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ABSTRACT

To unravel the concept structure and dynamics of the bioin-
formatics field, we analyze a set of 7401 publications from
the Web of Science and MEDLINE databases, publication
years 1981-2004. For delineating this complex, interdiscipli-
nary field, a novel bibliometric retrieval strategy is used.
Given that the performance of unsupervised clustering and
classification of scientific publications is significantly im-
proved by deeply merging textual contents with the struc-
ture of the citation graph, we proceed with a hybrid cluster-
ing method based on Fisher’s inverse chi-square. The opti-
mal number of clusters is determined by a compound semi-
automatic strategy comprising a combination of distance-
based and stability-based methods. We also investigate the
relationship between number of Latent Semantic Indexing
factors, number of clusters, and clustering performance. The
HITS and PageRank algorithms are used to determine rep-
resentative publications in each cluster. Next, we develop
a methodology for dynamic hybrid clustering of evolving
bibliographic data sets. The same clustering methodology
is applied to consecutive periods defined by time windows
on the set, and in a subsequent phase chains are formed
by matching and tracking clusters through time. Term net-
works for the eleven resulting cluster chains present the cog-
nitive structure of the field. Finally, we provide a view on
how much attention the bioinformatics community has de-
voted to the different subfields through time.
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1. INTRODUCTION

Bioinformatics is an interdisciplinary field that emerged
from the increasing use of computer science and information
technology for solving problems in biomedicine, mostly at
the molecular level. Ouzounis and Valencia have provided
a review of the early stages of the long history of bioinfor-
matics [19]. In recent studies by Patra and Mishra [20] and
Perez-Iratzeta et al. [21], evolution and trends in bioinfor-
matics research have been studied. The field has been char-
acterized as an emerging, dynamically evolving discipline
with astonishing growth dynamics. The studies were based
on the MEDLINE database and partially on NIH-funded
project grants. In both cases, bioinformatics was analyzed
in a broad biomedical context.

In a recent study, the authors have analyzed the bioinfor-
matics field from a bibliometric point of view [7], including
patterns of national publication activity, citation impact,
and international collaboration. A novel subject-delineation
strategy was developed for the retrieval of the core literature
in bioinformatics.

The goal of the present paper is to investigate the cog-
nitive structure and the dynamics of this core of bioinfor-
matics and of its sub-disciplines, based on information from
the IS Web of Science database and MEDLINE. We apply
techniques from text mining, Web mining and bibliometrics.
Text mining and citation analysis both provide effective and
valuable algorithms for mapping of knowledge and for chart-
ing science and technology fields. The textual and graph-
based approaches provide different perceptions of similarity
between documents or groups of documents. We incorpo-
rate both viewpoints since an integrated approach leads to
a better comprehension of the structure of bibliographic cor-
pora [13] (p. 130-152). The actual integration is achieved
by statistical combination of various distances, between the
same pair of documents, but stemming from different dis-
similarity measures exploiting different views on the docu-
ments. The integration method based on Fisher’s inverse
chi-square has previously been shown to significantly out-
perform corresponding text-only and link-only methods, as
well as other integration schemes [13]. For the present anal-
ysis, we use this hybrid hierarchical clustering algorithm to
combine bibliographic coupling [14] with text-based similar-
ities.



Section 2 briefly describes the delineation of the bioinfor-
matics data set by use of the bibliometric retrieval strat-
egy. Next, the Methods section discusses the representation
of textual data (3.1), citation analysis (3.2), and clustering
(3.3), including the determination of the optimal number
of clusters. Procedures for hybrid clustering by weighted
linear combination of distance matrices and by Fisher’s in-
verse chi-square method are explained in Section 3.4. Then,
in Section 3.5, we introduce dynamic hybrid clustering by
matching and tracking clusters through time. Results for
the hybrid and for the dynamic hybrid analyses are given in
Sections 4 and 5. In Section 4.1.1, we also investigate the
relationship between number of Latent Semantic Indexing
factors, number of clusters, and clustering performance. Fi-
nally, the cluster chains and their structure and evolution
are analyzed in Sections 5.1, 5.2, and 5.3.

2. DATA SET

In a forthcoming study, a novel subject delineation strat-
egy has been developed for retrieving the core literature in
bioinformatics [7]. It is a combination of textual compo-
nents and bibliometric, citation-based techniques. The data
set resulting from this bibliometric retrieval strategy was ex-
tracted from the Web of Science Edition of the Science Ci-
tation Index Expanded™ of Thomson Scientific (Philadel-
phia, PA; USA) and consists of 7401 bioinformatics-related
articles, notes, and reviews, published between 1981 and
2004. Each included paper has also been matched against
MEDLINE in order to retrieve associated Medical Subject
Headings (MeSH). From each record we considered the tex-
tual information present in titles and abstracts, author key-
words, and MeSH terms. In addition, we collected all cited
references and all citing papers.

