




Asymptotic adaptive bipartite entanglement distillation protocol

Erik Hostens,∗ Jeroen Dehaene, and Bart De Moor
ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

(Dated: July 13, 2006)

We present a new asymptotic bipartite entanglement distillation protocol that outperforms all
existing asymptotic schemes. This protocol is based on the breeding protocol with the incorpora-
tion of two-way classical communication. Like breeding, the protocol starts with an infinite number
of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of par-
tial information extraction, yielding the same result: one bit of information is gained at the cost
(measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every
stage to replace measurements on ebits by measurements on a finite number of copies, whenever
there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by
more than one bit. Therefore, every such replacement results in an improvement of the protocol.
We explain how our protocol is organized as to have as many replacements as possible. The yield
is then calculated for Werner states.

PACS numbers: 03.67.Mn

I. INTRODUCTION

Quantum entanglement is an important resource in
many applications of quantum cryptography and quan-
tum communication. Some well-known examples are
teleportation [1], quantum key distribution [2] and su-
perdense coding [3]. These applications require pure and
maximally entangled qubit pairs, called Bell state pairs,
that are shared by two remote parties. One party pre-
pares the Bell states and sends one qubit to the other
party via some quantum channel. In a realistic setting,
this channel is not perfect: uncontrollable influences of
the environment (decoherence) will affect the qubit sent,
resulting in qubit pairs that are in a mixed state and
unsuitable for the application in mind.

Entanglement distillation is the process of applying lo-
cal operations (local with respect to the parties) to the
mixed state qubit pairs combined with classical commu-
nication (LOCC) in order to obtain pure Bell state pairs.
Typically, we assume stationarity of the quantum chan-
nel, affecting all qubit pairs in the same way. As a result,
we have n copies of the same mixed two-qubit state ρ.
Protocols like hashing or breeding [4, 5] have a net out-
put of m qubit pairs whose states approach pure Bell
states if n goes to infinity. We call such protocols asymp-

totic and the fraction of distilled Bell states per initial
copy the yield m/n. Breeding differs from hashing by the
use of an initial pool of predistilled Bell state pairs, but
these protocols are known to be equivalent. The classical
communication between the parties in both hashing and
breeding is only in one direction. With two-way commu-
nication, higher yields can be achieved [4]. Indeed, the
two parties can choose between alternative courses of the
protocol based on information on intermediate stages.
We call such a protocol adaptive.
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Entanglement distillation protocols, apart from being
necessary for applications, are also interesting for theo-
retical purposes. The important entanglement measure
entanglement of distillation of ρ is defined as the maxi-
mal asymptotic yield. It is lower bounded by the yields
of all distillation protocols and in itself a lower bound
for all sensible measures of entanglement [6, 7]. There-
fore, significantly improving distillation protocols brings
us closer to a better understanding of the irreversible na-
ture of entanglement manipulation.

Our protocol is based on the breeding protocol, with
the incorporation of two-way communication. Until re-
cently, the breeding or hashing protocol were the only ex-
isting asymptotic protocols, apart from the slightly bet-
ter performing variant of Ref. [8]. Adaptive upgrades
of breeding/hashing mostly consist of breeding/hashing
preceded by non-asymptotic recurrence-like schemes, re-
sulting in higher yields only for low-fidelity states [4, 9–
11]. Also the adaptive protocols of Ref. [12] violate
all kinds of one-way communication quantum error cor-
rection bounds, yet asymptotically do not perform any
better than breeding/hashing. But Vollbrecht and Ver-
straete [13] came up with protocols that introduce two-
way communication on an asymptotic level, improving
breeding/hashing for all states. However, their protocols
are rather ad hoc: further improvements are suggested
by exhaustive searches over a rather untransparent de-
cision space. We will explain the principles that are at
the basis of the improvements and create new protocols
that, by exploiting these ideas, outperform all existing
schemes significantly.

Like all protocols mentioned, our protocols work for
copies of a state ρ that is diagonal in the Bell-basis, also
called Bell-diagonal. If ρ is not Bell-diagonal, separate
optimal single-copy distillation protocols can be applied
to each copy to make them Bell-diagonal [14]. A nice fea-
ture of Bell-diagonal states is that they can be entirely
interpreted in classical information theory. Indeed, the
state ρ⊗n is equivalent to a statistical ensemble of tensor
products of Bell states. In the breeding protocol, infor-



mation on ρ⊗n is gathered from measurements on the Bell
state pairs (ebits) of the initial pool, after letting them lo-
cally interact with ρ⊗n. One bit of information is gained
for every ebit measurement, or equivalently, the entropy
of ρ⊗n is reduced by one bit. When the entropy of ρ⊗n is
reduced to zero, the ensemble has become a pure tensor
product of Bell states. As will be explained in Sec. III,
breeding can be divided into successive stages of partial
information extraction, yielding an equivalent protocol.
The basic principle of our protocol is at every stage to re-
place measurements on ebits by measurements on a finite
number of copies, whenever there are two equiprobable
outcomes. It can be verified that the entropy of the global
state is then reduced by more than one bit. This is be-
cause whenever an observable is measured, the state is
projected onto the eigenspace of the observable, thereby
eliminating the entropy associated with the outcomes of
observables not commuting with the one measured. We
will explain how our protocol is organized as to have as
many replacements as possible.

