

HJ⊥ = −
q

∑

j=1

p(Ωj) log2 p(Ωj).

Now H[dz,dx] is defined as follows:
min
Gz ,Gx

HJ⊥ ,



where the minimum is taken over all subspaces Gz of Z
nz

2 with dimension nz −dz and subspaces Gx

of Z
nx

2 with dimension nx − dx. The matrix J that defines J ⊥ is function of Gz and Gx as follows:

let Gz ∈ Z
nz×(nz−dz)
2 , Gx ∈ Z

nx×(nx−dx)
2 be matrices whose column spaces are Gz ,Gx respectively.

Then we have

J =

[

Gz 0
0 Gx

]

.

6 Calculating the yield

This section is organized as follows. In the first subsection we show that the outcome probabilities
of each measurement are uniform. This is used to calculate the probability that some b̃ 6= ũ is
not eliminated after all measurements. In the second subsection we then calculate the minimal
number of measurements needed to eliminate all b̃ 6= ũ. This is stated as a linear programming
problem.

6.1 Elimination probability

We will first calculate the probability that some b̃ 6= ũ is not eliminated after one σz measurement
on the i-th copy. As explained in section 3, this reveals

zj = (RT ũ)(j−1)k+i, for j = 1, . . . , nz,

while
xj = (RT ũ)(nz+j−1)k+i, for j = 1, . . . , nx,

are lost. For a σx measurement, it is the other way around. If and only if (R)T
(j−1)k+i

(b̃ + ũ) = 0

for j = 1, . . . , nz, then b̃ is not eliminated. For the measurement outcome, we are only interested in
the i-th column of A−1, which we call a. From the randomness of R, it follows that a is uniformly
distributed over all possibilities. These are the elements of Z

k
2 (we neglect the possibility that

a = 0).
We define the matrix Vz ∈ Z

nk×nz

2 with columns (Vz)j = (R)(j−1)k+i, for j = 1, . . . , nz, or

Vz =

[

Inz
⊗ a
0

]

,

and Vz as the set containing all possible values of Vz , which is uniformly distributed too. Note
that Vz is a vector space, because Vz is a linear function of a. Let ∆b̃ = b̃ + ũ and ∆z = V T

z ∆b̃.
For some fixed ∆b̃, all values ∆z ∈ Z = {V T

z ∆b̃ | Vz ∈ Vz} are equiprobable. Indeed, all cosets of
the kernel of the linear map Vz 7→ Z : Vz 7→ ∆z = V T

z ∆b̃ have the same number of elements. Let
dz ≤ nz be the dimension of the range Z of this map. Then we have 2dz possible equiprobable ∆z
for some fixed ∆b̃. Only when ∆z = 0, which happens with probability 2−dz , b̃ is not eliminated

from T (k)
ǫ by the first measurement. The same reasoning can be done for a σx measurement. Note

that dz = dx = 0 only holds for ũ itself.

6.2 Minimal number of measurements

So far we have given an information-theoretical interpretation of the protocol: we start with an

unknown pure state (represented by ũ), which is almost certainly contained in T (k)
ǫ . Consecutive

measurements rule out all inconsistent b̃ ∈ T (k)
ǫ . The probability that a particular b̃ 6= ũ survives

this process is 2−k(dzmz+dxmx). Consequently, the probability that any b̃ 6= ũ survives the proces
is equal to

[nz,nx]
∑

[dz,dx] 6=[0,0]

N∗
[dz,dx]2

−k(dzmz+dxmx) (14)



where N∗
[dz,dx] is the number of b̃ ∈ T (k)

ǫ for which Z has dimension = dz and X has dimension

= dx. Let N∗
[dz,dx] ≈ 2kα∗

[dz,dx] . Then (14) vanishes if and only if the following inequalities hold:

dzmz + dxmx ≥ α∗
[dz,dx], for all [dz , dx] 6= [0, 0]. (15)

Let N[dz,dx] ≈ 2kα[dz,dx] be the number of b̃ ∈ T (k)
ǫ for which Z has dimension ≤ dz and X has

dimension ≤ dx. Evidently,

N[dz,dx] =
∑

d′
z≤dz,d′

x≤dx

N∗
[d′

z,d′
x]. (16)

It can be verified that the inequalities

dzmz + dxmx ≥ α[dz,dx], for all [dz , dx] 6= [0, 0], (17)

are equivalent to (15). Indeed, it follows from (16) that α[dz,dx] ≈ α[d′
z,d′

x] ≈ α∗
[d′

z,d′
x] for some

d′z ≤ dz and d′x ≤ dx. Since d′zmz + d′xmx ≥ α∗
[d′

z,d′
x] ≈ α[d′

z,d′
x] ≈ α[dz,dx] implies dzmz + dxmx ≥

α[dz,dx], a solution to (17) is also a solution to (15) and vice versa.