Figure 1 shows the yearly number of publications in the
bioinformatics set. Seven periods are defined for the dy-
namic analysis in Section 3.5 and Section 5, while striving
for comparable numbers of publications in each period.
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Figure 1: Evolution of publication output in bioin-
formatics. Time windows for the dynamic analysis
are indicated with vertical lines as well as in the
legend.

The bibliometric study by Patra and Mishra was based
on MeSH terms and adopted a rather liberal delineation
strategy that was tailored towards maximal recall. They se-
lected 14.563 journal articles, that is, about twice as many
as we have found [20]. The main reason is the broad inter-
pretation of bioinformatics resulting from the less restricted
search strategy. The other reason is the broader coverage of
the underlying database.

3. METHODS
3.1 Text analysis

All textual content was indexed with the Jakarta Lucene
platform [9] and encoded in the Vector Space Model using
the TF-IDF weighting scheme [1]. Text-based similarities
were calculated as the cosine of the angle between the vec-
tor representations of two papers [23]. Stop words were ne-
glected during indexing and the Porter stemmer was applied
to all remaining terms from titles and abstracts. Bigrams
were detected from a candidate list of MeSH descriptors,
author keywords, and noun phrases. The dimensionality of
the term-by-document matrix was reduced from 18.163 term
dimensions to 10 factors by Latent Semantic Indexing (LSI)
[6, 4]. LSI is a dimensionality reduction technique based
on the Singular Value Decomposition (SVD) of a term-by-
document matrix. In Section 4.1.1, we demonstrate that
this LSI with only 10 factors provides a local maximum in
clustering performance.

3.2 Citation analysis

Important and highly recognized bioinformatics papers
can be identified by analyzing the citation graph. We use
the link-based algorithms HITS [15] and PageRank [5] to
determine representative publications (see Table 1).

The cosine measure used to quantify the text-based simi-
larity between any two documents can analogously be used
with Boolean input vectors indicating the cited references
in an article, or indicating all citing articles. This corre-
sponds to bibliographic coupling (BC) [14] and co-citation,
respectively, which are two citation-based measures of sim-
ilarity. In the present study we use bibliographic coupling
and combine it with text-based similarities in order to ob-
tain an integrated measure that can be used by a clustering
algorithm.

3.3 Clustering

To subdivide the bioinformatics papers into clusters we
used the agglomerative hierarchical clustering algorithm with
Ward’s method [12]. It is a hard clustering algorithm, which
means that every publication is assigned to exactly 1 cluster.

Optimal number of clusters

Determination of the optimal number of clusters in a data
set is a difficult issue and depends on the adopted validation
and chosen similarity measures, as well as on data represen-
tation. The strategy that we used to determine the optimal
number is a combination of distance-based and stability-
based methods. This compound strategy encompasses ob-
servation of a dendrogram, text- and citation-based mean
Silhouette curves, and a stability diagram.

Dendrogram.

A preliminary judgment is offered by a dendrogram, which
provides a visualization of the distances between (sub-)clus-
ters. It shows the iterative grouping or splitting of clus-
ters in a hierarchical tree (see Figure 6 for an example).
A candidate optimal number of clusters can be determined
visually by looking for a cut-off point where an imaginary
vertical line would cut the tree such that resulting clusters
are well separated. Because of the difficulty to define the
optimal cut-off point on a dendrogram [12], we complement
this method with other techniques.



Silhouette curves.

A second appraise for the optimal number of clusters is
given by the mean Silhouette curve. The Silhouette value for
a document ranges from -1 to +1 and measures how similar
it is to documents in its own cluster vs. documents in other
clusters [22]. The mean Silhouette value for all documents is
a measurement of the overall quality of a clustering solution
with a specific number of clusters.

Since Silhouette values are based on distances, depending
on the chosen distance measure different Silhouettes can be
calculated. For instance, in both Figures 3 and 4 we use the
complement of cosine similarity as distance measure, but in
Figure 3 we consider text-based distances, while link-based
distances are the input for Figure 4.

The reduction of the number of features in a vector space
by application of LSI improves the performance of clustering
and classification algorithms. In Section 4.1.1, we use Sil-
houette curves to contribute to the debate about the optimal
number of LSI factors by investigating the relationship be-
tween number of factors, number of clusters, and clustering
performance.

Stability.