This paper is organized as follows. In the preliminary
section II, an overview is given of the binary language
in which our protocols are efficiently described. We also
explain the two relevant ways of extracting information
on an unknown tensor product of Bell states. In Sec. III,
we briefly explain the breeding protocol, partial breeding
and the improvement of Ref. [13]. In Sec. IV we elaborate
on the principle of entropy reduction, on which our pro-
tocol is mainly based. The way equiprobable outcomes
are forced and other ideas simplifying our protocols are
then described in Sec. V. We also give a method for nu-
merically calculating the yield. This is finally illustrated
for Werner states in Sec. VI. We conclude in Sec. VII.

II. PRELIMINARIES

In this section we give a short overview of the bi-
nary language in which distillation protocols are often
expressed. For a detailed discussion and proofs of these
results we refer to Refs. [4, 11, 15, 16].

A. Binary representation of Bell states, Pauli

operators and Clifford operators

Bell states can be represented by assigning two-bit vec-
tors to the Bell states as follows

|Φ+〉 = 1√
2

(|00〉+ |11〉) = |B00〉

|Ψ+〉 = 1√
2

(|01〉+ |10〉) = |B01〉

|Φ−〉 = 1√
2

(|00〉 − |11〉) = |B10〉

|Ψ−〉 = 1√
2

(|01〉 − |10〉) = |B11〉.

We consider all Bell states shared by two parties A and
B. In the following, all “local” operations are local with
respect to the partition into A and B. In an analogous

way, the Pauli matrices are identified with two-bit vec-
tors:

I2 =

[

1 0
0 1

]

= σ00

σx =

[

0 1
1 0

]

= σ01

σz =

[

1 0
0 −1

]

= σ10

σy =

[

0 −i
i 0

]

= σ11.

For notational convenience, we will often denote a binary
vector by a string (e.g. 1010 means [1 0 1 0]T ). A tensor
product of n Bell states can then be described by a 2n-
bit vector, e.g. |B010011〉 = |B01〉 ⊗ |B00〉 ⊗ |B11〉. The
same rule applies for a Kronecker product of Pauli matri-
ces. The Pauli group is defined to contain all Kronecker
products of Pauli matrices with an additional complex
phase factor in {1, i,−1,−i}, called Pauli operators. In
the following, we will only consider Hermitian Pauli op-
erators and neglect overall phase factors.

For all a, b, s, t ∈ Z
2n
2 , the following relations hold:

σaσb ∼ σa+b,

(I2n ⊗ σt)|Bs〉 ∼ |Bs+t〉,

where “∼” denotes equality up to an overall phase factor
[11, 15]. All addition of binary objects is done modulo 2.
Two Pauli operators σa and σb commute if the symplectic

inner product aT Pb is equal to zero, or

σaσb = (−1)aT Pbσbσa, where P = In ⊗

[

0 1
1 0

]

.

A Clifford operator Q maps the Pauli group to itself
under conjugation, and can be represented by a symplec-
tic matrix C ∈ Z

2n×2n
2 :

QσaQ† ∼ σCa.

Symplecticity of C is expressed by CT PC = P . In the
context of distillation protocols, we have the following
interesting result [11]: let Q be represented by C and Q∗

be the complex conjugate of Q, then it holds:

(Q⊗Q∗)|Bs〉 ∼ |BCs〉, for all s ∈ Z
2n
2 . (1)

B. Information extraction

Information on an unknown tensor product of n Bell
states |Bs〉, s ∈ Z

2n
2 , in the context of distillation pro-

tocols, is extracted under the form of an inner product
rT s, where r is an arbitrary nonzero 2n-bit vector. We
will call this action a parity check. This can be done in
two ways:

1. by local Clifford operations on the tensor product
and an appended ebit |Bs〉⊗ |B00〉, followed by the
local measurement of the ebit;



2. by directly performing local measurements on |Bs〉.

We explain the two ways in more detail, and call them
appended ebit measurement (AEM) and bilateral Pauli

measurement (BPM) respectively.
By means of local Clifford operations (1), we first

transform |Bs〉 ⊗ |B00〉 into |Bs〉 ⊗ |B0 rT s〉. The sym-
plectic matrix C that corresponds to this action is

C =















0

I2n Pr
...
0

0 · · · 0 1 0

rT 0 1















.

Then, a σz measurement is performed on both sides of
the appended ebit. The product of the outcomes is equal

to (−1)rT s. Indeed, the outcomes of a σ measurement
performed locally on an ebit correlate as follows:

σx σz σy

|B00〉 +1 +1 −1

|B01〉 +1 −1 +1

|B10〉 −1 +1 +1

|B11〉 −1 −1 −1

It follows that the product of the outcomes of a bilateral
(i.e. on both sides) measurement σPr on a tensor product
of Bell states |Bs〉 equals

(−1)rT s+rT Ur , where U = In ⊗

[

0 1

0 0

]

.

An AEM does not affect the state |Bs〉. Therefore, this
procedure can be repeated consecutively for different r,
like in the breeding protocol. However, the same does
not hold for a BPM. Because our protocol will consist of
both methods in various combinations, we need to sort
out how this can be done. In Ref. [16], we showed that, in
theory, a BPM is equivalent to the following procedure:

1. perform local Clifford operations (1) that corre-
spond to a symplectic C of which the last row is
rT : such a C can always be found, for every r 6= 0;

2. then, perform a bilateral σz measurement on the
last qubit pair;

3. finally, apply the inverse of the local Clifford oper-
ations of the first step.

