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Abstract

Thanks to its increasing availability, electronic literature has become a potential
source of information for the development of complex Bayesian Networks (BN),
when human expertise is missing or data is scarce or contains much noise. This
opportunity raises the question of how to integrate information from free-text re-
sources with statistical data in learning Bayesian networks. Firstly, we report on
the collection of prior information resources in the ovarian cancer domain, which in-
cludes “kernel” annotations of the domain variables. We introduce methods based on
the annotations and literature to derive informative pairwise dependency measures,
which are derived from the statistical cooccurrence of the names of the variables,
from the similarity of the “kernel” descriptions of the variables and from a combined
method. We perform wide-scale evaluation of these text-based dependency scores
against an expert reference and against data scores (the mutual information and
a Bayesian score). Next, we transform the text-based dependency measures into
informative text-based priors for Bayesian network structures. Finally, we report
the benefit of such informative text-based priors on the performance of a Bayesian
network for the classification of ovarian tumors from clinical data.
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1 Introduction

The increasing availability of electronic literature poses the question of how
to use both domain knowledge and data efficiently in knowledge engineering,
machine learning and decision support—theoretically as well as practically.
This challenge is particularly acute in the complex and rapidly changing fields
of medicine and genomics where much of the voluminous knowledge is only
available as free text, scattered throughout the literature [22, 2]. The efficient
extraction of domain knowledge from the literature and its incorporation into
statistical models requires the extension of the representations and methods
used for the integration of expert knowledge and data.

Bayesian networks (BN) are an attractive technique for tackling this task.
Indeed, an important aspect of Bayesian networks is the possibility to in-
corporate many kinds of prior knowledge into learning—ranging from logical
constraints on the model structure [43, 15, 33, 13] or qualitative monotonic-
ity relations between the variables [47, 24] to prior distributions for network
structures and parametrizations of local dependencies [10, 15, 25, 12]. For the
incorporation of prior knowledge, we adopt the Bayesian framework, which
allows the combination of probabilistic prior information with statistical data
in a principled way.

The main research question in this paper is how to automatically construct
an informative prior distribution over the space of Bayesian network struc-
tures from textual information. Previous approaches to define an informative
prior distribution over Bayesian network structures can be grouped into penal-
ization methods and pairwise methods. The penalization method defines the
probability of a structure Bg based on the number of edges that are different
from a prior network Bpyio, where a uniform probability is assumed for each
missing or extra edge [25]. The pairwise methods define the probability of a
structure Bg by combining the individual arc probabilities independently for
each edge in Bg; they assume that being a parent of some node is indepen-
dent from any other parental relation (as discussed in Section 7.2) and expect
a priori probabilities for edges [10, 12]. In both approaches, the existence of
informative edge priors is an important elementary component.

We follow here the pairwise approach to incorporate prior information into
Bayesian network learning. The main goal is then to specify each such prior
edge probability P(X — Y') using a text score Rrey(X;Y) that expresses
the relatedness between the two variables X and Y according to the domain
literature. The rationale in the medical context is that (1) a significant body of
medical research is devoted to the discovery of informational relationships be-
tween domain variables (mainly dependencies between variables are reported
in the literature and independencies are largely ignored) and that (2) text-



mining methods for relationship extraction have already proved useful in many
domains as shown below. However, note that these earlier applications focused
on providing results for the domain expert or data analyst, whereas our aim
is to go one step further and use the results of these methods automatically
in the statistical learning of quantitative models.

Beside the linguistic approaches, which ambitiously try to structurally ana-
lyze [36] and extract high level logical statements from free text [41, 16, 39,
unstructured statistical approaches have similarly shown good performance in
extraction of entity relationships. Two important types of unstructured meth-
ods are the methods based on name cooccurrence and the methods based on
kernel similarity.

The methods based on name cooccurrence quantify the relatedness of two do-
main variables by the relative frequency of cooccurrence of their names (and
possibly synonyms) in documents from a certain corpus. An early biomedical
application of this approach was described by Swanson and Smalheiser [46].
A recent detailed evaluation of the cooccurrence of MeSH terms in MED-
LINE abstracts against the manually curated UMLS Semantic Net similarly
demonstrated the effectiveness of this approach [11]. In genomics, Stapley and
Benoit [44] summarized the biological rationale for this simplified approach
and performed a quantitative manual analysis for the model organism Sac-
charomyces cerevisiae, which indicated the usefulness of this approach for
knowledge discovery in genomics. For human genes, Jensen et al. [28, 27] per-
formed an extensive quantitative manual check of such pairwise scorings based
on cooccurrence and concluded that the name cooccurrence in MEDLINE ab-
stracts reflects biologically meaningful relationships with a practically accept-
able reliability and that the main problem for the method in human genomics
is synonym identification. In another experiment, the SUISEKI system [8]
(which contains an advanced name detection subsystem) similarly achieved
good performance using a frame-based approach to relationship extraction.
For the use of occurrence and cooccurrence patterns to learn Bayesian net-
work structures, de Campos et al. [17] used conditional mutual information
scores defined on the occurrence patterns of words to learn a Bayesian network
thesaurus from the literature.

The methods based on kernel similarity quantify the relatedness of two do-
main variables based on the vector representations of their textual descriptions
(called kernels). Each component of this vector describes the weight of a cer-
tain word in the document and in the collection of documents (i.e., in the
domain), which is derived from simple counting statistics or more elaborate
weighting techniques. The relatedness of two variables can be based on either
direct similarity or indirectly by the corelevance of their kernels to documents
from a certain corpus (for the cognitive aspects of relevance, see [9]). Direct
similarity means that domain variables (concepts) are related if their descrip-



tions are similar while corelevance means that variables (concepts) are related
if the same documents are similar to their descriptions. In a related approach,
Reiner and Aszodi [40] defined the similarity measure of documents (annota-
tions) by common concept presence. Shatkay et al. [42] proposed a probabilis-
tic relevance measure between kernels and documents and they found good
qualitative correspondence between the clustering of genes based on expres-
sion data and the clustering based on the simplified corelevance of the gene
kernels.

We demonstrate the use of these text-based priors for Bayesian network learn-
ing on a medical domain related to clinical models of ovarian tumors and to
the preoperative classification of ovarian tumors from patient history informa-
tion, ultrasonography measurements, color Doppler measurements, and serum
marker levels. This task serves as a well-understood evaluation domain for our
methodology.

Figure 1 gives an overview of the different phases in using textual prior infor-
mation to learn Bayesian networks. First, using the annotations of Bayesian
network variables, we convert half a million MEDLINE abstracts to vectorial
literature data (P), which indicates the presence (or relevance) of each variable
in MEDLINE abstracts. Based on this literature data, we define cooccurrence
and mutual information scores to quantify the textual dependencies between
the variables. Additionally, we define another score based on the similarity of
the kernel descriptions. Finally, we transform the automatically derived text
scores into an informative prior for Bayesian network structures by normaliz-
ing and scaling it to satisfy certain higher-order statistical constraints and we
apply this prior for the learning of Bayesian networks.

[Fig. 1 about here.]