The stability-based method of Ben-Hur, FElisseeff, and
Guyon [3] allows to visually and quantitatively detect the
most stable number of clusters from a stability diagram.
The main idea is that the perceived structure should remain
stable if only a subsample of objects is available, or if noise
objects are added to the set. Multiple subsamples (e.g., 200)
are randomly drawn from the data set, each comprising for
instance 85% of objects. Then, a clustering algorithm sub-
divides each subsample into different numbers of clusters
(e.g., 2 to 25 clusters). Next, the overlap between each pair
of clustered subsamples is quantified by using, for example,
the Jaccard coefficient (for a specific number of clusters).

Each number of clusters leads to one curve in the stability
diagram (see Figure 5). The more a curve is to the right
of the diagram, the higher the pairwise similarities between
the clustered subsamples, and the more stable the clustering
solutions with that specific number of clusters. A curve
representing a certain number of clusters can be interpreted
as how many percent of the subsample pairs (Y-axis) have
a Jaccard value lower than or equal to the corresponding
values on the X-axis. The number of clusters is chosen such
that partitioning different subsamples leads to quite stable
structures. In practice, a transition curve to the band of
distributions on the left-hand side of the figure is selected.

3.4 Hybrid clustering

The requisite input for many clustering algorithms in-
cludes mutual distances between all objects (scientific pub-
lications here). These distances can be based on text, on
citations, or on a combination of both information sources.
The performance of clustering is even significantly improved
by combinations of textual content with citations [13].

The idea of hybrid clustering is not new. For example,
He et al. [10] have performed unsupervised spectral clus-
tering of Web pages by combining textual information, hy-
perlink structure, and co-citation. Hyperlink structure was
used as the dominant factor in the similarity metric and
textual similarity was used to modulate the strength of each
hyperlink. However, textual similarity between pages was
neglected if both were not connected by a hyperlink. In-

tegration with co-citation was achieved by a linear combi-
nation of co-citation and the weighted adjacency matrix of
the graph. Wang and Kitsuregawa evaluated a contents-
link coupled clustering algorithm for retrieved Web pages
and studied the effect of out-links, in-links, specific terms,
and their combination [24]. Results suggested that both
links and contents are important for Web page clustering
and that much better results are achieved with appropriate
integration weights.

The remainder of this section describes a novel methodol-
ogy for deeply combining text mining and bibliometrics by
integrating text and citation information early in the map-
ping process, before application of the clustering algorithm.

For each data source, such as a normalized term-by-docu-
ment matrix A or a normalized cited_references-by-document
matrix B, square distance matrices D; and Dy can be con-
structed as follows:

D =0n - AT - A )
Dy, = On — BT - B,

with NV the number of documents and On a square matrix of
dimensionality N with all ones. ‘bc’ refers to bibliographic
coupling.

For the hybrid clustering of bioinformatics we used Fisher’s
inverse chi-square method to integrate textual similarity and
citation information (bibliographic coupling). In the next
Section we first briefly describe weighted linear combination
of distance matrices.

3.4.1 Weighted linear combination

The distance matrices D; and Dy, can be combined into
an integrated distance matrix D; by a weighted linear com-
bination (linco) as follows:

Di:Oé'DtJr(l_a)'Dbc (2)

The resulting D; can then be used in clustering or classifica-
tion algorithms. A comparable methodology was described
as the toric k-means algorithm by Modha and Spangler [18].
Although being an attractive, easy, and reasonably scalable
integration method, caution should be taken as a linear com-
bination might neglect different distributional characteris-
tics of various data sources [13] (p. 122-124).

The use of Salton’s cosine measure in both text and ci-
tation worlds leads to the same interval (range) of pos-
sible distances, but the actual distance distributions dif-
fer. The discrepancy in distributional characteristics can
turn out even more severe when other information sources
are considered. Different data matrices (such as term-by-
document and indicator-by-document) may also require a
different choice of distance metric. Differences in corre-
sponding distributions might lead to an unequal or unfair
contribution of both data sources in the ultimate integrated
data, and might thus yield suboptimal results by implicitly
favoring text over bibliometric information or vice versa.
Spurious and strong (dis)similarities might obliterate good
relationships established by the other data source.

3.4.2  Fisher’s inverse chi-square method

As a plain linear combination might not be optimal for
integrating textual and bibliometric information, we devel-
oped a methodology based on Fisher’s inverse chi-square
method. Fisher’s inverse chi-square is an omnibus statis-
tic from statistical meta-analysis to combine p-values from



multiple sources [11]. In contrast to the weighted linear
combination procedure, this method can handle distances
stemming from different metrics with different distributional
characteristics and avoids domination of any information
source.

Figure 2 illustrates the concept of distance integration
by Fisher’s inverse chi-square method. All text-based and
link-based document distances in D; and Dy, as described
above, are transformed to p-values with respect to the cu-
mulative distribution function of distances for randomized
data. This randomization is a necessary condition for having
valid p-values. In our setting, a p-value means the probabil-
ity that the similarity between two documents could be at
least as high just by chance.