Note that the result is no longer a tensor product of Bell
states, as the last of the qubit pairs is measured in the
second step, leaving it in a separable state. Since an AEM
leaves the state |Bs〉 unaffected, we only need to worry
about the situation after a BPM. The only irreversible
step applied is the measurement of the last qubit pair,
which yields knowledge of rT s but destroys any other

information contained by this pair. After this step, we

are left with the state |BC̄s〉, where C̄ ∈ Z
2(n−1)×2n
2 is

equal to C without the last two rows. The only infor-
mation on |Bs〉 left for us to extract is the information
we can extract from |BC̄s〉. Clearly, we can perform par-

ity checks yielding aT C̄s, for all a ∈ Z
2(n−1)
2 . This is

equivalent to determining qT s, for all q ∈ Z
2n
2 that sat-

isfy qT Pr = 0. Indeed, as C is symplectic, all such q
are in the column space of

[

C̄T r
]

, or q = C̄T a + αr, for

some a ∈ Z
2(n−1)
2 and α ∈ Z2. Since rT s was already

determined, we know qT s = aT C̄s + αrT s by determin-
ing aT C̄s from the new state. In general, every time
we determine rT s of |Bs〉 by a BPM, afterwards we can
only access qT s where qT Pr = 0, whatever method we
use. This should not come as a surprise, because when
qT Pr = 1, the Pauli measurements σPr and σPq anti-
commute, so their outcomes cannot be determined both.

In reality, after a BPM, we should continue working
with the transformed state represented by C̄s. But this
requires knowledge of the whole matrix C, while the par-
ity check is specified only by r. As explained in the pre-
vious paragraph, we can describe all future actions in
terms of s: we only need to know which BPM have been
done. This yields a much more transparent description
of the procotol.

III. BREEDING IMPROVED

In this section, we start by briefly explaining the breed-
ing protocol, which was introduced in Ref. [5]. Basicly,
information on n copies of a Bell-diagonal mixed state is
extracted sacrificing ebits until the state is a pure tensor
product of n Bell states (i.e. zero entropy). We show
then how the breeding protocol can be divided into suc-
cessive stages of partial information extraction, yielding
an equivalent protocol. Depending on the outcome of
one such stage, a different strategy can be applied, yield-
ing a protocol that uses two-way communication. We
call such a protocol adaptive, as it adapts to intermedi-
ate outcomes. We will explain an improvement of the
breeding protocol that has been found in this way by
Vollbrecht and Verstraete [13]. For details, we refer to
Refs. [4, 5, 13].

The breeding protocol starts from n copies of a Bell-
diagonal mixed state

ρ =
∑

v∈Z
2
2

pv|Bv〉〈Bv|.

The global state ρ⊗n is equivalent to a statistical en-
semble of pure states |Bs〉, s ∈ Z

2n
2 , with corresponding

probabilities ps (e.g. p001101 = p00p11p01). Consequently,
the state can be regarded as an unknown pure state |Bs〉.
The goal now is to determine s. Once we have pinned
down |Bs〉, we can transform the state to |B0〉 by per-
forming the unitary transformation σs on the B side.
With probability approaching 1 for large n, this unknown



s is contained in the typical set T that has ≈ 2nS(ρ) ele-
ments [17], where

S(ρ) = −
∑

v∈Z
2
2

pv log2 pv.

Consecutive parity checks rT s, where all r are random,
each on average rule out half of T . Consequently, to
obtain zero entropy (i.e. only one candidate left), about
nS(ρ) AEM are needed, each at the cost of one ebit.
Therefore, the yield of the protocol, which is the number
of ebits that are distilled for every copy, is equal to 1 −
S(ρ).

Partial information on s is extracted by restricting to
parity checks rT s, where r is of the form

r = r′ ⊗ a,

a is some fixed and finite m-bit vector (m is even and

divides 2n) and random r′ ∈ Z
2n/m
2 take over the role

of r. We will call this technique partial breeding. Note
that it is completely specified by a. Therefore we will
denote it by PB a. We illustrate how partial breeding
works with an example. Let a = 1010, and divide s into
vectors of m = 4 bits (i.e. m/2 = 2 pairs). Every such
m-bit vector g is either an element of 0(a), if aT g = 0, or
of 1(a), if aT g = 1. For this example, we have

0(a) = {0000, 0001, 0100, 0101, 1010, 1011, 1110, 1111},

1(a) = {0010, 0011, 0110, 0111, 1000, 1001, 1100, 1101}.

We have for instance

s = 0010 1110 0110 0011 0001 1101 0100

∈ 1(a) 0(a) 1(a) 1(a) 0(a) 1(a) 0(a).

In the same way as for breeding, a typical set can be
associated with the distribution of 0(a) and 1(a). This
set has ≈ 2

2n
m

S(a)(ρ) elements, where

S(a)(ρ) = −p0(a) log2 p0(a) − p1(a) log2 p1(a) .

Therefore, we need ≈ 2n
m S(a)(ρ) AEM to determine aT g

for all m-bit vectors g constituting s, with probability
close to 1. For this example, we have

p0(a) = p0000 + p0001 + . . . + p1111,

p1(a) = p0010 + p0011 + . . . + p1101.

We have considered partial information extraction on
a sequence of identically and independently distributed
random variables over the set {00, 01, 10, 11}. But the
same idea can also be applied to the sets 0(a) and 1(a).
Once we have carried out the previous PB step, we know
for every 4-bit vector (2 pairs), whether it is in 0(a) or
1(a). If we bring all vectors in 0(a) together, again we
have i.i.d. random variables over 0(a), and again we could
perform partial breeding, this time for instance PB b =
0101. Combining this with for instance PB c = 1000

for 1(a), we get to know for every 4 bits in which of the
following sets they are:

S1 = 0(a) ∩ 0(b) = {0000, 0101, 1010, 1111},

S2 = 0(a) ∩ 1(b) = {0001, 0100, 1011, 1110},

S3 = 1(a) ∩ 0(c) = {0010, 0011, 0110, 0111},

S4 = 1(a) ∩ 1(c) = {1000, 1001, 1100, 1101}.