To derive informative priors for Bayesian network structures from textual
sources, we assume the existence of (1) annotations for the Bayesian network
variables (which includes a textual name for the random variable, synonyms, a
free text description (the kernel) and references to documents), (2) a collection
of domain documents, and (3) domain vocabularies. Whereas the annotations
of the Bayesian network variables could be seen only as an ad hoc solution to
some engineering aspects of knowledge modeling, we exploit these text kernels
to derive text-based relations Rrpexi(X;Y) between the variables X and Y.
Specifically, we introduce several pairwise dependency scores based on textual
annotations, such as the pairwise cooccurrence of variable names in domain
documents, the similarity of variable annotation, and the pairwise corelevance
of variable descriptions to domain documents. These dependency scores are
used in the derivation of formal informative priors for structure learning.

The enrichment of Bayesian networks with kernels for the variables (and im-



plicitly with the text-based relations that can be derived from these kernels
and the corpus) also fits in the trend of representing more and more contex-
tual and qualitative information linked to the Bayesian network formalism.
Leong [35] reported an extended network formalism enriching the Bayesian
network with new types of relations between the variables related to qualitative
Bayesian networks [50]. Koller and Pfeffer [29] and Laskey and Mahoney [34]
suggested an object-oriented approach in which partial probabilistic knowledge
fragments can be maintained in a modular way and can be reused for flexible
Bayesian network construction within an evolving context. A further extension
in this direction is the introduction of the probabilistic frame-based systems,
which for example allows probabilistic relationships between the knowledge
fragments [30].

In fact, annotations attached to a Bayesian network serve a broader purpose
than the derivation of informative priors explored in this paper. Other appli-
cations include (1) linking data collection to data analysis using annotations
from the data collection protocol in the Bayesian network [1], (2) supporting
information retrieval by using the annotations of the random variables orga-
nized according to the Bayesian network structure in complex queries [6], or
(3) supporting the knowledge engineering of complex Bayesian networks and
explaining the Bayesian network structure and its inference [38, 32, 5]. Be-
cause of the multiple uses of annotations for Bayesian networks, we propose
the term of Annotated Bayesian Network (ABN) to encompass the enhanced
functionalities of textually enriched Bayesian networks. The ABN is defined
as a directed, acyclic graph whose nodes are annotated with local probabilistic
models (as in standard Bayesian networks) and with textual attributes. Fur-
thermore, in the context of this paper where we derive informative priors,
we informally require that the annotations and the document corpus be rich
enough to give rise to meaningful scores Rex (X;Y) for X, Y pairs of random
variables.

Admittedly, this working definition is simple and the growing complexity and
amount of electronically available prior information will inevitably require a
broader formalization to support the integrated application of (1) a priori tex-
tual information such as domain literature, domain vocabularies, taxonomies,
ontologies, (2) a priori known qualitative domain relations and structural con-
straints for the Bayesian network and its parametric submodels, and even (3)
textually annotated data sets. We believe that a full-scale principled use of
such a wide scope of information resources can be achieved if these infor-
mation resources are semantically organized around an “annotated Bayesian
network” (in a broader sense than our current definition). Even though this
formal, comprehensive, and semantic approach to information resources and
ABNs remains a challenge, our work on deriving informative priors and other
applications of annotations in Bayesian networks are systematic steps towards
this goal. As we will demonstrate, even the definition of ABNs with text ker-



nels already bridges the gap between the quantitative Bayesian networks and
the textual resources.

The paper is organized as follows. Section 2 introduces the ovarian cancer
domain, the variables and their relations, the textual resources, and the data
set of clinical measurements. Section 3 introduces the text scores and Section 4
presents statistics of these text scores. Section 5 introduces the data scores.
Section 6 reports on the correspondence between expert, text, and data scores.
Section 7 presents methods for transforming the text scores into an a priori
distribution over the Bayesian network structures. Finally, Section 8 reports
the effect of these priors on Bayesian network performance for the classification
of ovarian tumors. Sections 9 and 10 contain the discussion and conclusion.

2 Annotated Bayesian networks for ovarian cancer

We apply the techniques presented in this paper to clinical models of ovarian
tumors incorporating patient history, ultrasonography measurements, color
Doppler imaging measurements, and blood serum marker levels. This investi-
gation takes place in the context of the International Ovarian Tumor Analysis
Consortium ! (IOTA), which is a multicenter study on ovarian tumors [49].
This study includes the multicenter collection of patient data and the corre-
sponding data collection protocols.

2.1 Domain variables and edge priors

In the experiments we used a total of thirty-one variables (which had been pre-
viously evaluated as the most relevant domain variables), such as parity, drug
treatment for infertility, use of oral contraceptives, family history of breast and
ovarian cancer, age, bilaterality of the tumor, pain, descriptors of the morphol-
ogy, echogenicity, and vascularization of the mass, or the level of CA125 tumor
marker.

Furthermore, a leading expert in the ultrasonography of ovarian tumors se-
lected the ‘most relevant’ relations between pairs of variables (57 relations),
the ‘moderately relevant’ pairwise relations (56 relations) and the ‘weakly rel-
evant’ pairwise relations (44 relations). S3 denotes the set of ‘most relevant’
relations, S; denotes the set of both ‘most relevant” and ‘moderately relevant’
relations, and Sy denotes the set of all relations and S{, 5 denote the respec-
tive subsets of the relations corresponding to the central variable Pathology.

U http://www.iota-group.org



Furthermore, the expert provided rankings for the pairwise relations, which
was manually transformed into a prior Rppert(X;Y") for undirected edges as
shown on Figure 2. We applied the scaling method described in Section 7.3 to
the prior score to satisfy that the average pairwise direct relations per variable
is 6, furthermore we set a lower limit € to avoid the a priori exclusion of edges.
For example, Rpxpert(Pathology; ) represents an assessment of the relevance
of each domain variable Y with respect to the Pathology variable—that is, to
discriminate between benign and malignant tumors.

[Fig. 2 about here.]

2.2 Text kernels

For the derivation of informative priors for Bayesian network structures from
textual sources, we assume the existence of (1) annotations for the Bayesian
network variables (which includes the name of the variable, synonyms, a free-
text description (the kernel) and references to documents from the corpus). To
ensure consistent, objective annotations and consequently the generality of our
study and conclusions, we used the IOTA protocols without modification as
primary sources. A corresponding Ph.D. thesis [48] provided an extension for
the IOTA descriptions. Together, these compose the text kernels, on average a
hundred-word description for each of the domain variables. Additionally, we let
these kernels contain references to the Merck Manual?, the On-line Medical
Dictionary?®, the CancerNet Dictionary* and the MEDLINE collection of
abstracts of the US National Library of Medicine® .

2.8 Document collections

We asked medical experts to select the most relevant journals for the do-
main (2), the highly relevant (3), the moderately relevant (33) and the relevant
journals (93). Based on these, we constructed four embedded collections of
MEDLINE abstracts containing 5,367, 71,845, 231,582, and 378,082 abstracts
denoted by C3, Cy, C and Cj selected from the MEDLINE corpus dated
between January 1982 and November 2000.