The randomized data sets can be constructed in several
ways. The randomization should be as complete as possible,
but should obey some rules that apply to the nature of the
data. Blind randomizations might destroy important prop-
erties of human language. We considered different random-
ization schemes and finally opted for the somewhat conserva-
tive randomization which maintains the relative importance
between terms by keeping the inverse document frequency
for each term from the real data intact. Hence, term occur-
rences are randomly shuffled between documents, but the
average characteristic document frequencies per term are
preserved.

If the p-values for the textual data (p1) and for link data
(p2) are calculated, an integrated statistic p; can be com-
puted as

pi=—2-log(py - py ), (3)

with 0 < A < 1 the integration weight determining the rel-
ative quality of both data sources and their contribution
to the ultimate incorporated data. If the null hypothesis
is true (i.e., in the case of randomized data), the distribu-
tion of (p - p3~*) is uniform and the integrated statistic
has a chi-square distribution with 4 degrees of freedom [11].
The integrated p-value, p;, is the new integrated document
distance that can be used in clustering or classification al-
gorithms.
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Figure 2: Distance integration by using Fisher’s in-
verse chi-square method. The ultimate matrix with
integrated p-values can be used for clustering.

Fisher’s inverse chi-square method can also be applied if
SVD is used as a pre-processing step for either the textual
data (LSI), either for the citation-based component, or for
both. The random document vectors are then first projected
in the same space of reduced dimensionality before calculat-
ing the distribution of document similarities.

For more details about Fisher’s inverse chi-square method
for hybrid clustering, including a comparison with linear
combination, we refer to [13]. In that publication we also
demonstrate the performance on other data sets, such as a
collection of full text documents about library and informa-
tion science. We discuss how to estimate the integration
weight A, and present a rank-preserving modification to the
original formula for BC and the superposition of a Gaussian
noise factor in order to tackle a problem of discontinuity.

3.5 Dynamic hybrid clustering

Temporal analysis of text data has already been pursued
by other authors. Mei and Zhai [17] introduced Temporal
Text Mining to reveal evolutionary theme patterns in col-
lections of news articles and scientific literature. They used
probabilistic methods to generate and observe word clusters
(themes) for different time periods. Kullback-Leibler diver-
gence was used to discover coherent themes over time and
Hidden Markov Models were applied to analyze the life cy-
cle of each theme. Griffiths and Steyvers [8] have applied
Latent Dirichlet Allocation and they explored basic tempo-
ral dynamics to identify hot topics in a collection of PNAS
abstracts.

3.5.1 Matching & tracking clusters through time

Our strategy for dynamic clustering, namely by match-
ing and tracking clusters through time, is demonstrated in
Figure 7(a). Each horizontal level represents one period, in-
dicated by the label of the leftmost circle and with a different
gray level. Node size represents number of publications and
for each cluster the best TF-IDF term is shown.

In each period, a separate hybrid clustering is performed
(see Section 3.4) and the optimal number of clusters is again
determined by observing the dendrogram, Silhouette curves,
and Ben-Hur stability plot (see Section 3.3). Next, a com-
plete graph is constructed with all cluster centroids from
each period as nodes, and with as edge weights their mutual
cosine similarities, calculated in the 10 dimensional latent
semantic space.

3.5.2  Chains of clusters

Next, a two-step approach is followed in order to form
‘cluster chains’. First, only edge weights with similarity
larger than a threshold 71 are retained. Secondly, clusters
that fall below this threshold are yet allowed to join an ex-
isting chain if their similarity to each member is larger than
threshold T'2. In Figure 7(a), such clusters are depicted as
a diamond instead of a circle.

3.5.3 Term networks

For visualization, we determined for each cluster chain the
best words or phrases according to mean TF-IDF weights.
In a term network (see Figure 7(b) for an example), each
cluster chain has its own ‘central node’, represented by a
diamond, which also indicates the number of publications.
Each central node points to the best 10 keywords for the
chain. When a keyword is among the best 10 for more than



one chain, it is only repeated once but connected to all corre-
sponding cluster chain nodes. The gray level and thickness
of an arc reflect the importance of a word for a cluster chain.
Two terms are connected if both co-occur in one or more pa-
pers of the same cluster chain; the more co-occurrences, the
closer the terms. Pajek was used for visualization [2].

A ‘dynamic’ term network allows the observation of shifts
in vocabulary and focus of a specific (sub-)field of interest
over time (see Figure 10). A central node is annotated with
an indication of the period (such as ‘1991-1998’), with the
period number, and with the number of publications.