It can be verified that the total number of AEM needed
in the first and second PB step of this example is equal
to

−
n

2
(pS1 log2 pS1 + . . . + pS4 log2 pS4) ,

which is exactly the entropy that is associated with the
partition into S1, S2, S3, S4 times the number of 4-bit vec-
tors in s. This is a consequence of the fact that [17]

S(A, B) = (−pA log2 pA−pB log2 pB)+pAS(A)+pBS(B).

So it is of no importance how a certain situation is at-
tained, the number of AEM (= the cost in ebits) always
equals the total information gain. We can continue per-
forming PB steps in this way until all sets considered are
singletons. We then have determined s completely, at the
cost of nS(ρ) ebits.

Of course, there is no point in dividing the breed-
ing protocol in successive stages of partial breeding. In
Ref. [13], 0(a) pairs are further purified by breeding, but
the 1(a) pairs are treated differently: on the first pair of
every 1(a) state, a BPM 10 is performed, yielding the par-
ity 10 of this pair. As the pair is measured, it is lost, but
the measurement also provides information on the second
pair. This one is in {10, 11} if the outcome was +1 and in
{00, 01} if the outcome was −1. So in both cases, we end
up with a rank two Bell-diagonal state, for which it has
been proved that the breeding protocol is optimal [18].
The yield of this protocol is calculated in Ref. [13], and
turns out to be greater than that of breeding. But the
reason why this necessarily must be so, remains obscure.
We will shed light to this issue in the next section.

IV. ENTROPY REDUCTION

The reason why the protocol of Ref. [13] outperforms
the breeding protocol, lies in the difference between an
AEM and a BPM. If a parity check is performed on a
finite number m/2 of pairs, represented by an ensemble
of vectors g ∈ Z

m
2 , the resulting state will have lower en-

tropy by a BPM than by an AEM. Next to extracting
information under the form of the parity, a BPM results
in the mapping of different vectors to the same new vec-
tor, resulting in an extra entropy reduction.

To see this, we recall the procedure to carry out a BPM
explained in Sec. II B. If aT g is the parity we would like
to know, we first perform local Cliffords represented by
a symplectic C ∈ Z

m×m
2 of which the last row is aT ,



followed by a bilateral σz measurement on the last pair.
This results in a new state (with one pair less) repre-
sented by C̄g. By the measurement, we learn aT g, but
we also lose bT g, where b is the second last row of C.
This loss causes all g with the same result C̄g and out-
come aT g to be mapped to the same vector C̄g. Note
that the outcomes should be equal as well, otherwise one
of the two is ruled out. From the symplecticity of C, it
follows that g and g + Pa are mapped together. Indeed,
C̄Pa = 0 and aT Pa = 0. Consequently, the new state is
represented by the ensemble of vectors C̄g, with proba-
bilities pg + pg+Pa. This addition of probabilities results
in the extra entropy reduction.

Let us illustrate this with an example. We have two
pairs represented by an ensemble of 4-bit vectors and we
perform a BPM 1111. We are left with only one pair
represented by an ensemble of 2-bit vectors. The proba-
bilities are

p0000+p1111

p
0(a)

, p0011+p1100

p
0(a)

, p0101+p1010

p
0(a)

, p0110+p1001

p
0(a)

if the outcome is +1, and

p0001+p1110

p
1(a)

, p0010+p1101

p
1(a)

, p0100+p1011

p
1(a)

, p0111+p1000

p
1(a)

if the outcome is −1. Note that we do not identify these
probabilities with the two-bit vectors C̄g: all future ac-
tions are described entirely in terms of the original vec-
tors g, as explained in Sec. II B. If we would have used an
AEM, then we would still have two pairs, but represented
only by 8 vectors instead of 16, with probabilities

p0000

p
0(a)

, p1111

p
0(a)

, p0011

p
0(a)

, p1100

p
0(a)

, p0101

p
0(a)

, p1010

p
0(a)

, p0110

p
0(a)

, p1001

p
0(a)

if the outcome is +1, and

p0001

p
1(a)

, p1110

p
1(a)

, p0010

p
1(a)

, p1101

p
1(a)

, p0100

p
1(a)

, p1011

p
1(a)

, p0111

p
1(a)

, p1000

p
1(a)

if the outcome is −1. The average difference in entropy
is equal to

[−p0000 log2 p0000 − p1111 log2 p1111 − . . .

−p0111 log2 p0111 − p1000 log2 p1000]

+ [(p0000 + p1111) log2(p0000 + p1111) + . . .

+(p0111 + p1000) log2(p0111 + p1000)]

and is always positive. Indeed, for all x, y ≥ 0, we have:

[−x log2 x− y log2 y] + [(x + y) log2(x + y)]

= (x + y)H( x
x+y , y

x+y ),
(2)

where

H(p, 1− p) = −p log2 p− (1− p) log2(1 − p)

is the binary entropy function, plotted in Fig. 1.
This plot shows that the entropy reduction, given by

the right hand side of Eq. (2), is larger the more the col-
liding vectors g and g+Pa are equiprobable. If one prob-
ability relative to the other becomes small, the entropy
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FIG. 1: the binary entropy function H(p, 1 − p).

reduction vanishes. That is the reason why the hashing
protocol [4], which is the same as breeding but the parity
checks are BPM instead of AEM, has the same yield as
the breeding protocol: again, we use the fact that almost
all weight comes from vectors s ∈ T . Since the r are
completely random, so are s + Pr. Therefore, the prob-
abilities ≈ (p00p01p10p11)

n/4 of s + Pr are infinitesimal
(as n is large) compared to the probabilities ≈ 2−nS(ρ) of
s [17]. A variant of hashing [8], where some of the BPM
are on a finite number of copies resulting in a nonzero en-
tropy reduction, performs slightly better than hashing.