2 http://www.merck.com/pubs/mmanual/

3 http://www.graylab.ac.uk/omd/index.html
4 http://thymoma.de/meddict.htm

5 http://www.ncbi.nlm.nih.gov/PubMed/



2.4 Domain vocabularies

We constructed a domain vocabulary containing more than one million words
(D =1,135,017) by incorporating manually identified domain specific phrases
and synonyms, statistically relevant words and manually curated general med-
ical vocabularies, such as MeSH ¢ . Furthermore, we constructed manually a
smaller (D = 700), more specific vocabulary (which follows the IOTA termi-
nology definitions and guidelines for controlled indices [49, 14]) for testing in
this study (for further results, see [4]).

2.5 Data

In addition to the prior background information, data has been collected in
the framework of the IOTA project [49], consisting of 68 parameters for 1,150
tumors at the moment of writing. In our experiments, we included the cases
satisfying the IOTA protocol, excluded cases without measurement of the
serum CA 125 level and use of oral contraceptives, which were not manda-
tory variables for the data collection but relevant to our goal. The data set
contains the completely observed cases with respect to the selected variables
(604 cases) denoted by D. Figure 3 shows the biplot of the data and the vari-
ables. The biplot plots variables and cases in the plane spanned by the first
two principal components. In particular, a small angle between variables such
as (Age, Meno, PostMenoY) points out that those variables are highly cor-
related. The observations of malignant tumors (indicated by <) tends to be
correlated with high values for certain morphologic variables, such as Papilla-
tion or WallRegularity, but relatively low values for variables such as PillUse
and Shadows.

[Fig. 3 about here.]

For the analysis we performed the following data transformation. Twenty of
the variables are nominal or a nominal interpretation has been provided by
the IOTA protocol. For the rest of the variables, a medical expert provided
commonly used thresholds for their discretization.

3 Dependency scores based on annotations and domain literature

According to our assumption, a text kernel is available for each domain vari-
able. The algebraic representation, called the wvector space model, encodes a

6 http://www.nlm.nih.gov/mesh/meshhome.html



document in a D-dimensional space where each component represents a corre-
sponding word in the vocabulary described in Section 2.4. This approach thus
neglects the grammatical structure of the text. We used the Porter stemmer
to canonize the words [19], processed the essential domain specific phrases and
synonyms appropriately and applied a standard stopword list to remove gen-
eral words. The weights for the vector model were computed using the term
frequency—inverse document frequency (tf-idf) term weighting schemel [7, 31].
The weighted frequency of term ¢; in document d; is

= L
wiHdl — f10g(2) (1)

n;

where f;; is the number of occurrences of t; in d;, L is the total number
of documents and n; is the number of documents containing term ¢ in our
largest MEDLINE corpus. We denote the presence of the name (and syn-
onyms) of an ABN variable X; in document d; with a binary pf}( value. The
vector (pg)jzl,m,N is thus a binary vector of size N that describes document
i by which of the domain variables (concepts) are present in this document.
The vector (pf-}()i:l,“_,L is a binary vector of size L that describes the domain
variable j by which of the documents from the corpus contain the name of
this variable. P" denotes the complete matrix for a given document corpus.
This matrix will be used in the name-cooccurrence methods. Note that this
cooccurrence representation cannot handle repetition and proximity or sepa-
ration into distinct paragraphs, sentence, and so on; but in our experiments
this scheme gave satisfactory performance (for the comparison of such options,
see [18]).

For the kernel methods, we need a measure expressing the similarity (rele-
vance) of documents. The use of the vector representation of text was inves-
tigated intensively in the context of information retrieval. A principal goal
in information retrieval is the definition of similarity metrics among the doc-
uments (or sets of documents), which express the semantic and information
theoretic relation between the documents. A standard similarity metric for a
pair of documents d;, d; is the cosine of the angle between their corresponding
normalized tf-idf vector representation W;, W;:

sim(d;, dj) = cos(W;, W;). (2)

We define another binary representation of MEDLINE abstracts based on the



kernel documents. It consists of binary variables defined as

1if 7 < sim(k;, d;)
Py = S (3)
0 else

which expresses the relevance of kernel document k; to document d;. We will
use an experimentally selected fixed value for 7 (0.1) in this paper. P* denotes
the complete matrix for a given corpus. This matrix will be used in the kernel-
corelevance methods.

Next, we define two probabilistic models for the name cooccurrence and for
the kernel corelevance for ABNs. Let P(P = 1|€) represent the belief that
the variable name X; is reported in a random document from a given cor-
pus (£ describes the collection and other background conditions). Similarly,
P(PY =1|P}) = 1,¢) represents the belief that the variable X is reported in a
document given the presence of the name of X. Finally, P(P),..., P)N|€) de-
notes the joint probability of presence of the names and synonyms of ABN ran-
dom variables. For the kernel relevance, let P(PX = 1|¢) represent the belief
that a document from the corpus is relevant (in the sense defined in the previ-
ous paragraph) to the kernel document of variable X; (£ describes the thresh-
old 7 for relevance and other conditions). Similarly, P(PX = 1|PF = 1,¢)
represents the belief that a document from a certain collection is relevant for
the kernel document of variable X;, if the kernel document of variable X}, is rel-
evant. Finally, P(PE, ..., PE|¢) denotes the joint probability of the relevance
of the kernels of the random variables in the ABN for a certain document.
Based on the previous definitions, we can define several text scores to quan-
tify the dependency or correspondence of the pairs of random variables in the
ABN. Let X and Y denote ABN variables. Ronos' (X;Y) and Roghis (X;Y)
denote a name-cooccurrence and a kernel corelevance score, Rogon(X;Y) and
REGSE (X;Y) denote the mutual information scores based on name presence
and kernel relevance over the collection C;. Using the random variables P}Y
and P/ introduced above, the definitions are as follows (we denote the ran-
dom variables for name presence and kernel relevance for the ABN variable X
with P, PE and their binary values with p,):

R3500(X;Y)
Ré(l\)IBEL (X ) Y)

P(P{ =1,P¢ =1|(Py = 1)V (P =1)) (4)
P(P¢ =1,P¢ =1|(P¢ =1) vV (PF =1)) (5)

ey
ey

R oo(XY) 2 1(PY: PY) = 3 PN (py pylog(— PPy (g

Pz ,Py PN (pe) PN (py)
PE(py, py)
R (X3 V) 2 I(PE; PEY = 3 PE(p,, py)log(m—emt ) (7
coreL(X;Y) =I(Px; Py') p;;y (P2 Py) Og(PK(pm)pK(py)) @)

10



These quantities are estimated from the frequencies, for example

~ ni’.
Regoc(Xis X;) = Reooe(Xis X;) = —, (8)

n; + nj — ’I”Li’j

where n; and n; are the number of documents in collection C; containing
the names of the ABN variables X; and X, n;; is the number of documents
containing both of them. Additionally, we introduce a relevance scoring for
X and Y inspired by information retrieval. We assume that the information
need is defined by the kernel description of X (K x) and the score expresses the
relevance of the kernel descriptions of Y (Ky ). The definition is the following:

Rasu(X;Y) £ sim(Kx, Ky).