4. HYBRID CLUSTERING RESULTS
4.1 Optimal number of clusters

4.1.1 Silhouette curves

The optimal combination of number of clusters and num-
ber of LSI factors depends on the document collection at
hand and on the objectives of the study. In order to inves-
tigate the relationship between number of factors, number
of clusters, and clustering performance, Figure 3 presents
the mean Silhouette coefficient for 2 to 50 clusters, for dif-
ferent numbers of factors as well as for the standard Vector
Space Model (no LSI). It is important to note that for the
sake of comparability each distinct clustering was evaluated
with Silhouette values calculated from the original term-by-
document matrix A on which LSI had not been applied.
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Figure 3: Silhouette curves with mean Silhouette
coefficient for text-based clustering solutions of 2 up
to 50 clusters, for the original term-by-document
matrix (‘No LSI’) and for derived latent semantic
indices (‘LSI’) with different numbers of factors k.
The arrow indicates a local maximum for 9 clusters
and 10 LSI factors.

Figure 3 demonstrates that, in general, the clustering per-
formance is higher for a lower number of LSI factors (k).
Nevertheless, the performance quickly drops if the number
of clusters is higher than the number of factors. An expla-
nation might be that it is a harder task to discern a certain
number of clusters encoded in a lesser amount of dimensions.
Hence, as a heuristic, it certainly seems advisable to use a

number of factors at least as high as the desired number of
clusters.

When looking for a coarse-grained clustering solution, a
very modest number of factors, e.g., £k = 10, might provide
a local maximum in clustering performance. Indeed, Figure
3 shows that for any number of clusters less than 10, 10
LSI factors provide the best clustering performance. This
observation is supported by a recent study by Kontosthatis
and Pottenger [16]. They have shown in a retrieval setting
that a small, fixed dimensionality reduction parameter (k =
10) can be used to capture the term relationship information
in a corpus. A low dimensionality has also direct advantages
in terms of storage needs and processing time.

Next, for more than 10 clusters, 15 factors take the lead,
whereas 30 factors do best for finer-grained clustering solu-
tions with more than 15 clusters. Again, from 31 clusters
onwards, the next smallest number of factors in line, 50, is
the winning number.

Although being all positive, the overall mean Silhouette
values in Figure 3 each seem low, hinting at groups of docu-
ments that are not clearly separable according to the origi-
nal classification of Rousseeuw [22]. This is probably due to
the very high dimensionality of the original vector space in
which the Silhouette values are computed (for comparabil-
ity, as mentioned above), in contrast to the low-dimensional
problems discussed in [22]. On the other hand, the nature of
natural language usage might be of influence. When dealing
with documents in comparable subject areas, the amount
of overlapping words between different papers is, of course,
considerable.

For the bioinformatics document set, 10 LSI factors and
9 clusters seem to be a very good combination (cf. the in-
dicated local maximum in Figure 3). One might argue that
other solutions with more clusters and more factors provide
higher Silhouette values, but we are rather looking for a local
maximum since we are not interested in 50 clusters within
the bioinformatics field. Additional evidence is given by
the Silhouette curve for link-based clustering using biblio-
graphic coupling, which also shows a clear local maximum
at 9 clusters (see Figure 4).

9 clusters

8 10 12
Number of clusters

Figure 4: Silhouette curve with mean Silhouette co-
efficient for bibliographic coupling clustering.

4.1.2  Stability

Even more evidence for our 9 clusters within the bioinfor-
matics field is provided by the stability diagram (see Section
3.3). The diagram of Figure 5 shows, for 2 up to 25 clus-
ters, the cumulative distribution of pairwise Jaccard simi-



larities, between 200 pairs of clustered random subsamples,
each comprising 6291 bioinformatics publications (sampling
ratio of 85%).

Cumulative share of observed Jaccard correlations
over 200 samples
o
@

. . . .
.2 0.3 . 0.5 0.6 0.7 0.8 0.9 1
Correlation (as Jaccard coefficient) between pairs of subsampled and clustered data

Figure 5: Stability diagram.

Although the most stable solution is obtained for par-
titioning the bioinformatics papers in two clusters, we are
looking for a finer-grained clustering. Nine clusters prove
much more stable than 5, 6 or 7 clusters, and compete with
solutions of 3 and 4 clusters. 8 clusters are almost as stable
as 9 clusters.

4.1.3 Dendrogram

Figure 6 depicts the dendrogram cut off at 9 clusters on
the left-hand side, which seemed a good cut-off point. For
each of 9 clusters, the number of publications and the best
mean TF-IDF term or phrase are shown. These automati-
cally determined labels already give a quite good impression
of the contents of the clusters.

ma 1 (n=205)

protein 2 (n=1167)
network 3 (n=694)
phylogenet 4 (n=749)
Base Sequence 5 (n=640)
gene 6 (n=995)

databas 7 (n=1091)

align 8 (n=713)

i 9 (n=1147)

Figure 6: Dendrogram, cut off at 9 clusters on the
left-hand side.