It is clear that we should focus on BPM on small num-
bers of copies, because there lies the benefit of the en-
tropy reduction. However, up till now, we have only spo-
ken of the information gain, but we also have to take the
cost into account. PB requires AEM, each at the cost
of one ebit, whereas a BPM is at the cost of one of the
copies. But as in the end all non-measured copies will
be pure Bell states, this will not make the difference. By
construction, every AEM in PB has equiprobable out-
comes, and therefore yields one bit of information. The
same does hold for a BPM if r has infinite length and is
random. Indeed, hashing is equivalent to breeding. But
if we are to perform small non-random parity checks, the
outcomes are not necessarily equiprobable and therefore
yield less than one bit of information. If the outcomes
are equiprobable, improvement is guaranteed. Note that
the BPM 10 on the first pair of two 1(a) pairs does have
equiprobable outcomes, which explains the improvement
of Ref. [13] over breeding. So in some way, we should
try to spot as many finite equiprobable parity checks as
possible and carry them out by BPM.

V. PROTOCOL

In the following, we will denote the all-zeros m-bit vec-
tor by 0m and the all-ones vector by 1m. For any binary
vector g ∈ Z

m
2 , we will denote g + 1m by ḡ. Whenever a



parity check 1m has been performed on m/2 qubit pairs
with outcome α ∈ Z2 (we will call α the outcome instead
of (−1)α), we will denote the resulting state by [α(m)]
if the parity check was a BPM and by α(m) otherwise.
Recall from Sec. IV that the probabilities of [α(m)] are
(up to normalization) pg + pḡ, whereas the probabilities

of α(m) are pg, where in both cases all g satisfy 1T
mg = α.

A. Decoupling

Learning the parity of a number of qubit pairs by par-
tial breeding or BPM causes statistical dependence of
the pairs involved, which makes the continuation of the
protocol very complicated. However, this statistical de-
pendence can be undone, which we refer to as decoupling.
The idea of decoupling is best explained by an example.
Suppose by PB 1111, we learn for every two copies of a
Bell-diagonal qubit pair its state α(4). Where the states
of the copies were independent before, this obviously no
longer holds afterwards. But if next we perform PB 11 on
all first pairs, yielding for a particular first pair its state
β(2), where the state of both pairs was α(4), we now have
two independent pairs β(2) and (α + β)(2). Indeed, we
have learned the parities 1111→ α and 1100→ β, which
is equivalent to knowing 1100 → β and 0011 → α + β,
or 11 for both pairs. So where the first PB coupled the
ensembles of the two pairs, the second decoupled them
again.

The same does hold for PB 1111 → α followed by
BPM 11 → β on the first pair. This is equivalent to
BPM 11→ β on the first pair and PB 11→ α+β on the
second pair. And it can be verified that BPM 1111→ α
followed by BPM 11→ β on the first pair is equivalent to
BPM 11→ β on the first pair and BPM 11→ α + β on
the second pair. This idea was also used in the adaptive
stabilizer code formalism of Ref. [12].

However, this decoupling rule does not hold for BPM
followed by PB. Once we have carried out a BPM on a
number of qubit pairs, we have statistical dependence not
only by the knowledge of the overall parity, but also by
the mapping together of vectors as explained in Sec. IV.
It is this dependence that we denote by square brack-
ets. Although the knowledge on the parities decouples
by PB, this mapping does not. As an example, let BPM
1111 followed by PB 1100 have outcome 0 and 1 on two
particular pairs respectively. The resulting state of the
pairs is [1(2)1(2)] and has probabilities:

p0101+p1010

p2

1(2)

and p0110+p1001

p2

1(2)

.

Therefore, once a BPM is carried out on a number of
qubit pairs, we have to take it into account until it is
later decoupled by a BPM on some of the qubit pairs.

We summarize all scenarios (the parity check on α(2m)

is always 1m0m):

state outcome resulting state

PB α(2m) → 0 : 0(m)α(m)

→ 1 : 1(m)ᾱ(m)

BPM α(2m) → 0 : [0(m)]α(m)

→ 1 : [1(m)]ᾱ(m)

(3)

If the considered state was connected to others by pre-
vious BPM, like in [x α(2m) y], the state transforms as
follows:

state outcome resulting state

PB [x α(2m) y] → 0 : [x 0(m)α(m) y]

→ 1 : [x 1(m)ᾱ(m) y]

BPM [x α(2m) y] → 0 : [0(m)][x α(m) y]

→ 1 : [1(m)][x ᾱ(m) y]

(4)

Note that decoupling is nothing more than linearity of
parity checks. Whenever we have performed a number
of parity checks, these generate a space of parity checks.
Any generating set of this space is equivalent to the orig-
inal set of parity checks. E.g. {0101, 1010} is equivalent
to {1010, 1111}. We will use decoupling parity checks
because they result in a transparent distillation protocol.