This leaves us to calculate N[dz,dx]. Let Gz ∈ Z
nz×(nz−dz)
2 be a full rank matrix with column

space Gz . We define the space Wz(Gz) = {VzGz | Vz ∈ Vz}. Then all elements of Wz(Gz)
⊥ =

{∆b̃ ∈ Z
nk
2 | WT

z ∆b̃ = 0, ∀Wz ∈ Wz(Gz)} correspond to a Z with dimension ≤ dz , as GT
z ∆z =

WT
z ∆b̃ = 0, ∀∆z ∈ Z. We then have

N[dz,dx] = |
⋃

Gz,Gx

Wz(Gz)
⊥ ∩Wx(Gx)⊥ ∩ T (k)

ǫ |

where Gz and Gx run through all subspaces of Z
nz

2 and Z
nx

2 with dimension nz − dz and nx − dx

respectively. It follows that

N[dz,dx] = r max
Gz,Gx

|Wz(Gz)
⊥ ∩Wx(Gx)⊥ ∩ T (k)

ǫ |,

where 1 ≤ r ≤ the total number of combinations (Gz ,Gx), which is independent of k. Therefore,
r = O(1).

We now calculate |Wz(Gz)
⊥ ∩ Wx(Gx)⊥ ∩ T (k)

ǫ |. We have WT
z ∆b̃ = 0 ⇔ GT

z V
T
z ∆b̃ = 0 ⇔

GT
z (Inz

⊗ aT )∆b̃ = 0 ⇔ (GT
z ⊗ aT )∆b̃ = 0. As a can be any vector in Z

k
2 , it follows that

∆b̃ ∈ Wz(Gz)
⊥ ∩Wx(Gx)⊥ if and only if

(

[

Gz 0
0 Gx

]T

⊗ Ik) ∆b̃ = (JT ⊗ Ik)∆b̃ = 0.

We have found that

|Wz(Gz)
⊥ ∩Wx(Gx)⊥ ∩ T (k)

ǫ | = |{b̃ ∈ T (k)
ǫ |(JT ⊗ Ik)∆b̃ = 0}|.

Note that (JT ⊗ Ik)∆b̃ = 0 is equivalent to (Ik ⊗ JT )∆b̃′ = 0, or JT ∆bi = 0, for i = 1, . . . , k. The
cosets Ωj (j = 1, . . . , q) of the space J⊥ = {w ∈ Z

n
2 |JTw = 0} constitute a partition of Z

n
2 . We

want to know the number of b̃ ∈ T (k)
ǫ for which bi is in the same coset as ui, for all i = 1, . . . , k.

We know from section 2 that this number is approximately

2k[H−H
J⊥ ] where H = − ∑

b∈Z
n
2

p(b) log2 p(b)

and HJ⊥ = −
q
∑

j=1

p(Ωj) log2 p(Ωj).

Choose Gz (with dimension nz − dz) and Gx (with dimension nx − dx) such that HJ⊥ is minimal.
We denote this minimum by H[dz,dx]. Then it follows that

N[dz,dx] ≈ 2k[H−H[dz,dx]].



7 An example

In this section we illustrate the hashing protocol with an example. The 4-qubit cat state (also
called GHZ state) is the state

1√
2
(|0000〉 + |1111〉)

which is stabilized by
σz ⊗ I2 ⊗ I2 ⊗ σz

I2 ⊗ σz ⊗ I2 ⊗ σz

I2 ⊗ I2 ⊗ σz ⊗ σz

σx ⊗ σx ⊗ σx ⊗ σx

and thus represented by

Sz =









1 0 0
0 1 0
0 0 1
1 1 1









, Sx =









1
1
1
1









and b =









0
0
0
0









.

We formulate the linear programming problem to calculate the yield of the protocol. At the start,
the 4 parties share k copies of a state

ρ =
∑

b∈Z
4
2

pb|ψb〉〈ψb|,

where |ψb〉 = 1√
2
(|b1, b2, b3, 0〉+ (−1)b4 |b1 + 1, b2 + 1, b3 + 1, 1〉). We calculate H[dz,dx] for different

values of dz, dx. Evidently, H[3,1] = H[nz,nx] = 0. It is also easily verified that

H[0,1] = −
∑

b123∈Z
3
2

(
∑

b4∈Z2

pb) log2(
∑

b4∈Z2

pb).