4.1.4 Concluding remark

Although the number of clusters remains a difficult to
define parameter, our experience is that the different strate-
gies often agree on a certain local maximum of clustering
performance. For the bioinformatics field the consensus was
9 clusters.

4.2 Cluster characterization

After observing the contents of all clusters in detail we
were able to propose a name for each cluster as given in
Table 1. The cluster size is indicated as well, next to the
characterization by most salient author keyword and by best

TF-IDF MeSH term. For MeSH terms, the TF factor was
either 1 or 2, for minor and major MeSH descriptors, re-
spectively. With 205 publications, cluster 1, labeled RNA
structure prediction, is the smallest one; all other clusters
have more than 600 and less than 1200 papers. We deter-
mined ‘representative’ publications by using four different
methods that rank the papers in each cluster according to
different criteria of importance. Table 1 lists for each cluster
the paper on top of each ranking: (1) the medoid, which is
the paper that is most similar to the mean cluster profile
(the centroid), (2,3) the best authority and best hub de-
termined by the HITS algorithm, and (4) the paper with
highest PageRank.

S. DYNAMIC CLUSTERING RESULTS

Figure 7(a) visualizes the dynamic clustering strategy,
which is explained in Section 3.5. The two thresholds T'1 =
0.95 and 72 = 0.8 were determined by observing Figure
8. Similarities above T'1 are very high, but nevertheless do
occur more often than somewhat less pronounced matches.
We consider these very high similarities as corresponding to
true cluster matches. Somewhat surprisingly, most cluster
chains were well established after the first step with stern
requirement (7'1). Additional members, added by T2, are
indicated with a diamond instead of a circle in Figure 7(a).

8

bz g 02 08 T T2

04 06
Cosine similarity

Figure 8: Histogram of mutual similarities between
all cluster centroids of Figure 7(a). The demarcation
of strong (7'1) and less strong (72) cluster matches
was defined visually.

5.1 Cluster chains

Whereas the ‘static’ hybrid clustering algorithm came up
with 9 clusters, figure 7(a) suggests that in total 11 cluster
chains could be distinguished by the dynamic procedure, 3
of which contain publications from all seven periods between
1981 and 2004. Five chains emerged in 1991 and were still
present in 2004. The ‘microarrai’ chain (10th from left to
right) appeared in 1999-2000 and the ‘cluster’ chain (#11)
one period later (2001-2002). These two chains together ap-
proximately constitute the ‘Microarray analysis’ cluster of
Table 1. The chain on the left-hand side lasted from the first
until the third period. Besides these groups of documents
that are connected in cluster chains, some others are not
connected to any chain. By disregarding these clusters that
could not be linked to any other cluster in another period,
the dynamic methodology of tracking clusters through time
can be considered less ‘hard’ than the standard hierarchical
clustering algorithm in the sense that not all publications
need be attributed to at least one chain.



Table 1: For each of 9 clusters: (1) the publication with largest cosine similarity to the mean cluster profile (medoid
paper); (2) the best authority and (3) the best hub paper detected by the HITS algorithm; and (4) the paper
with highest PageRank according to Google’s algorithm. Cluster names and sizes are indicated as well, next to the
characterization by most salient author keyword and by best TF-IDF MeSH term. Only first authors are indicated.

Cluster 1. RNA structure prediction (n=205; rna; Nucleic Acid Conformation)

1) Major. Computational methods for RNA structure determination. Curr Opin Struc Biol 11(3):282-286, 2001.

2) Mathews. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary struc-
ture. J Mol Biol 288(5):911-940, 1999.

3) Zuker. Calculating nucleic acid secondary structure. Curr Opin Struc Biol 10(3):303-310, 2000.

4) Zuker. Optimal Computer Folding of Large RNA Sequences Using Thermodynamics and Auxiliary Information. Nucleic
Acids Res 9(1):133-148, 1981.

Cluster 2. Protein structure prediction (n=1167; protein; Proteins/chemistry)

1) Di Francesco. FORESST: fold recognition from secondary structure predictions of proteins. Bioinformatics 15(2):131-
140, 1999.

2) Murzin. Scop - A Structural Classification of Proteins Database for the Investigation of Sequences and Structures. J
Mol Biol 247(4):536-540, 1995.

3) Eisenhaber. Protein-Structure Prediction - Recognition of Primary, Secondary, and Tertiary Structural Features from
Amino-Acid-Sequence. Crit Rev Biochem Mol 30(1):1-94, 1995.

4) Chothia. The Relation Between the Divergence of Sequence and Structure in Proteins. Embo J 5(4):823-826, 1986.