B. Parity checks with equiprobable outcomes

In Sec. II B, we showed that, once we have performed
a BPM, we have to make sure that all following parity
checks commute with it. There is a way in which this is
automatically achieved. All vectors of the form x ⊗ 11
commute (we could also have taken 01 or 10). Indeed,
for all 2n-bit vectors x, y, it holds:

(

x⊗

[

1

1

])T (

In ⊗

[

0 1

1 0

])(

y ⊗

[

1

1

])

= 0.

Therefore, if we stick to parity checks of this form, we
do not have to care about commutability any more. In
this way, for every qubit pair we can find out whether it
is 0(2) or 1(2). For now, let us assume we go up to this
point but not further: we want to find an optimal way of
reaching the point where every pair is determined as 0(2)

or 1(2).
Whenever we spot parity checks with equiprobable

outcomes, we should perform it by BPM. We will now ex-
plain how to do this. Suppose we have m qubit pairs, de-
termined as 1(2m) by a previous parity check 12m. Then
the parity check 1m0m has equiprobable outcomes. In-
deed, it holds that

1(2m) =
0(m)1(m) or

1(m)0(m).

Clearly, both possibilities have the same initial proba-
bility p0(m)p1(m) or 1/2 after normalization. Therefore,



performing the parity check 1m on the left half yields the
parities of both halfs and this information equals one bit.
By performing a BPM, we have the extra entropy reduc-
tion. Furthermore, this BPM decouples the two halves
of the state.

However, if the m pairs are

0(2m) =
0(m)0(m) or

1(m)1(m),

we do not have equiprobable possibilities. With a little
trick, we still are able to force an equiprobable outcome
parity check. Two states of this kind can be written as

0(2m)0(2m) =

0(m)0(m) 1(m)1(m) or

1(m)1(m) 0(m)0(m) or

0(m)0(m) 0(m)0(m) or

1(m)1(m) 1(m)1(m)

.

With an extra PB 0m12m0m, we can distinguish the first
two possibilities from the last two (as indicated by the
line). If the outcome is 1, again we have two equiproba-
ble possibilities 0(m)0(m)1(m)1(m) and 1(m)1(m)0(m)0(m),
that are separated by a BPM 1m on one of the four m-
bit vectors. If the outcome is 0, the possibilities are not
equiprobable, but again we can bring two of these results
together, with possibilities

0(m)0(m)0(m)0(m) 1(m)1(m)1(m)1(m) or

1(m)1(m)1(m)1(m) 0(m)0(m)0(m)0(m) or

0(m)0(m)0(m)0(m) 0(m)0(m)0(m)0(m) or

1(m)1(m)1(m)1(m) 1(m)1(m)1(m)1(m)

and performing PB 03m12m03m separating the possibili-
ties as indicated by the line, and so forth. Clearly, this
trick can be repeated endlessly.

We calculate the average fraction η(0(2m)) of 0(2m)

on half of which a BPM 1m is performed (note that
η(1(2m)) = 1). The procedure explained in the previ-
ous paragraph is recursive: at each step, we combine
two random variables with two possible values x and y
(px + py = 1). The variables of the next step are xx
and yy, and so on. Therefore, it is possible to calculate
η(0(2m)) in a recursive way. Let t be the probability to
reach the situation under consideration and k the total
number of 0(2m) involved in the present step. Initially,
we have

t = 1

px =
p2
0(m)

p2
0(m) + p2

1(m)

py =
p2
1(m)

p2
0(m) + p2

1(m)

k = 2.

From the procedure explained in the previous paragraph,

we have the following recursion relation:

t ← t(p2
x + p2

y)

px ←
p2

x

p2
x + p2

y

py ←
p2

y

p2
x + p2

y

k ← 2k.

At each step, we have a probability 2pxpy that one of the
m-bit vectors involved is detemined by BPM. So each
step yields another fraction 2tpxpy/k of 0(2m) on half of
which a BPM is performed. It can be verified that the
total sum of these fractions over all steps is equal to

η(0(2m)) =
∞
∑

i=0

(vw)2
i

2i
i

Q

j=0

(v2j
+w2j

)

where v =
p2

0(m)

p2

0(m)
+p2

1(m)

and w =
p2

1(m)

p2

0(m)
+p2

1(m)

.

(5)

In practice, it suffices to truncate the procedure after a
few steps, since the terms in the summation of Eq. (5)
decrease exponentially fast.

C. Numerical calculation of the yield

The protocol starts with PB 12q+1 . The next step is
an iteration of the procedure explained in Sec. VB, for
m = 2q, 2q−1, . . . 2, where we use the update rules (3) and
(4). For now, we will treat all 0(2m) in the same way, i.e.
we do not favour particular states being parity checked
by BPM. As a consequence, every 0(2m) has the same
probability η(0(2m)) of undergoing a BPM 1m0m. We
find that, from one step to the next, the states transform
as follows:

state transforms to with probability

0(2m) → [0(m)]0(m) η(0(2m))/2

→ [1(m)]1(m) η(0(2m))/2

→ 0(m)0(m) p2

0(m)

p2

0(m)
+p2

1(m)

− η(0(2m))
2

→ 1(m)1(m) p2

1(m)

p2

0(m)
+p2

1(m)

− η(0(2m))
2

1(2m) → [0(m)]1(m) 1/2

→ [1(m)]0(m) 1/2

(6)

With these rules, we are able to calculate the frequencies
(i.e. the expected number of occurrences per 2q qubit
pairs) of all possibilities from one step to the next. After
the last step, we are left only with 0(2) and 1(2) pairs, in
various combinations of BPM (denoted by square brack-
ets). Within square brackets, permutations of pairs yield
equivalent states. Therefore, we do not have to calculate
the frequencies of all possibilities, but only up to a per-
mutation of the pairs: between square brackets, only the



number n0 of 0(2m) and n1 of 1(2m) matter. We denote
this by [n0, n1]. The possibilities in the end are then:

0(2), 1(2),

[1, 0], [0, 1],

[2, 0], [1, 1], [0, 2],
...