We refer to these text-based relevance scores in general with Rre (X;Y).

4 Descriptive statistics of literature scores

The usefulness of the Rcooc name-cooccurrence scores is essentially deter-
mined by the quality of the phrases and synonyms related to the names of the
ABN variables [28]. Similarly, the kernel methods Rcorgr, and Rasny depend
on the quality of the vector representation of the kernels. To check the quality
of the vector representation of the ABN kernels defined by Equation 1, we
verified the statistics of the (tf-idf) weights of the words corresponding to the
smaller controlled vocabulary and verified the Rasv(X;Y) relation using a
hierarchical clustering with Ward linkage to create a clustering tree, as shown
on the left of Figure 4. As another quality check, we used the same vector
representation in an evaluation of an information retrieval language based on
ABNs and the quantitative evaluation has indicated good performance [6].

[Fig. 4 about here.]

Table 1 shows the percentages of abstracts where a certain variable name oc-
curs and the percentages of abstracts that are closer to the kernel of domain
variables than the specified threshold in the relevant (largest) and the most
relevant (smallest) MEDLINE corpora. Furthermore, Figure 5 shows the per-
centages of abstracts with 0,1,2,... name occurrences and the percentages of
abstracts that are close to 0,1, 2,... kernels of domain variables with respect
to the specified threshold for the relevant (largest) MEDLINE corpus.

[Table 1 about here.]
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[Fig. 5 about here.]

5 Dependency scores based on data

Based on the data, we can introduce similar data scores Rp,ia(X;Y) to quan-
tify the informational relevance of X,Y. Under the assumptions that the
stochastic variables are discrete and the cases in the data set are complete,
a natural choice is to use the conditional mutual information estimated from
the data D, similarly to what we defined for the literature data PN and P¥:

RYL(X:Y) 2 1(X:Y) = 3 plaiey, log( et )

For an information theoretic approach to learning Bayesian network struc-
tures using conditional mutual information, see [13] and for learning Bayesian
network thesaurus from textual data, see [17].

A Bayesian approach to score the parental relations m; — Xj in a Bayesian net-
work was proposed by [15] (7; denotes the parental set for X;). Under the as-
sumptions that (1) the stochastic variables are discrete and (2) the cases in the
data are complete and exchangeable and (3) the prior over the parametrization
is Dirichlet, a closed-form solution was derived for the probability of parental
relations P(m; — X;|D,&). Assuming the BDeu parameter prior, which is a
uniform prior resulting likelihood equivalent Bayesian metrics [10, 25], a sym-
metric, pairwise data score RED. (X;Y) can be defined, which expresses the

ata

probabilities of the individual pairwise structures P(Y — X|D,¢&):

Ty Tx 1
Rpa(X:Y) o [T T TN + ——). (10)
=1 k=1 rx +7ry

Here rx,ry denotes the number of discrete values of variables X and Y and
N};* denotes the number of times we observe value j for variable Y and value
k for variable X in the data D.

6 Correspondence of expert priors, text scores and data scores

To investigate the use of integrated text and data scores for learning Bayesian
networks, we compared the text scores introduced in Section 3 against (1)
the expert score Rpypert(X;Y) and (2) the data scores. The correspondence

12



is illustrated on the right of Figure 4, the domain variables are positioned
on the coordinates (Rixpers (Pathology; X;), Regns: (Pathology, X;)) (marked
by ‘0’) and (Rpxpert (Pathology; X;), R¥a.. (Pathology, X;)) (marked by x’) to
illustrate their relation.

To quantitatively evaluate the different text scores and understand their rela-
tions, we computed (1) the Area Under the ROC curve (AUC) [23] to detect
the relevant relations identified by the expert and (2) the Spearman rank cor-
relation coefficient Rg with the expert score and with the data scores. The
first column of Table 2 shows the AUC values for detecting the S3, Sy, and S,
relations. The second column of Table 2 shows the specificity values for de-
tecting these sets corresponding to 50% sensitivity. The third column of Table
2 shows the sensitivity values for detecting these sets corresponding to 50%
specificity. The upper triangle of Table 3 presents the Spearman rank correla-
tion coefficients for all pairs of the expert score, text scores and data scores as
introduced in Sections 2.1, 3, and 5. Beside the Spearman rank correlation co-
efficients for all the relations, the lower triangle of Table 3 shows the Spearman
rank correlation coefficients for the relations of the variable Pathology. Bold
indicates significant monotonic relationship between the ranks with p < 0.05,
underscore indicates it with p < 0.001, and bold underscore with p < 0.001.

[Table 2 about here.]

[Table 3 about here.]

7 Transforming text scores to priors for BN structures

The evaluation reported in Sections 4 and 6 indicates the potential for the
integration of text scores in a Bayesian statistical learning of Bayesian net-
work structures (another study on the correspondence of a wider range of text
scores can be found in [4]). We investigate the incorporation of the text scores
Rrext (X;Y) in the Bayesian framework (i.e., to combine the text scores with
RBD (X;Y)) because it provides a more flexible and still principled foun-
dation than the information theoretic approach and its corresponding score
Rll\)/lalta (Xa Y)

7.1 Learning of BN structures using prior information and data

As we already mentioned in Section 5, under reasonable assumptions, a closed-
form Bayesian formula was derived for the probability of a Bayesian network
structure Bg given a data set D (for details, see [15]):

13



P(Bs|D. €) x P(Bsl¢) [ REE (Xo, ). (11)

=1

Assuming the independence of beliefs for substructures (r; — X;) and (7; = X;)
for all i # j, the prior P(Bgs) can be decomposed [10, 15] as

P(BSID, €) o [[ P(rf = XiJe)RED. (X, ). (12)

=1

Note that with this assumption on the prior P(Bs|£), the probability of a
Bayesian network structure given a complete data set decomposes into a
product of independent parts P(r7 — X;|€)RED (X, m;), each expressing
the probability of the local dependency model of variable X; with parents
m; conditioned on the data. Despite the decomposition of the learning to the
selection of appropriate parental sets, the amount of data needed for statisti-
cally significant identification of networks is still frequently insufficient. One
potential solution is to define an informative a priori distribution P(Bgl|€) or
P(m? — X;|€) for each variable. However, even the later task can be difficult
for human experts or even for automatic methods, so the pairwise methods

[10, 12] and the penalty methods were suggested [25].