Cluster 3. Systems biology & molecular networks (n=694; network; Models, Biological)

1) Xiong. Network-based regulatory pathways analysis. Bioinformatics 20(13):2056-2066, 2004.
2) Jeong. The large-scale organization of metabolic networks. Nature 407(6804):651-654, 2000.
3) Xia. Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051-1087, 2004.
4) Karp. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 26(1):50-53, 1998.

Cluster 4. Phylogeny & evolution (n=749; phylogenet; Phylogeny)

1) Negrisolo. Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from
nuclear SSU rDNA and plastidial rbcL genes. Mol Phylogenet Evol 33(1):156-170, 2004.

2) Posada. MODELTEST: testing the model of DNA substitution. Bioinformatics 14(9):817-818, 1998.

3) Delsuc. Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum likelihood and
Bayesian analyses of mitochondrial and nuclear genes. Mol Phylogenet Evol 28(2):261-275, 2003.

4) Saitou. The Neighbor-Joining Method - A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 4(4):406-
425, 1987.

Cluster 5. Genome sequencing & assembly (n=640; base sequenc; Base Sequence)

1) Barber. Sequenceeditingaligner - A Multiple Sequence Editor and Aligner. Genet Anal-Biomol Eng 7(2):39-45, 1990.
2) SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. P Natl
Acad Sci USA 95(4):1460-1465, 1998.

3) Kaderali. Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics 18(10):1340-1349,
2002.

4) Wilbur. Rapid Similarity Searches of Nucleic-Acid and Protein Data Banks. P Natl Acad Sci USA-BIOL SCI 80(3):726-
730, 1983.

Cluster 6. Gene/promoter/motif prediction (n=995; gene; Sequence Analysis, DNA /methods)

1) Park. Comparing expression profiles of genes with similar promoter regions. Bioinformatics 18(12):1576-1584, 2002.

2) Burge. Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78-94, 1997.

3) Mathe. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30(19):4103-4117, 2002.
4) Uberbacher. Locating Protein-Coding Regions in Human DNA-Sequences by A Multiple Sensor Neural Network Ap-
proach. P Natl Acad Sci USA 88(24):11261-11265, 1991.

Cluster 7. Molecular DBs & annotation platforms (n=1091; databas; Databases, Factual)

1) Andrade. Automated genome sequence analysis and annotation. Bioinformatics 15(5):391-412, 1999.

2) Bairoch. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45-
48, 2000.

3) Kriventseva. Clustering and analysis of protein families. Curr Opin Struc Biol 11(3):334-339, 2001.

4) Henikoff. Automated Assembly of Protein Blocks for Database Searching. Nucleic Acids Res 19(23):6565-6572, 1991.

Cluster 8. Multiple sequence alignment (n=713; align; Sequence Alignment/methods)

1) Jaroszewski. Improving the quality of twilight-zone alignments. PROTEIN SCI 9(8):1487-1496, 2000.

2) Altschul. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res
25(17):3389-3402, 1997.

3) Gotoh. Multiple sequence alignment: Algorithms and applications. ADV BIOPHYS 36:159-206, 1999.

4) Fitch. Optimal Sequence Alignments. P Natl Acad Sci USA-Biological Sciences 80(5):1382-1386, 1983.

Cluster 9. Microarray analysis (n=1147; microarrai; Oligonucleotide Array Sequence Analysis/methods)

1) Tsai. An evolutionary approach for gene expression patterns. IEEE T Inf Technol B 8(2):69-78, 2004.

2) Eisen. Cluster analysis and display of genome-wide expression patterns. P Natl Acad Sci USA 95(25):14863-14868, 1998.
3) Hackl. Analysis of DNA microarray data. Curr Top Med Chem 4(13):1357-1370, 2004.

4) Schena. Quantitative Monitoring of Gene-Expression Patterns with A Complementary-DNA Microarray. Science
270(5235):467-470, 1995.
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Figure 7: Dynamic hybrid clustering. (a). Matching and tracking clusters through time. Each horizontal
level represents one period, indicated by the label of the leftmost circle and with a different gray level. Node
size represents number of publications and for each cluster the best TF-IDF term is shown.

(b).

networks for the cluster chains with the best 10 author keywords according to mean TF-IDF scores.