[2q, 0], [2q − 1, 1], . . . , [0, 2q],

(7)

with frequencies f(0(2)), f(1(2)), f([1, 0]), . . . , f([0, 2q]).
Note that these must satisfy

∑

A

(

n0(A) + n1(A)
)

f(A) = 2q,

where we define n0(0
(2)) = 1, n1(0

(2)) = 0 and n0(1
(2)) =

0, n1(1
(2)) = 1. By partial breeding alone, nS(2)(ρ) ebits

would have been sacrificed. Now, for every BPM, we have
one ebit less that has been measured. Therefore, the total
cost of ebits per qubit pair up to this point equals

S(2)(ρ)−
1

2q

∑

[n0,n1]

f([n0, n1]). (8)

But the protocol is not finished yet. Breeding is opti-
mal for the pairs that have never been involved in some
BPM, as they are independent rank two Bell diagonal
states [18]. We show that breeding is optimal for all
pairs. Although equiprobable parity checks can still be
found, they will no longer result in an entropy reduc-
tion if carried out by a BPM. Indeed, all further parity
checks a must be entirely built of 01 and 10, because
for every pair we already know the parity 11. Therefore,
Pa too is built of 01 and 10. Since every pair is either
0(2) = {00, 11} or 1(2) = {01, 10}, the mapping of vectors
vanishes: one of the two vectors mapped to the same new
vector has already been ruled out by the parity checks,
because 0(2) + 01 = 0(2) + 10 = 1(2). Deprived of the
benefit of entropy reduction by BPM, the best thing left
is to gain one bit of information for every measurement.
The number of ebits needed per qubit pair equals the
entropy per pair

1

2q

(

∑

A

f(A)S(A)

)

(9)

left in the overall state. It can be verified that

S(0(2)) = H(q00, q11),

S(1(2)) = H(q01, q10), (10)

S([n0, n1]) = −
1

2

n0
∑

i=0

n1
∑

j=0

(

n0

i

)(

n1

j

)

P (i, j) log2 P (i, j),

where q00 = p00

p00+p11
, q11 = p11

p00+p11
,

q01 = p01

p01+p10
, q10 = p10

p01+p10
,

P (i, j) = qi
00q

n0−i
11 qj

01q
n1−j
10 + qn0−i

00 qi
11q

n1−j
01 qj

10.

Now all non-measured qubit pairs are pure ebits. The
fraction of non-measured pairs equals

1−
1

2q

∑

[n0,n1]

f([n0, n1]). (11)

If we substract the total number of measured ebits, which
is the sum of (8) and (9), from this value (11), we get the
yield of the protocol:

1− S(2)(ρ)−
1

2q

(

∑

A

f(A)S(A)

)

. (12)

D. Favouring BPM on a small number of pairs

It can be verified that the entropy reduction is larger
for a BPM on a small number of pairs than on a large
number of pairs. In the first version of our protocol, we
did not make use of this, since all 0(2m) were treated
equally. So there is still room for improvement. As an
example, consider the following situation:

[∗ ∗ ∗][∗ ∗ ∗ ∗ ∗]

where all “∗” are either 0(m) or 1(m), and a parity check
1m on one of them (with equiprobable outcomes) deter-
mines them all. Then it is better to do a BPM on one of
the first three, resulting in

[∗][∗∗][∗ ∗ ∗ ∗ ∗]

than on one of the last five, resulting in

[∗ ∗ ∗][∗][∗ ∗ ∗∗].

Indeed, it can be verified that S([∗∗∗])−S([∗∗]) is larger
than S([∗ ∗ ∗ ∗ ∗])− S([∗ ∗ ∗∗]).

We show how to increase the number of BPM on small
numbers of pairs. At each step, we have 0(2m) and 1(2m),
distributed over all possibilities. We carry out BPM
1m0m on all 1(2m), so there the situation remains the
same. But the same cannot be done for all 0(2m): there
the ones that are linked by BPM (i.e. in square brackets)
to a small number of pairs, should be taken first. Every
0(2m) is part of some state A, where n0 is nonzero. We
now order all possibilities [n0, n1] according to increasing
n0 +n1 and on a second level according to increasing n0.
So for example [5, 3] < [6, 2] < [4, 5]. We favour small
n0 on a second level because all 1(2m) will be certainly
reduced, on average resulting in smaller n0 and n1 in the
end. We also define that all [n0, n1] < 0(2m). Probably
better orderings can be found, but we do not want to
complicate things further. We define

L(A) =

∑

B<A

n0(B)f(B)

p0(2m)2q/m

and U(A) with the same formula but “<” replaced by
“≤”. L(A) and U(A) are the fractions of all 0(2m) that



are part of some B < A and ≤ A respectively. Note that
L([1, 0]) = 0 and U(0(2m)) = 1. We combine the 0(2m)

for the procedure explained in Sec. VB as follows: first
we divide all 0(2m) in two equally large sets (i.e. both sets
contain p0(2m)n/m elements): every 0(2m) of the first set
is part of some A ≤ that of every element of the second
set. Now every 0(2m) of the first set is combined with
one of the second set and PB 0m12m0m is performed.
Whenever the outcome is 1 (the probability of which is
calculated in the same way as in Sec. VB), a BPM 1m0m

is performed on the first 0(2m). All 0(2m)0(2m) with out-
come 0 are again divided in two halves, according to the
ordening of every first 0(2m). By continuing in this way,
the fraction η(0(2m)|A) of 0(2m), part of some A, on which
a BPM 1m0m is performed, can be calculated, and equals