7.2 BN structure priors from edge probabilities

The pairwise methods define the probability of a structure Bg by combining
the individual arc probabilities independently. As we assume the indepen-
dence of (m; — X;) and (m; — Xj), our goal is to derive an estimate for
P(m; — X;|€) based on the introduced text scores Rrex (X,7;). Furthermore,
we assume the independence of X € m; and X; € 7; (i.e., the independence of
presence of the edges in the graph at a vertex), which allows the decomposition
of ]D(ﬂ'Z — Xz|£); where w; = {7TZ"1, . ,7Ti’L}Z

L;
P(m— X&) =[] P(ma = Xil6) J] 1 — P(Y = X;l€)).
k=1 Y¢m;

Previous methods expected a priori probabilities for edges corresponding to
a fixed ordering of the variables [10] or for directed edges [12]. However, we
use the symmetric text scores for the derivation of the prior, which means
that an edge is scored independently of its direction (for a possible approach
to determine directionality in such case, see [17]). Therefore P(m; — X;|)

14



(using p;; as a shorthand notation assuming m;; = X;) can be defined by the
pairwise text scores:

Dij £ P(mk = Xi|€) ~ Rerext (Xi, Tir)- (13)

Note that for all text scores 0 < Rrpext(X;, mx) < 1 and that we guaran-
tee a lower limit € and an upper limit 1 — € for all p;; to avoid the a priori
exclusion or inclusion of edges and consequently structures. This relative defi-
nition of edge probabilities are refined subsequently to satisfy prior knowledge
on higher-order statistics. Note also that because the text-based priors are
symmetric, the prior equivalence holds (i.e., the structures encoding the same
informational relevance model have the same prior) [25].

7.8 Scaling the edge probabilities

The a priori distribution on the edges defined by Equation 13 is relative, so
an appropriate scaling can be achieved by noting that the expectation of the
number of edges L is given by > ;. pij- Assuming that there is an a priori
estimate for the number of edges in the overall model or connected to a single
variable, the p;; can be scaled by an exponent v to approximate this edge
density in the prior Bayesian network. By denoting the value that scales the
expectation of the number of parental edges to Ly with v(Lj) we define the
following scaling (it is always possible because of the lower limit € < p;;):

gi; 2 p0" with v(Lo) so that > g = Lo. (14)

0<i<j<n

For a given ordering of variables, these rescaled edge probabilities define the
following posterior probability for a structure Bg:

n i—1
Irien. _
P(Bs|D, &) o< [T T @™ (1 = qi)"6#73 Rp2, (X5, ). (15)
i=1j=1

7.4 Combination of text-based edge probabilities with a prior structure

If a prior network structure is available, there is an easy method to com-
bine it with the introduced informative edge probabilities. The penalization
method [25] derives the prior from an a priori network structure By by mod-
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eling each missing or extra edge e;; independently with a uniform probability
K:

P(Bl€) oc &%, where 6 = >~ If(e,;eBs)n(ei; ¢ Bo)v(es; ¢ Bs)A(er; € Bo)} -
1<i<j<n

This formula can be developed further into an informative penalization for-
mula by replacing the uniform x with an edge-specific pairwise prior based on
the text scores Rryext (X;Y):

1
{(e;5E€Bg)IN(e;5¢Bg))} Ifte..¢Bc)A(e;: €EB
P(BS|BU,p1‘j,V, §)o< H 0 (1 _ qz-j) {(e;j#Bg)N(e;€Bo)}
1<i<j<n

Note that the scaling of p;; provides an option to control the penalization (i.e.,
to express the prior beliefs in the prior structure and in the literature).

8 Learning and classification using text-based priors

To evaluate the value of the text-based prior distributions for Bayesian net-
work structures, we report results for the classification of ovarian tumors, as
described in Section 2. (For previous results about the application of Bayesian
belief networks and multilayer perceptrons to classify ovarian tumors, see [3].)
We report the classification performance of a Bayesian belief network using
the Area Under the Receiver Operating Curve (AUC). Since we work in the
Bayesian framework, we have a posterior distribution P(Bg|D) over the net-
work structures and a conditional posterior P(Bp|Bg, D) over its parameters,
resulting in a posterior distribution of the AUC. We report the mean of this
AUC using either an informative text-based prior, the expert prior, or a non-
informative uniform prior over the structure space:

EIAUC .5, (Do) Dy = ¥ P(bs|Dyy) [ AUCs, 0, (Dy)AP(brlbs, D).
Bp

Bs

where D, and D,, denote the training and test data. Because we want to focus
on the usage of textual prior knowledge for learning belief network structures,
we used always the noninformative Bayesian Dirichlet prior BD,, for the pa-
rameters [25]:

We approximate the summation over the network structures with a Monte-
Carlo approximation using 200 networks with a high posterior probability.
We evaluate 200 randomly drawn orderings for the variables. Using a set of
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complete and discrete samples, we learn a Bayesian network structure by max-
imizing the RBP score for each variable for the given ordering [15]. For each
fixed ordering, the parents are selected using an exhaustive search up to three
parents. If this exhaustive search finds three parents, the greedy (not exhaus-
tive) K2 algorithm continues the search [15]. The probabilities for the belief
network substructures are computed using both the training data and the
edge probabilities according to Equation 15. The edge probabilities derived
from the text were scaled with a v value that results in prior networks with 3
parents for each node on average.

For these learned structures, the parameters are set to the maximum a pos-
teriori value using the noninformative BD,,, prior for the parameters and the
training set D,,. Predictions for the test samples are generated using the prob-
ability propagation in tree of cliques (PPTC) algorithm and these predictions
are used to compute the AUC value on the test set D,,. The AUC values
reported in Figure 6 are the averages over 300 cross-validation sessions with
random training-test partitioning of the data set D into (D, D;.). The z axis
indicates the number of samples in the training set, ranging up to 150 samples
(out of a total of 604), the y axis contains the AUC averages for that specific
training—test proportion.

The upper part of Figure 6 reports the learning curves for the cooccurrence-
and corelevance-based text priors (Rogos? and Regnar’). together with the
kernel similarity prior Ragm, the expert prior Rgxpert, and no prior, all scaled
by v(3). The bottom part shows the effect of scaling the best performing prior
based on the kernel similarity score Rasny by v(0.1), v(0.5), v(1), v(2), and
v(3). The noninformative case is again reported for comparison.

[Fig. 6 about here.]

9 Discussion

The main goal of our analysis is to understand the characteristics and usability
of the text scores in learning Bayesian networks. First we compare the con-
structed text scores against the expert score Rpypert and the data scores Rglajta
and RY.,,. In the comparison, we performed a manual analysis as illustrated
on Figure 4 and applied two quantitative evaluation methods: the efficiency
of detecting the pairwise relations from the expert and the Spearman rank
correlation. Next we evaluated the effect of the text-based prior for learning

Bayesian networks using the AUC in classifying ovarian tumors.

In general, we can characterize the Rpypery as an expert reference, the anno-
tation similarity Rasnv as a kind of textual expression of expert belief, the
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cooccurrence relation Rcooc as an unbiased literature relation, the corele-
vance relation Rcorgr, as a mixture of expert belief and literature, and finally
the data scores Rpaia as objective references.

The relation detection means that we try to find back a set of important rela-
tions (specified by the medical expert) using a score for these pairwise relations
and some threshold. (We use the sets S; and S3 as defined in Section 2.1, S5 is
omitted for simplicity, S{ and S are the respective subsets containing only
the relations corresponding to the variable Pathology.)