Term



Subsets of documents that do not clearly belong to any
of the chains can be neglected. Hence, the chains that have
been found by the dynamic clustering procedure might be
more accurate than the clusters found with the standard
algorithm, but this should be further assessed in subsequent
experiments. If for a certain period a non-optimal number
of clusters would be chosen, the strategy of tracking and
matching of clusters through time can compensate for it
by joining more clusters of that period to the same cluster
chain. Likewise, a cluster chain might also split up into
different branches, when, for example, two centroids of a
later period are both linked to the same one of a previous
period and both develop further in dissociated chains. In our
data set, such dissociation is not observable, but the joining
of two centroids of the same period in one chain is. If a
line of research would be discontinued in a certain period,
but be resumed again in a later one, this would also be
detected and the resulting chain would just bridge the period
with no activity in that area. A drawback, however, is that
some clusters can still be overlooked by application of the
visually defined, simple similarity thresholds. Improvement
for the dynamic methodology might be obtained by using
more complex rules for the forming of the chains of clusters.

5.2 Term networks

Figure 7(b) depicts the cognitive structure of bioinformat-
ics by showing, for each of 11 cluster chains, the term net-
works with the best 10 author keywords. The central node
of each term network reveals the chain number, the chain
name, and the number of publications in the chain.

5.3 Dynamics

By visualizing the relative activity in the different chains,
Figure 9 provides a view on how much attention the bioin-
formatics community has devoted to the different subfields
through time. The share (in %) of the yearly publication
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Figure 9: Distribution of the total yearly publication
output among cluster chains. The white line indi-
cates the yearly number of publications, relative to
the number in 2004 (1455). ‘Chain’ 12 represents
all publications that are not connected to any chain.

output that belongs to each cluster chain is shown with
a different color. The white line depicts the yearly num-
ber of bioinformatics publications relative to the number of

publications that were published in the year 2004 (1455).
This way of visualizing demonstrates the relative growing
and fading of different topics in bioinformatics. It is clear
that the share of publications Not in chain (#12) dimin-
ishes mostly with respect to previous years. This is an in-
dication of the bioinformatics field starting to form crisp
lines of research, especially after the year 1990. An upward
trend in relative number of publications can be ascribed to
the chains Microarray analysis (#10), Systems Biology &
molecular networks (#9) and Phylogeny & evolution (#4).
The first two are recent subfields in which a lot of scien-
tific research is being conducted today. Cluster chain 4,
Phylogeny & evolution, actually represents a relatively old
research field, but new developments in bioinformatics made
it regain a lot of attention since the start of the new millen-
nium. Some of the cluster chains, e.g., RNA structure pre-
diction (#2), represent ‘older’ subfields that are relatively
almost fading away.

Figure 10 shows a dynamic term network for the Systems
Biology & molecular networks cluster chain (#9), with for
each period the best 10 author keywords according to mean
TF-IDF scores. Computational Systems Biology studies bio-
logical systems at various scales, the building blocks and how
these form networks of relationships. Dynamic quantitative
models are built based on properties of the components, and
even enable predictions.

The central node in the upper part of Figure 10 (1996-
1998_2_metabol_#42) corresponds to the period 1996-1998,
which accounts for 42 papers. It is a bit isolated in the sense
that none of its terms are also among the best for another
chain, and no term has co-occurred with one of the salient
terms of another period. Looking in a clockwise manner,
temporal keywords of successive periods are illustrated.
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Figure 10: Dynamic term network for the Systems
Biology & molecular networks cluster chain (#9).

6. CONCLUDING REMARKS

The demarcation of the interdisciplinary field of bioinfor-
matics was achieved by bibliometric retrieval. Seven consec-
utive periods containing approximately the same number of
publications were defined.

We demonstrated the hybrid clustering method based on
Fisher’s inverse chi-square, which was revealed in previous



research as a promising method for integrating textual con-
tent and citations. It significantly outperforms text-only
and link-only methods, as well as other integration schemes.

We investigated the relationship between number of La-
tent Semantic Indexing factors, number of clusters, and clus-
tering performance. In general, the quality of clustering
proved significantly higher for a smaller number of LSI fac-
tors. In our data set, a very modest number of factors (e.g.,
10) delivers local maxima in clustering performance, on con-
dition that there are no fewer LSI factors than the desired
number of clusters.

A combined strategy for determination of the optimal
number of clusters, comprising distance-based and stability-
based methods, suggested nine subdisciplines. For each clus-
ter we provided the medoid and other representative pub-
lications according to HITS and PageRank applied to the
citation graph.

Next, a methodology was developed for dynamic cluster-
ing. The same hybrid clustering algorithm was applied mul-
tiple times, but each time restricted to publications in one of
the defined periods. Eleven cluster chains could be identi-
fied by matching and tracking clusters through time. Their
concept networks and evolution were analyzed.

To conclude, the hybrid clustering algorithm exploiting
information from both the text and citation worlds, pos-
sibly complemented with the dynamic strategy of tracking
clusters through time, provide powerful tools to unravel the
cognitive structure of scientific or technological fields, to cast
eyes upon the evolution of existing subdisciplines, and to aid
detection of emerging or converging clusters.
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