η(0(2m)|A) =

u(A)−1
∑

i=1

zi +

l(A)
∑

i=u(A)

2−i − L(A)

U(A)− L(A)
zi (13)

where l(A) = ⌊− log2 L(A)⌋, v =
p2

0(m)

p2

0(m)
+p2

1(m)

,

u(A) = ⌈− log2 U(A)⌉, w =
p2

1(m)

p2

0(m)
+p2

1(m)

,

zi = 2(vw)2
(i−1)

i−1
Q

j=0

(v2j +w2j )

.

As in Eq. (5), the terms in the second summation in
Eq. (13) decrease exponentially fast. Therefore, when
l(A) is large, the procedure may be truncated after a
number of steps. In the update rules (6), η(0(2m)) must
be replaced by η(0(2m)|A). Note that we have differ-
ent update rules for different possibilities A. With this,
we end up with the same possibilities (7) but with dif-
ferent frequencies f(0(2)), f(1(2)), f([1, 0]), . . . , f([0, 2q]).
To calculate the yield, we still use Eqs. (10) and (12).

VI. ILLUSTRATION WITH WERNER STATES

We have numerically calculated the yield of the pro-
tocols explained in Sec. V for Werner states. Werner
states are Bell-diagonal states where p00 = F and p01 =
p10 = p11 = 1−F

3 . F is also called the fidelity of the
state. Werner states are typically the result of one party
preparing Bell states |B00〉 and sending one qubit of the
pair to the other party via the depolarization channel

ρ 7→ Fρ +
1− F

3

(

σxρσ†
x + σyρσ†

y + σzρσ†
z

)

.

In Figs. 2 and 3, we have plotted the yields of the pro-
tocols of Sec. V C and VD, for q = 1, 2, 3, 4, 5, 6. We
truncate the procedure of Sec. VB after 10 steps. We see
that with increasing q, the yields of the protocols increase
but converge. This is due to the fact that the entropy
reduction is smaller for BPM on larger numbers of pairs.
Also notice in Fig. 3 that the yields of the protocol of
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FIG. 2: the yields of the protocol of Sec. V C (solid lines), for
q = 1, 2, 3, 4, 5, 6, compared to the yield of breeding (dotted
line). The yield increases with increasing q and converges for
large q.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

yi
el

d

FIG. 3: the yields of the protocol of Sec. V D, where BPM
on small numbers of pairs are favoured (solid lines), com-
pared to the yields of that of Sec. V C (dotted lines), for
q = 1, 2, 3, 4, 5, 6. Again, the yield increases with increasing q

and converges for large q.

Sec. VD are larger than the yields for corresponding q of
that of Sec. VC.

We see that the yield of our best protocol is zero when
F ≤ 0.7424. This is better than breeding (0.8107), but
in order to distill states with lower fidelity, we first have
to apply a numer of iterations of recurrence [4]. Before
every recurrence iteration, one-qubit local Clifford op-
erations, yielding a permutation of the Bell states, are
applied to each pair such that p00 > p01, p10 ≥ p11 for
the transformed pairs [4, 10]. Recurrence itself consists
of a BPM 1111 on every two pairs, after which all re-
maining pairs where this parity check yielded 1, are dis-
carded. The remaining pairs where the outcome was 0,
have higher fidelity and are kept for a next iteration or
for an asymptotic protocol. Note that the discarding
can be interpreted as an extra BPM 1100, which has



equiprobable outcomes. Therefore, the recurrence itera-
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FIG. 4: the yield of our best protocol (solid line) and breed-
ing (dotted line), both preceded by an optimal number of
recurrence iterations.
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FIG. 5: the relative difference of the yields.

tions before our protocol only improve it by the fact that
also non-equiprobable parity checks are carried out by
BPM. The not being maximal of the information gain is
more than compensated by the entropy reduction for low-
fidelity states. A next generation of protocols should in-
corporate a more complex criterion for BPM than merely
equiprobable parity check outcomes, but we will not go
deeper into that issue. We have compared the yield of
breeding preceded by recurrence iterations to that of our
protocol preceded by recurrence iterations in Fig. 4. The

discontinuities in the slope are due to the fact that the
optimal number of recurrence iterations is dependent on
the fidelity. We have also plotted the relative difference
in Fig. 5, which is the difference of the yields divided by
the yield of breeding preceded by recurrence iterations.
The sawtooth-like shape is caused by the fact that the
discontinuities in the slopes of the yields do not coincide
for the two protocols.

VII. CONCLUSION

We have presented a new asymptotic distillation pro-
tocol, that, based on the important principle of entropy
reduction, outperforms all previous asymptotic protocols.
Doing so, we have shed light on issues that were not clear
before, such as the reason of the benefit of recurrence. Al-
though we cannot claim to approach the entanglement of
distillation, we certainly have tightened its lower bound.
We also have mentioned roads that are still open for in-
vestigation. However, we feel that searching for further
improvement will result in highly complicated protocols,
possibly the product of an exhaustive search in a super-
exponential decision space.
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