In both cases dz = 1 and dz = 2, we have to calculate HJ⊥ for seven different subspaces J ⊥, and
take the minimum. For dz = 1, we run through

Gz =





1 0
0 1
0 0



 ,





1 0
0 0
0 1



 ,





0 0
1 0
0 1



 ,





1 0
1 0
0 1



 ,





1 0
0 1
1 0



 ,





0 1
1 0
1 0



 ,





1 0
1 1
0 1



 .

For dz = 2, we run through

Gz =





0
0
1



 ,





0
1
0



 ,





1
0
0



 ,





1
1
0



 ,





1
0
1



 ,





0
1
1



 ,





1
1
1



 .

As an example, let dz = 1, dx = 1 and

Gz =





1 0
1 1
0 1



 .

The cosets of J ⊥ are then:

{









0
0
0
0









,









0
0
0
1









,









1
1
1
0









,









1
1
1
1









}, {









0
0
1
0









,









0
0
1
1









,









1
1
0
0









,









1
1
0
1









},

{









0
1
0
0









,









0
1
0
1









,









1
0
1
0









,









1
0
1
1









}, {









1
0
0
0









,









1
0
0
1









,









0
1
1
0









,









0
1
1
1









}.



For this example, we have compared our protocol to those of [14, 15]. We start with copies of
the 4-qubit cat state, prepared by the first party. The second, third and fourth qubit of each copy
is sent through identical depolarizing channels to the corresponding parties. The action of each
channel is

ρ 7→ Fρ+
1 − F

3
(σxρσ

†
x + σyρσ

†
y + σzρσ

†
z).

and we call F the fidelity of the channels. It can be verified that this yields a mixture with
probabilities:

























































p0000

p0001

p0010

p0011

p0100

p0101

p0110

p0111

p1000

p1001

p1010

p1011

p1100

p1101

p1110

p1111

























































=

























































1 0 3 0
0 3 0 1
0 1 2 1
0 1 2 1
0 1 2 1
0 1 2 1
0 0 2 2
0 0 2 2
0 0 0 4
0 0 0 4
0 0 2 2
0 0 2 2
0 0 2 2
0 0 2 2
0 1 2 1
0 1 2 1



































































F 3

F 2 1−F
3

F
(

1−F
3

)2

(

1−F
3

)3











.

The yield of our protocol for this example is plotted as a function of the fidelity of the channels
in figure 3. So is the yield of the protocol of [14]:

1 − max
j=1,2,3

[H(bj)] −H(b4)

and the yield of the improved protocol of [15]:

max

(

1 − max
j=1,2,3

[H(bj)] −H(b4|b1, b2, b3),

1 − max
j=1,2,3

[H(bj |b4)] −H(b4)

)

.

8 Conclusion

We have presented a hashing protocol to distill multipartite CSS states, an important class of
stabilizer states. Starting with k copies of a mixed state that is diagonal in the S-basis, the
protocol consists of local Clifford operations that result in a permutation of all 2nk tensor products
of CSS states, followed by Pauli measurements that extract information on the global state. With
the aid of the information-theoretical notion of a strongly typical set, it is possible to calculate
the minimal number of copies that have to be measured in order to end up with copies of a pure
CSS state, for k approaching infinity. As a result, the yield of the protocol is formulated as the
solution of a linear programming problem.
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[1] C.H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W.K. Wootters. Teleporting
an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys.

Rev. Lett., 70:1895, 1993.

[2] C.H. Bennett and S.J. Wiesner. Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.

[3] A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661, 1991.

[4] D. Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, Caltech, 1997.
quant-ph/9705052.

[5] D. Gottesman. A theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127, 1998.

[6] W. Dür, J. Calsamiglia, and H.-J. Briegel. Multipartite secure state distribution. Phys. Rev.

A, 71:042336, 2005.



[7] A. Karlsson, M. Koashi, and N. Imoto. Quantum entanglement for secret sharing and secret
splitting. Phys. Rev. A, 59:162, 1999.

[8] M. Hillery, V. Buzek, and A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 59:1829,
1999.

[9] R. Cleve, D. Gottesman, and H.-K. Lo. How to share a quantum secret. Phys. Rev. Lett.,
83:648, 1999.
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