First, using the AUC values and sensitivity-specificity values from Table 2,
we examine which of the text prior or the data can select better the relations
from the expert. We expect the domain to be known enough, thus we expect
the highest correspondence between the prior and the data scores (we expect
the text scores to be less accurate due to the noise and bias). Surprisingly, the
text scores performed better than expected; for example the Ré/g}’f& achieved
an AUC value of 82.01 and RN achieves AUC=85.95 for selecting the S;
relations. Although the data scores are slightly better, the differences are not
statistically significant. The opposite behavior of SI is investigated below.
Another unexpected result is that Rgg}’g’L outperforms the Ragny relation
(AUC=65.83), although the corelevance methods is a mixture of experts belief
and literature, while the annotation similarity is closer to the expert belief.

Second, we examine the effect of increasing the size of the document col-
lection from C3 to Cy, which basically means a broader scope with less do-
main specificity and thus a higher noise level. As Table 2 shows, the (name)
cooccurrence-based scores perform better on a larger collection—that is, they
gain more from the larger number of publications than they lose from the fact
that the documents are less domain specific (e.g., AUC=61.61 for Cy versus
AUC=64.95 for C5 of the RY} ¢ for the set S;). This is probably caused by
the scarcity of names (i.e., the lack of a nomenclature), which can be seen from
Table 1 that presents the name occurrence patterns for various collections, for
full abstracts and for titles only (for example, non-established names such as
‘Papillation flow’ are very rare). In reverse, the corelevance methods perform
better on the smaller, more specific collection Cs (e.g., AUC=75.17 for Rogng:
versus AUC=82.01 for Ryns, for the Sy set). It means that the vector rep-
resentation and the applied relevance measure cannot cope with the broader
scope of the corpus, while still much better than the simpler cooccurrence
methods.

Third, we examine the effect of detecting the ‘most relevant’ relations S3 and
all the relevant relations S;. As we expected, the ‘most relevant’ relations
are more easy to identify for all the text scores and data scores in the case
of Sy versus S3. It also holds for the data scores, which means that the on
average the expert score is in close correspondence with what the data says.
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Interestingly, this trend is mixed in the case of the relations including variable
Pathology (ST versus ST), in which the data scores are less effective to select
the most relevant variables than a broader scope of related variables. A pre-
liminary evaluation has shown that the expert ranking of certain factors as
‘most relevant’ and ‘moderately relevant’ is responsible for this, for example
the top-rated papillation related variables were rated lower by the data (see
Figure 4). Furthermore, the cooccurrence scores Rcooc, which can be seen
as objective literature scores beside the objective data scores, are similarly
less effective to select the most relevant variables than to select the broad-
est scope of variables. Note that this is not the case for the annotation-based
score Rasmv, which reflects the expert’s textual ranking. However, in a detailed
analysis of the ranking of the expert, data and literature, the limitations of
the pairwise approach should be taken into consideration also, because the
variables are strongly dependent that made difficult for the expert to select
pairwise relations.

Finally, we examined the effect of using the mutual information (MI) and
the cooccurrence (AND) formulas. Because the name cooccurrence method
in our domain is prone to generating extreme relations (i.e., with uncommon
variable names that never occur), the corelevance method is more appropriate
for this investigation, but as Table 2 illustrates we could not find a significant
difference or qualitative difference along this dimension.

The other quantitative method for the comparison of the scores is the compari-
son of the correspondence of their ranking by the Spearman ranking coefficient
Rs (note that the scaling of the scores defined in Section 7.3 is monotonic, so
does not influence ranking). Table 3 presents all the cross comparisons both
for all of the relations and for only the Pathology relations (the AND options
are not shown for simplicity, because they are not different from the MI case).
We investigated the following hypotheses (by indicating the strength of a rank
correlation in increasing order with ~, ~, ~ and 2):

(1) Quality of expert prior. The expert score Rpxpert Strongly rank correlates
with the data scores RED, and RN :

R[B)]a?ta = R]l\j/[alta and RData = RExpert- (16)
(2) Quality of text-based priors. The text scores Ryex strongly rank correlate

with the expert score Rpxpert and somewhat weakly with the data scores
RData:

RText = RExpert and RText ~ RData- (17)

(3) Subjectivity of text scores. The annotation-based score Ragpy is the most
subjective (i.e., closest to the expert prior Reypert) and Rcooc is the most
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objective:

Rasnv =~ Rpxpert; LlcoreL & Rexpert ; and Rcooc ~ Rexpert- (18)

In other words, the hybrid corelevance method Rcorgr, is between the
expert (subjective) Raspy and the literature (objective) Reooc:

Rcooc ~ Rasmv, Reooc = Rceorer and Rasiv & Rcorer.- (19)

From Table 3, we can conclude that the expert score Rpypert is significantly,
strongly rank correlated with the data scores, so its reference status is corrob-
orated (see Equation 16). Similarly, the text scores, more specifically the corel-
evance Rcorgr, and the annotations similarity Raspy are significantly, strongly
rank correlated with the prior and somewhat weakly with the data scores (see
Equation 17). Furthermore, the corelevance Rcorgr, and the annotation simi-
larity Raspv are really better rank correlated with the expert score than with
the ‘objective’ literature-based cooccurrence score (see Equation 18). However,
contrary to our expectations, the corelevance relation Rcogrgr, outperforms the
annotation similarity Raspv (see Equation 18), which indicates that the anno-
tations does not reflect completely the expert prior and can be refined in this
respect using the literature by the corelevance method. Finally, the RcorgL
score is strongly rank correlated with Rasny but not with Reooc, and similarly
Rasnv is not rank correlated with Rcooc (see Equation 19).

In the classification task, the automatically constructed text-based prior for
Bayesian network structures is beneficial in the small sample range, while it
is not restrictive and vanishes in the middle and large sample range, that
is it provides advantages comparable to those of a manually constructed ex-
pert prior. Note that the advantage of the prior over the structures can be
fully exploited and they are better comparable if a prior is available for the
parametrization, which is transformed appropriately [25].

10 Conclusion

As more and more domain knowledge becomes available as electronic litera-
ture, knowledge engineering and machine learning increasingly need represen-
tations and methods that integrate textual domain knowledge directly into
knowledge modeling to assist the elicitation, learning, application, and main-
tenance of complex models. The Annotated Belief Network, which links textual
information to the statistical model, is a response to this challenge. The ABN
naturally supports the definition of various text scores to quantify the depen-
dencies of the variables. On the one hand it provides an efficient overview of
the textual information in the ABN and in the domain itself; on the other
hand it can automate the knowledge acquisition for machine learning.
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We presented a new application of methods for the extraction of relationship
among domain variables from text to support Bayesian network structure
learning, beside performing an analysis of the extracted relationships. From a
medical point of view, the text representation and the text scores performed
well in the manual qualitative analysis as illustrated in Figure 4 and in the
quantitative evaluation when the text scores are used to detect pairwise re-
lations rated as relevant by an expert (Table 2). Also the text scores proved
to be significantly rank-correlated with the expert ratings and with the data
scores (Table 3). These results indicate that the performance of the name-
cooccurrence methods can be further improved by using kernel descriptions,
which can be essential in domains without established nomenclature.

Overall, the positive results in the ovarian cancer domain, which we used as
a relatively simple and well-known test domain, demonstrate that the auto-
matically derived text scores can support the learning of informational rel-
evance models, such as the structure of the Bayesian network. Indeed, the
automatically derived text-based priors for the network structures improve
the classification performance of the learned Bayesian networks comparably
to a manually constructed expert prior.

However, our approach still has limitations. The first is the use of unstruc-
tured text representations, whereas the annotations are often already struc-
tured into various fields. A more refined linguistic analysis similarly could
improve the text scores and the text priors also. Another limitation of the
presented approach is its pairwise nature, so we are investigating the deriva-
tion of multiparental text scores and probabilities P(m; — X;|€) as well as
the extraction of general irrelevance statements (I{X|Z]Y), see [37, 21, 45])
as a richer prior for the learning algorithms of Bayesian network structures.
We are also investigating prior derivation methods based on the combination
of the expert score and the text scores, as introduced in Section 7.4. Another
research direction we are pursuing is the detailed medical evaluation of the
data scores against the expert prior and the literature scores.

Despite these simplifications and constraints, the work presented here con-
tributes to the recent efforts to better integrate data, electronic domain liter-
ature, and human expertise in medicine and genomics.
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List of Figures

A framework for the combination of data, expert knowledge,
and literature information. Arrow 1 shows the tabula rasa
method for learning BNs when only data is available [20],
Arrow 2 indicates methods for incorporating expert prior
knowledge on structures and parametrizations [25], Arrow 3
indicates methods for quantifying the relations of domain
variables based on their cooccurrence in documents [44, 28],
and Arrow 4 denotes methods for quantifying the relations of
domain variables based on their kernel descriptions [26, 42, 4].
We compare these text-based dependency scores against a
prior from a medical expert (as indicated by Arrows 7 and 8)
and investigate methods for transforming the text scores into
an a priori distribution over Bayesian network structures
(Arrows 5 and 6).

The variables used in this paper and the relevant relations
between them. The ‘most relevant’ pairwise relations, the
‘moderately relevant’ relations and the ‘weakly relevant’
relations selected by a medical expert are represented by edges
with decreasing thickness.

The biplot of the domain variables and 604 cases used in this
paper (not all of the thirty-one variables are shown). The
variables are denoted by ‘o’, the malignant cases by ‘¢’ and
the benign cases by ‘x’.

Top: The hierarchical cluster tree of the relation score based
on the cosine of the tf-idf vector representation of the kernel
documents RE/I(I)’I({%L. Bottom: The scatterplot of the Pathology
relations for the domains variables X;: the z axis holds the
prior expert score Rpypert(Pathology, X;), while the y axis
contains both the text score Raspy (‘0’) and the data score

R (%)

For the four left bars of every group of eight bars: The
percentage of abstracts (y axis) where 0, 1, 2, 3, 4, or 5
(indicated by the z axis) different variable names are present,
only in the title or in the whole abstract using the small C;
and large Cy document sets. For the four right bars of every
group of eight bars: the percentages of abstracts that are
closer to 0, 1, 2, 3, 4, or 5 kernels of different variables than a
threshold 7= 0.05 and 7 = 0.1 as defined in Equation 3.
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Top: The AUC performance for BNs using different text-based
priors (Reoos?s Reons?), and Ragiv), the expert prior
Rgxpert; and no prior. The priors are scaled to an average of 3
parents per variable. Bottom: The AUC performance for BN
using the Ragpy prior for different v scalings (average number
of parents is scaled to 0.1, 0.5, 1, 2, and 3) together with the

performance without any prior.
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Fig. 1. A framework for the combination of data, expert knowledge, and literature
information. Arrow 1 shows the tabula rasa method for learning BNs when only data
is available [20], Arrow 2 indicates methods for incorporating expert prior knowledge
on structures and parametrizations [25], Arrow 3 indicates methods for quantifying
the relations of domain variables based on their cooccurrence in documents [44, 28],
and Arrow 4 denotes methods for quantifying the relations of domain variables based
on their kernel descriptions [26, 42, 4]. We compare these text-based dependency
scores against a prior from a medical expert (as indicated by Arrows 7 and 8) and
investigate methods for transforming the text scores into an a priori distribution
over Bayesian network structures (Arrows 5 and 6).
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Fig. 2. The variables used in this paper and the relevant relations between them.
The ‘most relevant’ pairwise relations, the ‘moderately relevant’ relations and the
‘weakly relevant’ relations selected by a medical expert are represented by edges
with decreasing thickness.
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Fig. 3. The biplot of the domain variables and 604 cases used in this paper (not all of
the thirty-one variables are shown). The variables are denoted by ‘o’, the malignant
cases by ‘¢’ and the benign cases by ‘x’.

30



PSV |
TAMX
3
ColScore ——
Patholo%y
CA12
FamHyst
HormTherapy P

PillUse

Parity |
Volume
Hysterectomy
B|I3F1>te_ral
i

WallR aln't

allRegulari
a1
Shadows —
Echogenicity——
Ascites "}
Fluid |

A%e
CycleDay
Meno L
PostMenoY
Septum
Incompl ep_tunE_‘*
Locularity
Papillation
PapFlow ;'7
PapSmooth

0 0.5 1 15
0.2
LCA125
0.18
JLocularity
0.16 "Ascites
Solid
A125
0.14 &
0.1 JLColScore _
JTAMX WallRegularity
0. Fluid PSV
00 Age o
¢ Yolume JPapFlow
008 : RSB Solscore Papillation
Ascites os?MenoY o ﬁgﬁ): g;vooth
0.0% -hogenici FamHyst, <Fluid RI TAMX dZ"-?é)pémooth
chogenicity gr | pST
7 Shadows |a|te|ja | PSV Papillation
OOarIE x d-ocularity e%%tMenoY JVallRegularity
@ePUM  ghadowso  pyBilateraPes, > Solid
VoluvrvneOO P|U<§é . Q A9

0.9

Fig. 4. Top: The hierarchical cluster tree of the relation score based on the cosine

of the tf-idf vector representation of the kernel documents Rg%g%h

Bottom: The

scatterplot of the Pathology relations for the domains variables X;: the z axis holds
the prior expert score Rpxpert(Pathology, X;), while the y axis contains both the

text score Rasiv (‘0’) and the data score RBEM (‘x).
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Fig. 5. For the four left bars of every group of eight bars: The percentage of abstracts
(y axis) where 0, 1, 2, 3, 4, or 5 (indicated by the z axis) different variable names are
present, only in the title or in the whole abstract using the small C5 and large Cy
document sets. For the four right bars of every group of eight bars: the percentages
of abstracts that are closer to 0, 1, 2, 3, 4, or 5 kernels of different variables than a

threshold 7= 0.05 and 7 = 0.1 as defined in Equation 3.
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Fig. 6. Top: The AUC performance for BNs using different text-based priors

AND,C)
(Roooc s R

AND,C;
COREL

), and Rasiv), the expert prior Rpxpert, and no prior. The priors

are scaled to an average of 3 parents per variable. Bottom: The AUC performance
for BN using the Raspy prior for different v scalings (average number of parents is
scaled to 0.1, 0.5, 1, 2, and 3) together with the performance without any prior.
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Table 1

The percentage of abstracts where a certain variable name occurs and the percent-
ages of abstracts that are closer to the kernel of domain variables than a threshold
7 in the ‘relevant’ (largest) Cp and the ‘most relevant’ (smallest) C3 MEDLINE
corpora. Name presence in collection C; are denoted by N Pgi and N Pé depending
that only the title or the full abstract is used. The kernel presence in collection C;
are denoted by K P/, in which 7 denotes the required similarity of the kernel and

the abstract, as defined in Equation 3.
Variable NPL | NPL | NP4 | NPS | KPEY | KPY! | KPEY | KPY!
Age 1.25 1.01 | 40.57 | 16.73 4.46 0.57 1.41 0.16
Ascites 0.55 0.10 2.66 | 0.37 2.64 1.22 0.60 0.18
Bilateral 0.48 0.13 5.41 0.84 2.27 0.28 0.72 0.09
CA125 2.29 0.15 | 4.61 0.27 19.87 3.84 2.16 0.32
ColScore 2.18 0.95 6.40 | 2.89 6.85 3.49 1.69 0.61
CycleDay 0.02 0.03 0.37 | 0.38 2.14 0.33 1.22 0.12
Echogenicity 0.18 0.07 | 098 | 0.99 1.94 0.50 0.62 0.10
FamHyst 0.07 | 0.01 026 | 0.11 9.94 2.58 1.49 0.32
Fluid 0.63 0.67 | 240 | 231 3.10 1.20 0.63 0.17
HormTherapy | 1.05 0.29 214 | 0.64 8.45 2.44 3.80 1.12
Hysterectomy | 2.12 0.28 | 11.55 | 1.03 9.11 3.12 1.53 0.50
IncomplSeptum | 0.00 0.00 0.02 | 0.00 1.57 0.63 0.60 0.26
Locularity 1.40 0.64 | 3.56 1.29 3.60 0.90 0.84 0.30
Meno 0.13 0.21 192 | 0.99 2.97 0.85 1.23 0.30
Pain 017 | 0.38 1.92 1.39 2.53 0.44 1.48 0.58
PapFlow 0.00 0.00 0.00 | 0.00 5.09 1.09 1.06 0.27
Papillation 1.20 0.09 2.68 | 0.30 5.70 1.33 1.20 0.33
PapSmooth 0.00 0.00 0.00 | 0.00 4.83 0.96 1.01 0.26
Parity 0.09 0.02 140 | 0.77 1.03 0.28 1.25 0.28
Pathology 1341 | 0.70 | 2055 | 1.19 51.22 | 16.20 7.83 1.34
PI 0.11 0.03 175 | 0.52 4.65 2.45 1.28 0.48
PillUse 0.11 0.28 0.68 | 0.50 1.00 0.24 1.04 0.39
PostMenoY 1.20 0.34 | 336 | 083 3.71 0.87 1.42 0.27
PsvV 0.00 0.00 0.50 | 0.06 4.67 2.47 1.29 0.48
RI 0.04 | 0.02 113 | 0.24 4.63 2.42 1.28 0.48
Septum 0.02 0.02 026 | 0.16 2.80 0.52 0.72 0.21
Shadows 0.00 0.01 0.06 | 0.08 2.08 0.44 0.65 0.11
Solid 0.07 | 0.14 142 | 0.81 2.60 0.31 0.79 0.18
TAMX 0.00 0.00 0.28 | 0.01 4.67 2.47 1.29 0.48
Volume 0.46 0.22 2.86 1.43 1.07 0.37 0.41 0.08
WallRegularity | 0.00 0.00 0.00 | 0.00 2.60 0.48 0.91 0.17
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Table 2

The AUC values for detecting important expert relations using the different text
scores and the data scores (S3 contains only the most important relations identified
by the expert, Sy contains a broader range of relevant relations as described in
Section 2.1, S{D and Sf are their respective restrictions to the pairwise relations
involving the variable Pathology). The specificity column presents the specificity
values corresponding to the 50% sensitivity (i.e., it shows the percentage of not
relevant relations that are correctly classified as mot relevant when we demand
that 50% of the relevant relations are correctly detected). The sensitivity column
presents the sensitivity values corresponding to the 50% specificity (i.e., it shows
the percentage of relevant relations that are correctly detected when we allow only
50% of the not relevant relations to be incorrectly classified as relevant). In each
column, the three best values are indicated with bold.

Area under the ROC curve (%) | Specificity (%) | Sensitivity (%) |

Settings Sy Ss sk sP S1 sk Sy sk

RYLSs | 82.01 | 93.24 | 78.26 | 95.83 || 90.43 | 71.43 || 90.74 | 82.61
RuGCo | 7517 | 88.79 | 68.32 | 91.67 || 80.53 | 71.43 || 86.42 | 73.91
RASD:CS | 82.10 | 92.68 | 78.26 | 79.17 || 89.44 | 100.00 || 90.74 | 82.61
ROSRWO | 7571 | 89.86 | 67.70 | 90.97 || 81.85 | 7143 || 83.95 | 82.61
RYSSE | 61.61 | 66.95 | 54.04 | 37.50 || 73.27 | 7143 || 66.05 | 52.17
RYLSo | 64.95 | 72.05 | 65.84 | 42.36 || 81.52 | 85.71 || 72.84 | 73.91

AND,C
RASOS™ | 67.36 | 68.70 | 60.87 | 39.58 || 84.49 | 7143 || 76.54 | 65.22

AND,C
Riooc® 64.58 72.15 63.35 42.36 73.60 85.71 69.75 69.57

Rasmv 65.83 88.48 75.78 88.89 80.20 100.00 67.28 69.57

R%Eta 75.99 | 95.64 | 91.30 | 75.69 94.39 | 100.00 77.16 | 91.30

RMI | 85.95 | 97.53 | 93.17 | 72.92 || 94.72 | 100.00 || 93.21 | 91.30
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Table 3

The Spearman rank correlation coefficients for the cross comparison of the expert
score, the text scores, and the data scores (because of symmetry, the upper trian-
gle presents the coefficients for comparing all the relations and the lower triangle
presents the coefficients for comparing the relations related to the variable Pathol-
0gy). The level of significance is indicated by underscore (p< 0.05), bold (p< 0.001),
and bold underscore (p< 0.001).

settings | Regnfy | Roonpr | Reoos | Roooe | Rasmna | RER, | Rika | Rexpen
RuSSE 0.726 | 0.101 | 0.111 | 0.508 | 0.385 | 0.408 | 0.507
RySSe | 0.787 0.028 0.081 | 0.555 | 0.363 | 0.346 | 0.413

RYLSs | -0.042 -0.117 0.766 | -0.022 | 0.139 | 0.193 | 0.175

RYSSo 1 0.021 0.003 0.684 0.035 | 0.179 | 0.268 | 0.237

Rastv | 0.672 0.677 | -0.109 | -0.006 0.427 | 0.271 | 0.297

RBD 0.572 0.473 0.010 0.160 0.541 0.629 | 0.471

RMI 0.513 0.439 0.037 0.223 0.534 | 0.968 0.546
RExpers | 0.627 0527 | -0.119 | 0.009 | 0.537 | 0.640 | 0.650
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